
1 / 54

Cascades Framework

Lecture 22: Cascades Framework



2 / 54

Cascades Framework Recap

Recap



3 / 54

Cascades Framework Recap

Optimization Search Strategies

• Choice 1: Heuristics
▶ INGRES, Oracle (until mid 1990s)

• Choice 2: Heuristics + Cost-based Join Search
▶ System R, early IBM DB2, most open-source DBMSs

• Choice 3: Randomized Search
▶ Academics in the 1980s, current Postgres

• Choice 4: Stratified Search
▶ IBM’s STARBURST (late 1980s), now IBM DB2 + Oracle

• Choice 5: Unified Search
▶ Volcano/Cascades in 1990s, now MSSQL + Greenplum



4 / 54

Cascades Framework Recap

Stratified Search

• First rewrite the logical query plan using transformation rules.
▶ The engine checks whether the transformation is allowed before it can be applied.
▶ Cost is never considered in this step.

• Then perform a cost-based search to map the logical plan to a physical plan.



5 / 54

Cascades Framework Recap

Unified Search

• Unify the notion of both logical→logical and logical→physical transformations.
▶ No need for separate stages because everything is transformations.

• This approach generates a lot more transformations so it makes heavy use of
memoization to reduce redundant work.



6 / 54

Cascades Framework Recap

Top-Down vs. Bottom-Up

• Top-down Optimization
▶ Start with the final outcome that you want, and then work down the tree to find the

optimal plan that gets you to that goal.
▶ Example: Volcano, Cascades

• Bottom-up Optimization
▶ Start with nothing and then build up the plan to get to the final outcome that you want.
▶ Examples: System R, Starburst



7 / 54

Cascades Framework Recap

Today’s Agenda

• Logical Query Optimization
• Physical Query Optimization
• Cascades Optimizer
• Dynamic Programming
• Case Studies



8 / 54

Cascades Framework Logical Query Optimization

Logical Query Optimization



9 / 54

Cascades Framework Logical Query Optimization

Logical Query Optimization

• Transform a logical plan into an equivalent logical plan using pattern matching rules.
• The goal is to increase the likelihood of enumerating the optimal plan in the search.
• Cannot compare plans because there is no cost model but can "direct" a transformation

to a preferred side.



10 / 54

Cascades Framework Logical Query Optimization

Logical Query Optimization

• Split Conjunctive Predicates
• Predicate Pushdown
• Replace Cartesian Products with Joins
• Projection Pushdown
• Reference

https://db.in.tum.de/teaching/ws1819/queryopt/?lang=en


11 / 54

Cascades Framework Logical Query Optimization

Split Conjunctive Predicates



12 / 54

Cascades Framework Logical Query Optimization

Split Conjunctive Predicates



13 / 54

Cascades Framework Logical Query Optimization

Predicate Pushdown



14 / 54

Cascades Framework Logical Query Optimization

Predicate Pushdown



15 / 54

Cascades Framework Logical Query Optimization

Replace Cartesian Products with Joins



16 / 54

Cascades Framework Logical Query Optimization

Replace Cartesian Products with Joins



17 / 54

Cascades Framework Logical Query Optimization

Projection Pushdown



18 / 54

Cascades Framework Logical Query Optimization

Projection Pushdown



19 / 54

Cascades Framework Physical Query Optimization

Physical Query Optimization



20 / 54

Cascades Framework Physical Query Optimization

Physical Query Optimization

• Transform a query plan’s logical operators into physical operators.
▶ Add more execution information
▶ Select indexes / access paths
▶ Choose operator implementations
▶ Choose when to materialize (i.e., temp tables).

• This stage must support cost model estimates.



21 / 54

Cascades Framework Physical Query Optimization

Observation

• All the queries we have looked at so far have had the following properties:
▶ Equi/Inner Joins
▶ Simple join predicates that reference only two tables.
▶ No cross products

• Real-world queries are much more complex:
▶ Outer Joins
▶ Semi-joins
▶ Anti-joins



22 / 54

Cascades Framework Physical Query Optimization

Reordering: Limitations

• No valid reordering is possible.
• The A=1B operator is not commutative with B=1<C.

▶ The DBMS does not know the value of B.val (may be NULL) until after computing the join
with A.

