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Optimization Search Strategies

Choice 1: Heuristics

> INGRES, Oracle (until mid 1990s)
Choice 2: Heuristics + Cost-based Join Search

> System R, early IBM DB2, most open-source DBMSs
Choice 3: Randomized Search

> Academics in the 1980s, current Postgres
Choice 4: Stratified Search

> IBM’s STARBURST (late 1980s), now IBM DB2 + Oracle
Choice 5: Unified Search

> Volcano/Cascades in 1990s, now MSSQL + Greenplum




Recap
Stratified Search

e First rewrite the logical query plan using transformation rules.

> The engine checks whether the transformation is allowed before it can be applied.
> Cost is never considered in this step.

e Then perform a cost-based search to map the logical plan to a physical plan.



Recap
Unified Search

e Unify the notion of both logical—logical and logical ->physical transformations.
> No need for separate stages because everything is transformations.

e This approach generates a lot more transformations so it makes heavy use of
memoization to reduce redundant work.



Top-Down vs. Bottom-Up

¢ Top-down Optimization

> Start with the final outcome that you want, and then work down the tree to find the
optimal plan that gets you to that goal.
> Example: Volcano, Cascades

e Bottom-up Optimization

> Start with nothing and then build up the plan to get to the final outcome that you want.
> Examples: System R, Starburst
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Today’s Agenda

Logical Query Optimization

Physical Query Optimization

Cascades Optimizer

Dynamic Programming
Case Studies
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Logical Query Optimization



Logical Query Optimization
Logical Query Optimization

e Transform a logical plan into an equivalent logical plan using pattern matching rules.
e The goal is to increase the likelihood of enumerating the optimal plan in the search.

e Cannot compare plans because there is no cost model but can "direct” a transformation
to a preferred side.



(@HELERSE YOI Logical Query Optimization

Logical Query Optimization

Split Conjunctive Predicates
Predicate Pushdown

Replace Cartesian Products with Joins

Projection Pushdown

Reference


https://db.in.tum.de/teaching/ws1819/queryopt/?lang=en

des Framework

Split Conjunctive Predicates

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's 0G Remix”

Decompose predicates into their
simplest forms to make it easier
for the optimizer to move them
around.

' l ARTIST.NAME

ARTIST.ID=APPEARS.ARTIST_ID AND
APPEARS . ALBUM_ID=ALBUM.ID AND
ALBUM.NAME="Andy's 0G Remix"

X
p—
X

ARTIST APPEARS ALBUM




(@HELERSE YOI Logical Query Optimization

Split Conjunctive Predicates

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM n ARTIST.NAME
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID GARTIST.ID:APPEARS.ARTIST_ID
AND ALBUM.NAME="Andy's OG Remix”

G APPEARS . ALBUM_ID=ALBUM. ID

Decompose predicates into their O oot wwe="andy s 06 Remix”
simplest forms to make it easier

for the optimizer to move them X

around.

X

ARTIST APPEARS ALBUM




Predicate Pushdown

Logical Query Optimization

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Move the predicate to the lowest
point in the plan after Cartesian
products.

ARTIST

’ I ARTIST.NAME

G ARTIST. ID=APPEARS . ARTIST_ID

G APPEARS . ALBUM_ID=ALBUM. ID

GALBUM.NAME:”TAndy's 0G Remix”

X

APPEARS ALBUM




des Framework

Predicate Pushdown

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM n ARTIST.NAME
WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM. ID O woeesis unm_io-som. 1o
AND ALBUM.NAME="Andy's 0G Remix" : 1 - :
Move the predicate to the lowest
point in the plan after Cartesian
PrOdUCtS- G ALBUM.NAME="Andy"s 0G Remix"
ARTIST. ID=/ APPEARS ARTIST_ID

X

ARTIST APPEARS ALBUM

DA 14 / 54
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Replace Cartesian Products with Joins

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's 0G Remix"

Replace all Cartesian Products
with inner joins using the join
predicates.

