
1 / 73

Adaptive Query Optimization

Lecture 23: Adaptive Query Optimization &
Cost Models

JA

JA

JA

JA

2 / 73

Adaptive Query Optimization Recap

Recap

3 / 73

Adaptive Query Optimization Recap

Cascades Framework

• Optimization tasks as data structures.
• Rules to place property enforcers (e.g., sorting order).
• Ordering of transformations by priority.
• Predicates are first class citizens (same as logical/physical operators).

JA

JA

JA

JA

4 / 73

Adaptive Query Optimization Recap

Today’s Agenda

• Adaptive Query Optimization
• Techniques for Adaptive Query Optimization

▶ Modify Future Invocations
▶ Replan Current Invocation
▶ Plan Pivot Points

• Cost Models
• Cost Estimation

JA

JA

5 / 73

Adaptive Query Optimization Adaptive Query Optimization

Adaptive Query Optimization

6 / 73

Adaptive Query Optimization Adaptive Query Optimization

Observation

• The query optimizers that we have talked about so far all generate a plan for a query
before the DBMS executes a query.

• The best plan for a query can change as the database evolves over time.
▶ Physical design changes.
▶ Data modifications.
▶ Prepared statement parameters.
▶ Statistics updates.

JA

JA

JA

JA

JA

JA

7 / 73

Adaptive Query Optimization Adaptive Query Optimization

Bad Query Plans

• The most common problem in a query plan is incorrect join orderings.
▶ This occurs because of inaccurate cardinality estimates that propagate up the plan.

• If the DBMS can detect how bad a query plan is, then it can decide to adapt the plan
rather than continuing with the current sub-optimal plan.

JA

JA

JA

JA

JA

JA

JA

JA

8 / 73

Adaptive Query Optimization Adaptive Query Optimization

Bad Query Plans
• If the optimizer knew the true cardinality, would it have picked the same the join

ordering, join algorithms, or access methods?
SELECT * FROM A
JOIN B ON A.id = B.id
JOIN C ON A.id = C.id
JOIN D ON A.id = D.id
WHERE B.val = 'XXX'
AND D.val = 'YYY';

JA

JA

JA

JA

JA

JA

9 / 73

Adaptive Query Optimization Adaptive Query Optimization

Why Good Plans Go Bad

• Estimating the execution behavior of a plan to determine its quality relative to other
plans.

• These estimations are based on a static summarization of the contents of the database
and its operating environment:
▶ Statistical Models / Histograms / Sampling
▶ Hardware Performance
▶ Concurrent Operations

JA

JA

JA

JA

JA

10 / 73

Adaptive Query Optimization Adaptive Query Optimization

Adaptive Query Optimization

• Modify the execution behavior of a query by generating multiple plans for it:
▶ Individual complete plans.
▶ Embed multiple sub-plans at materialization points.

• Use information collected during query execution to improve the quality of these
plans.
▶ Can use this data for planning one query or merge the it back into the DBMS’s statistics

catalog.

• Reference

http://cidrdb.org/cidr2005/papers/P20.pdf
JA

JA

JA

JA

11 / 73

Adaptive Query Optimization Adaptive Query Optimization

Adaptive Query Optimization

• Approach 1: Modify Future Invocations
• Approach 2: Replan Current Invocation
• Approach 3: Plan Pivot Points

JA

JA

JA

12 / 73

Adaptive Query Optimization Modify Future Invocations

Modify Future Invocations

13 / 73

Adaptive Query Optimization Modify Future Invocations

Modify Future Invocations

• The DBMS monitors the behavior of a query during execution and uses this
information to improve subsequent invocations.

• Approach 1: Plan Correction
• Approach 2: Feedback Loop

JA

JA

JA

JA

JA

14 / 73

Adaptive Query Optimization Modify Future Invocations

Reversion-Based Plan Correction

• The DBMS tracks the history of query invocations:
▶ Cost Estimations
▶ Query Plan
▶ Runtime Metrics

• If the DBMS generates a new plan for a query, then check whether that plan performs
worse than the previous plan.
▶ If it regresses, then switch back to the cheaper plans.