• Reference
SELECT * FROM
A LEFT OUTER JOIN B
ON A.id = B.id
FULL OUTER JOIN C
ON B.val = C.id;

https://ub-madoc.bib.uni-mannheim.de/36655/


23 / 54

Cascades Framework Physical Query Optimization

Plan Enumeration

• Approach 1: Transformation
▶ Modify some part of an existing query plan to transform it into an alternative plan that is

equivalent.
• Approach 2: Generative

▶ Assemble building blocks to generate a query plan (similar to dynamic programming).

• Reference

https://dl.acm.org/doi/10.1145/2463676.2465314


24 / 54

Cascades Framework Physical Query Optimization

Dynamic Programming Optimizer

• Model the query as a hypergraph and then incrementally expand to enumerate new
plans.

• Algorithm Overview:
▶ Iterate connected sub-graphs and incrementally add new edges to other nodes to

complete query plan.
▶ Use rules to determine which nodes the traversal is allowed to visit and expand.

• Reference

https://dl.acm.org/doi/10.1145/1376616.1376672


25 / 54

Cascades Framework Physical Query Optimization

Cascades Optimizer

• Object-oriented implementation of the Volcano query optimizer.
• Materialize transformations on the fly (rather than pre-generate them all at once).
• Unlike Volcano, restricts the set of transformations to constrain the search space.
• Supports simplistic expression re-writing through a direct mapping function rather

than an exhaustive search.



26 / 54

Cascades Framework Cascades Optimizer

Cascades Optimizer



27 / 54

Cascades Framework Cascades Optimizer

Cascades Optimizer: Design Decisions

• Optimization tasks as data structures.
• Rules to place property enforcers (e.g., sorting order).
• Ordering of transformations by priority. Dynamically adjust ordering as we traverse

the search tree.
• Predicates are first class citizens (same as logical/physical operators).



28 / 54

Cascades Framework Cascades Optimizer

Cascades – Expressions

• An expression is an operator with zero or more input expressions.
• Logical Expression: (A 1 B) 1 C
• Physical Expression: (ASeq 1HJ BSeq) 1NL CIdx

SELECT * FROM A
JOIN B ON A.id = B.id
JOIN C ON C.id = A.id;



29 / 54

Cascades Framework Cascades Optimizer

Cascades – Groups

• A group is a set of logically equivalent logical and physical expressions that produce
the same output.
▶ All logical forms of an expression.
▶ All physical expressions that can be derived from selecting the allowable physical

operators for the corresponding logical forms.



30 / 54

Cascades Framework Cascades Optimizer

Cascades – Multi-Expression

• Instead of explicitly instantiating all possible expressions in a group, the optimizer
implicitly represents redundant expressions in a group as a multi-expression.
▶ This reduces the number of transformations, storage overhead, and repeated cost

estimations.
▶ We can make decisions about whether to traverse [AB] first vs. [C] first.



31 / 54

Cascades Framework Cascades Optimizer

Cascades – Rules

• A rule is a transformation of an expression to a logically equivalent expression.
▶ Transformation Rule: Logical to Logical
▶ Implementation Rule: Logical to Physical

• Each rule is represented as a pair of attributes:
▶ Pattern: Defines the structure of the logical expression that can be applied to the rule.
▶ Substitute: Defines the structure of the result after applying the rule.



32 / 54

Cascades Framework Cascades Optimizer

Cascades – Rules



33 / 54

Cascades Framework Cascades Optimizer

Cascades – Rules



34 / 54

Cascades Framework Cascades Optimizer

Cascades – Rules



35 / 54

Cascades Framework Cascades Optimizer

Cascades – Memo Table

• Stores all previously explored alternatives in a compact graph structure / hash table.
• Equivalent operator trees and their corresponding plans are stored together in groups.
• Provides memoization, duplicate detection, and property + cost management.



36 / 54

Cascades Framework Cascades Optimizer

Principle of Optimality

• Every sub-plan of an optimal plan is itself optimal.
• This allows the optimizer to restrict the search space to a smaller set of expressions.

▶ The optimizer never has to consider a plan containing sub-plan P1 that has a greater cost
than equivalent plan P2 with the same physical properties.