' l ARTIST.NAME

G APPEARS . ALBUM_ID=ALBUM. ID

G ALBUM.NAME="Andy’s 0G Remix”
G ARTIST.ID=APPEARS.ARTIST_ID

X

ARTIST APPEARS ALBUM




(@HELERSE YOI Logical Query Optimization

Replace Cartesian Products with Joins

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM n LRI E
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID ]
AND ALBUM.NAME="Andy's 0G Remix"
N APPEARS. ALBUM_ID=ALBUM. ID

Replace all Cartesian Products
with inner joins using the join
predicates. GALBUM.NAME:"Andy‘s 0G Remix”

N ARTIST.ID=APPEARS.ARTIST_ID

ARTIST APPEARS ALBUM




des Framework

Projection Pushdown

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Eliminate redundant attributes
before pipeline breakers to
reduce materialization cost.

n ARTIST.NAME

|

N APPEARS . ALBUM_ID=ALBUM. ID

G ALBUM.NAME="Andy's 0G Remix"

M ARTIST.ID=APPEARS.ARTIST_ID

ARTIST APPEARS ALBUM




des Framework

Projection Pushdown

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM ’I; ARTIST.NAME
WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM. ID APEARS ALBUA DAL BT
AND ALBUM.NAME="Andy's 0G Remix” N B
ARTIST.NAME,
APPEARS . ALBUM_ID n w

Eliminate redundant attributes
before pipeline breakers to

1ali 3 ARTIST.ID=
reduce materialization cost. e e G ALBUM.NAE="Andy" s 0G Remix"
n n ARTIST_ID,
!?ME ALBUM_ID
ARTIST APPEARS ALBUM
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Physical Query Optimization



Physical Query Opimization
Physical Query Optimization

e Transform a query plan’s logical operators into physical operators.
> Add more execution information
> Select indexes / access paths
> Choose operator implementations
» Choose when to materialize (i.e., temp tables).

e This stage must support cost model estimates.




(@-HELERSEEY O  Physical Query Optimization

Observation

e All the queries we have looked at so far have had the following properties:
> Equi/Inner Joins
> Simple join predicates that reference only two tables.
> No cross products
e Real-world queries are much more complex:
»> Quter Joins
> Semi-joins
> Anti-joins



(@-HELERSEEY O  Physical Query Optimization

Reordering: Limitations

e No valid reordering is possible.
e The AI4B operator is not commutative with B1xC.

> The DBMS does not know the value of B.val (may be NULL) until after computing the join
with A.

e Reference

SELECT * FROM
A LEFT OUTER JOIN B
ON A.id = B.id
FULL OUTER JOIN C
ON B.val = C.id;


https://ub-madoc.bib.uni-mannheim.de/36655/

(@-HELERSEEY O  Physical Query Optimization

Plan Enumeration

e Approach 1: Transformation

> Modify some part of an existing query plan to transform it into an alternative plan that is
equivalent.

e Approach 2: Generative

> Assemble building blocks to generate a query plan (similar to dynamic programming).

e Reference


https://dl.acm.org/doi/10.1145/2463676.2465314

(@-HELERSEEY O  Physical Query Optimization

Dynamic Programming Optimizer

e Model the query as a hypergraph and then incrementally expand to enumerate new
plans.
e Algorithm Overview:

> [terate connected sub-graphs and incrementally add new edges to other nodes to
complete query plan.
> Use rules to determine which nodes the traversal is allowed to visit and expand.

e Reference


https://dl.acm.org/doi/10.1145/1376616.1376672

(@-HELERSEEY O  Physical Query Optimization

Cascades Optimizer

Object-oriented implementation of the Volcano query optimizer.

Materialize transformations on the fly (rather than pre-generate them all at once).

Unlike Volcano, restricts the set of transformations to constrain the search space.

Supports simplistic expression re-writing through a direct mapping function rather
than an exhaustive search.
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Cascades Optimizer



(@EELERSEIMEIOISN  Cascades Optimizer

Cascades Optimizer: Design Decisions

Optimization tasks as data structures.

Rules to place property enforcers (e.g., sorting order).

Ordering of transformations by priority. Dynamically adjust ordering as we traverse
the search tree.

Predicates are first class citizens (same as logical/physical operators).



(@EELERSEIMEIOISN  Cascades Optimizer

Cascades — Expressions

e An expression is an operator with zero or more input expressions.
e Logical Expression: (A X B) X C
e Physical Expression: (Aseq XHj Bseq) MNL Crax

SELECT * FROM A
JOIN B ON A.id = B.id
JOIN C ON C.id = A.id;



(@EELERSEIMEIOISN  Cascades Optimizer

Cascades — Groups

e A group is a set of logically equivalent logical and physical expressions that produce

the same output.

> All logical forms of an expression.
> All physical expressions that can be derived from selecting the allowable physical
operators for the corresponding logical forms.

Group

Output:
[ABC]

Logical Exps

1

2
3
4

. (ADB)BIC
. (BMC)DA
. (AXC)paB
. AD(BDC)

Physical Exps

1. (AseqPBseq) Pl Cseq
2. (BseqPCseq) P Aseq
3. (AseqPCseq) I Bseq
4- AseqPu (CsegPnBseq)

Equivalent
Expressions
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Cascades — Multi-Expression

e Instead of explicitly instantiating all possible expressions in a group, the optimizer
implicitly represents redundant expressions in a group as a multi-expression.

> This reduces the number of transformations, storage overhead, and repeated cost
estimations.

> We can make decisions about whether to traverse [AB] first vs. [C] first.

Logical Multi-Exps Physical Multi-Exps

1. [ABIP4LCI 1. [ABIMdg[C]

Output: |2. [BCIp<IAl 2. [ABID4,,[C]

[ABC] |3. [ACINIB] 3. [ABIP<y [C]
4. [AIIBC] 4

. [BCIPsy[A]
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Cascades — Rules

e A rule is a transformation of an expression to a logically equivalent expression.

> Transformation Rule: Logical to Logical
> Implementation Rule: Logical to Physical

e Each rule is represented as a pair of attributes:

> Pattern: Defines the structure of the logical expression that can be applied to the rule.
> Substitute: Defines the structure of the result after applying the rule.



Cascades Framework

Cascades — Rules

Pattern

EQIOIN

EQIOIN

GROUP 1

@ Growp Matching Plan

() Logical Expr
B Physical Expr

it
S
el
Q
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Cascades Framework

Cascades — Rules

Pattern

Transformation Rule
Rotate Left-to-Right

4

EQJIOIN

EQJOIN

GROUP 1

& Growp Matching Plan

(") Logical Expr
B Physical Expr

it
S
el
Q
@)
(e8]
—
U1
&



Cascades Framework

Cascades — Rules

Pattern

Transformation Rule
Rotate Left-to-Right

@ Growp Matching Plan »
[ Logical Expr Implementation Rule
B Physical Expr EQJOIN—SORTMERG.

EQJOIN

EQIOIN

[ABIP<s,C




Cascades Optimizer
Cascades — Memo Table

e Stores all previously explored alternatives in a compact graph structure / hash table.
e Equivalent operator trees and their corresponding plans are stored together in groups.

e Provides memoization, duplicate detection, and property + cost management.



Cascades Optimizcr
Principle of Optimality

e Every sub-plan of an optimal plan is itself optimal.
e This allows the optimizer to restrict the search space to a smaller set of expressions.

> The optimizer never has to consider a plan containing sub-plan P1 that has a greater cost
than equivalent plan P2 with the same physical properties.
> Reference


https://dl.acm.org/doi/10.5555/646290.686937

s Framework

Cascades — Memo Table

[ABC] Logical M-Exps  |Physical M-Exps
[AB] output: | LRISLE
[ABC]
[A] A~
8]
[
Logical M-Exps  |Physical M-Exps

Output: o X
Logical M-Exps  |Physical M-Exps

L1, GET(A) 1. SeqScan(A)
°"E:‘]“< 2. IdxScan(A)

il
it
S
el
Q

37 /54



s Framework

Logical M-Exps

‘/!"’!NFCE'

Physical M-Exps

[ABC]

(el Output:
Al | seascanca) | 10 « [ABC]
8] /—/
(9]