▶ Reference

https://dl.acm.org/doi/10.5555/646290.686937


37 / 54

Cascades Framework Cascades Optimizer

Cascades – Memo Table



38 / 54

Cascades Framework Cascades Optimizer

Cascades – Memo Table



39 / 54

Cascades Framework Cascades Optimizer

Cascades – Memo Table



40 / 54

Cascades Framework Cascades Optimizer

Cascades – Memo Table



41 / 54

Cascades Framework Cascades Optimizer

Cascades – Memo Table



42 / 54

Cascades Framework Cascades Optimizer

Cascades – Memo Table



43 / 54

Cascades Framework Cascades Optimizer

Cascades – Memo Table



44 / 54

Cascades Framework Cascades Optimizer

Cascades – Memo Table



45 / 54

Cascades Framework Cascades Optimizer

Search Termination

• Approach 1: Wall-clock Time
▶ Stop after the optimizer runs for some length of time.

• Approach 2: Cost Threshold
▶ Stop when the optimizer finds a plan that has a lower cost than some threshold.

• Approach 3: Transformation Exhaustion
▶ Stop when there are no more ways to transform the target plan. Usually done per group.



46 / 54

Cascades Framework Case Studies

Case Studies



47 / 54

Cascades Framework Case Studies

Cascades: Implementations

• Approach 1: Standalone Optimizer Generator
▶ Wisconsin OPT++ (1990s)
▶ Portland State Columbia (1990s)
▶ Pivotal Orca (2010s)
▶ Apache Calcite (2010s)

• Approach 2: Integrated
▶ Microsoft SQL Server (1990s)
▶ Tandem NonStop SQL (1990s)
▶ Clustrix (2000s)
▶ CMU Peloton (2010s – RIP)

http://pages.cs.wisc.edu/~navin/research/apg.html
http://web.cecs.pdx.edu/~len/Columbia/
https://github.com/greenplum-db/gporca
https://calcite.apache.org/
http://www.vldb.org/conf/1996/P592.PDF
http://docs.clustrix.com/display/CLXDOC/Query+Optimizer
https://github.com/cmu-db/peloton/tree/master/src/optimizer


48 / 54

Cascades Framework Case Studies

Pivotal Orca

• Standalone Cascades (Optimization-as-a-service).
• Reference

▶ Originally written for Greenplum.
▶ Extended to support HAWQ.

• A DBMS can use Orca by implementing API to send catalog + stats + logical plans and
then retrieve physical plans.

• Supports multi-threaded search.

https://dl.acm.org/doi/10.1145/2588555.2595637
https://greenplum.org/
http://hawq.apache.org/


49 / 54

Cascades Framework Case Studies

Orca – Engineering

• Issue 1: Remote Debugging
▶ Automatically dump the state of the optimizer (with inputs) whenever an error occurs.
▶ The dump is enough to put the optimizer back in the exact same state later for further

debugging.
• Issue 2: Optimizer Accuracy

▶ Automatically check whether the ordering of the estimate cost of two plans matches their
actual execution cost.



50 / 54

Cascades Framework Case Studies

Apache Calcite

• Standalone extensible query optimization framework for data processing systems.
▶ Support for pluggable query languages, cost models, and rules.
▶ Does not distinguish between logical and physical operators. Physical properties are

provided as annotations.

• Reference
• Originally part of LucidDB.

https://arxiv.org/abs/1802.10233
https://dbdb.io/db/luciddb


51 / 54

Cascades Framework Case Studies

MemSQL Optimizer

• Rewriter
▶ Logical-to-logical transformations with access to the cost-model.

• Enumerator
▶ Logical-to-physical transformations.
▶ Mostly join ordering.

• Planner
▶ Convert physical plans back to SQL.
▶ Contains MemSQL-specific commands for moving data.

• Reference

https://www.vldb.org/pvldb/vol9/p1401-chen.pdf


52 / 54

Cascades Framework Conclusion

Conclusion



53 / 54

Cascades Framework Conclusion

Parting Thoughts

• Cascades
▶ Optimization tasks as data structures.
▶ Rules to place property enforcers (e.g., sorting order).
▶ Ordering of transformations by priority.
▶ Predicates are first class citizens (same as logical/physical operators).

• All of this relies on a good cost model.
• A good cost model needs good statistics.



54 / 54

Cascades Framework Conclusion

Next Class

• Non-Traditional Query Optimization Techniques


	Cascades Framework
	Recap
	Logical Query Optimization
	Physical Query Optimization
	Cascades Optimizer
	Case Studies
	Conclusion