Logical M-Exps

Output: |17 PLAIIE]
=2

Physical M-Exps

4/(3:;.10

Logical M-Exps

Physical M-Exps
RO 1. _Seascan(A)
O“Ef‘]‘" 2. TdxScan(A

@

8 /54
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Cascades — Memo Table

[ABC]

Logical M-Exps

) G 1. @lABINLC]
[ABC]
[A] | Seascan(h) | 10

_/
81 | Seascan(e) | 20
I | /

Physical M-Exps

Logical M-Exps  |Physical M-Exps
Output: [L1 CAINEE]
[AB]
Cost: 10 Cost: 20
Logical M-Exps | Physical M-Exps Logical M-Exps |Physical M-Exps
L |1, GET(A) 1. SegScan(A) . |1, GET(B) SeqScan(B)
Cr 7. TdxScan(®) T dxScan(B)

Do 39 /54



s Framework

Cascades — Memo Table

Best Expr  Cost

[ABC]

Logical M-Exps  |Physical M-Exps

[AB] Output: ALl
[ABC]
[A1 | seascana) | 10

1
8] | Seascan(®) | 20 h /—/
rc1 |

Logical M-Exps
1. [AIXI[B]

output:

SRR, el ¢

Physical M-Exps

Cost: 10 Cost: 20
Logical M-Exps  |Physical M-Exps Logical M-Exps  |Physical M-Exj
L Ty e eET®
O”EE‘;" 2. TdxScan(A) O“Eg‘jt' 2. Tdxscan(8)

Do 40/54



Cascades — Memo Table

[ABC]] Logical M-Exps |Physical M-Exps
o output: 1. @lABINLC]
[ABC]
[AD | Seascan(a) | 10 p
8]

seqscan(8) | 20 /
(=]

Logical M-Exps Physical M-Exps
. |1. [AIB] 1. [AIp<y[B]
Odtput: |2, elaial 2. [AIbdg(B]
3. [BIpdy [A]
Cost: 10 Cost: 20

Logical M-Exps | Physical M-Exps Logical M-Exps  |Physical M-Exps
L |1, GET(A)Y 1. SeqgScan(A) . |1, eET(B) 1. SeqScan(B)
OUETJ‘L 2 I!xsz:an!lj °"E:‘]‘“ 2. Tdxscan(B,

Da 41/54
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Cascades — Memo Table

Best Expr  Cost

[ABC] Logical M-Exps |Physical M-Exps

1. @IABINILC]
a8] | [ATasc8] [ 80 h Output:

= [ABC]
[A SegScan(A) 10

8] | Seascan(®) | 20
rc1 Cost: 50+(10+20)

Logical M-Exps  |Physical M-Exps
Output: 1. [AI[B] 1. [AI>4, [B]
[AB] 2. [BIM[A] 2. [].‘[B]
Cost: 10 Cost: 20
Logical M-Exps Physical M-Exps Logical M-Exps Physical M-l
e [ Ee
OuET]m 7 TaxScan(A)y OUEQ;L 2. IdxScan(B)

Da 42 /54



Cascades — Memo Table

Best Expr  Cost

[ABC]) Logical M-Exps  |Physical M-Exps
1= ABILC
tAB1| [AT=a8] | B0 Output: A
[ABC]
Al | seascancay | 10 P \

SeqScan(B) 20
o | s Cost: 50+(10+20) \ Cost: 5

[B:

[c:

Logical M-Exps  |Physical M-Exps Logical M-Exps  |Physical M-Exps
1. [AIx[B] 1. [AIpq, [B] 1. GET(C)
Output: Output:
[AB] 2. [BIXIA] 2: [][B] el IdxScan(C)
Cost: 10 Cost: 20

Logical M-Exps  |Physical M-Exps. Logical M-Exps  |Physical M-Exps
ey 1. _Seascan(A) e 1. _Seascan(8)
R 7. Tdxscan(A) e 7. Tdxscan(®)

Do 43 /54
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Cascades — Memo Table

[ABC] Logical M-Exps | Physical M-Exps

1. meIeel |1, [ABIbduC

sy | a8l | se °‘[‘:‘B’g§~ 2. [BCIPALA] 2. [BCIbdyA

3. [ACI[B]  [3. [ACIp<B

[A | SeaSecan(h) | 10 4. [BIXIAC ;
81 | seascan(s) 20
e | 1dxscancoy 5 Cost: 50+(10+20) Cost: 5
Logical M-Exps  |Physical M-Exps Logical M-Exps  |Physical M-Exps
1. [AI[B] 1. [AI>, [B] 1. GET(C)
Output: 2. TAIaB] ] Output:
ey [z [BI<IA £ (AT, (6] oy
Cost: 10 Cost: 20

Logical M-Exps |Physical M-Exps Logical M-Exps | Physical M-Exps
AR #—1 Seascan(A) EARTIO) #—1 Seascan(B)
°“E:;“ 2. TdxScan(A OUES;“ TdxScan(B.

DA 44 /54




(@R ERSEEY I  Cascades Optimizer

Search Termination

e Approach 1: Wall-clock Time

> Stop after the optimizer runs for some length of time.
e Approach 2: Cost Threshold

> Stop when the optimizer finds a plan that has a lower cost than some threshold.
e Approach 3: Transformation Exhaustion

> Stop when there are no more ways to transform the target plan. Usually done per group.
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Case Studies
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Cascades: Implementations

e Approach 1: Standalone Optimizer Generator

> Wisconsin OPT++ (1990s)

» Portland State Columbia (1990s)
» Pivotal Orca (2010s)

> Apache Calcite (2010s)

e Approach 2: Integrated
> Microsoft SQL Server (1990s)
» Tandem NonStop SQL (1990s)
» Clustrix (2000s)
» CMU Peloton (2010s — RIP)



http://pages.cs.wisc.edu/~navin/research/apg.html
http://web.cecs.pdx.edu/~len/Columbia/
https://github.com/greenplum-db/gporca
https://calcite.apache.org/
http://www.vldb.org/conf/1996/P592.PDF
http://docs.clustrix.com/display/CLXDOC/Query+Optimizer
https://github.com/cmu-db/peloton/tree/master/src/optimizer

Cascades Framework [N@EESEIIT TS

Pivotal Orca

Standalone Cascades (Optimization-as-a-service).
Reference
> Originally written for Greenplum.
> Extended to support HAWQ.
A DBMS can use Orca by implementing API to send catalog + stats + logical plans and
then retrieve physical plans.

Supports multi-threaded search.


https://dl.acm.org/doi/10.1145/2588555.2595637
https://greenplum.org/
http://hawq.apache.org/

Cascades Framework [N@EESEIIT TS

Orca — Engineering

e Issue 1: Remote Debugging

> Automatically dump the state of the optimizer (with inputs) whenever an error occurs.
» The dump is enough to put the optimizer back in the exact same state later for further
debugging.
e Issue 2: Optimizer Accuracy

> Automatically check whether the ordering of the estimate cost of two plans matches their
actual execution cost.



Case Studies
Apache Calcite

e Standalone extensible query optimization framework for data processing systems.

> Support for pluggable query languages, cost models, and rules.
> Does not distinguish between logical and physical operators. Physical properties are
provided as annotations.

e Reference

e Originally part of LucidDB.


https://arxiv.org/abs/1802.10233
https://dbdb.io/db/luciddb

Case Studies
MemSQL Optimizer

Rewriter
> Logical-to-logical transformations with access to the cost-model.

Enumerator

> Logical-to-physical transformations.
> Mostly join ordering.

Planner

> Convert physical plans back to SQL.
> Contains MemSQL-specific commands for moving data.

Reference


https://www.vldb.org/pvldb/vol9/p1401-chen.pdf

Cascades Framework @OTaBE 0

Conclusion



Conclusion
Parting Thoughts

e Cascades

> Optimization tasks as data structures.

> Rules to place property enforcers (e.g., sorting order).

> Ordering of transformations by priority.

> Predicates are first class citizens (same as logical/physical operators).

e All of this relies on a good cost model.

e A good cost model needs good statistics.



Cascades Framework @OTaBE 0

Next Class

e Non-Traditional Query Optimization Techniques
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