JA

JA

JA

JA

15 / 73

Adaptive Query Optimization Modify Future Invocations

Reversion-Based Plan Correction

JA

JA

16 / 73

Adaptive Query Optimization Modify Future Invocations

Reversion-Based Plan Correction

JA

JA

JA

JA

JA

JA

JA

JA

17 / 73

Adaptive Query Optimization Modify Future Invocations

Microsoft – Plan Stitching

• Combine useful sub-plans from queries to create potentially better plans.
▶ Sub-plans do not need to be from the same query.
▶ Can still use sub-plans even if overall plan becomes invalid after a physical design change.

• Uses a dynamic programming search (bottom-up) that is not guaranteed to find a
better plan. Reference

https://www.microsoft.com/en-us/research/uploads/prod/2018/07/p1123-ding.pdf
JA

JA

JA

JA

JA

JA

JA

18 / 73

Adaptive Query Optimization Modify Future Invocations

Microsoft – Plan Stitching

JA

JA

JA

JA

JA

19 / 73

Adaptive Query Optimization Modify Future Invocations

Microsoft – Plan Stitching

JA

20 / 73

Adaptive Query Optimization Modify Future Invocations

Microsoft – Plan Stitching

JA

21 / 73

Adaptive Query Optimization Modify Future Invocations

Identifying Equivalent Subplans

• Sub-plans are equivalent if they have the same
logical expression and required physical
properties.

• Use simple heuristic that prunes any subplans
that never be equivalent (e.g., access different
tables) and then matches based on comparing
expression trees.

JA

JA

JA

22 / 73

Adaptive Query Optimization Modify Future Invocations

Encoding Search Space

• Generate a graph that contains all possible sub-plans.
• Add operators to indicate alternative paths through the plan.

JA

23 / 73

Adaptive Query Optimization Modify Future Invocations

Encoding Search Space

JA

JA

JA

24 / 73

Adaptive Query Optimization Modify Future Invocations

Encoding Search Space

JA

25 / 73

Adaptive Query Optimization Modify Future Invocations

Encoding Search Space

JA

JA

JA

26 / 73

Adaptive Query Optimization Modify Future Invocations

Constructing Stitched Plans

• Perform bottom-up search that selects the cheapest sub-plan for each OR node.

JA

27 / 73

Adaptive Query Optimization Modify Future Invocations

Constructing Stitched Plans

JA

JA

JA

28 / 73

Adaptive Query Optimization Modify Future Invocations

Constructing Stitched Plans

JA

29 / 73

Adaptive Query Optimization Modify Future Invocations

Constructing Stitched Plans

30 / 73

Adaptive Query Optimization Modify Future Invocations

Constructing Stitched Plans

JA

JA

JA

JA

JA

JA

JA

JA

31 / 73

Adaptive Query Optimization Modify Future Invocations

REDSHIFT – Codegen Stitching

• Redshift is a transpilation-based codegen engine.
• To avoid the compilation cost for every query, the DBMS caches subplans and then

combines them at runtime for new queries.

JA

JA

JA

JA

JA

JA

32 / 73

Adaptive Query Optimization Modify Future Invocations

REDSHIFT – Codegen Stitching

JA

JA

JA

33 / 73

Adaptive Query Optimization Modify Future Invocations

REDSHIFT – Codegen Stitching

JA

JA

JA

JA

JA

JA

34 / 73

Adaptive Query Optimization Modify Future Invocations

IBM DB2 – Learning Optimizer

• Update table statistics as the DBMS scans a table during normal query processing.
• Check whether the optimizer’s estimates match what it encounters in the real data and

incrementally updates them.
• Reference

https://dl.acm.org/doi/10.5555/645927.672349
JA

JA

35 / 73

Adaptive Query Optimization Replan Current Invocation

Replan Current Invocation

JA

36 / 73

Adaptive Query Optimization Replan Current Invocation

Replan Current Invocation

• If the DBMS determines that the observed execution behavior of a plan is far from its
estimated behavior, them it can halt execution and generate a new plan for the query.

• Approach 1: Start-Over from Scratch
• Approach 2: Keep Intermediate Results

JA

JA

JA

37 / 73

Adaptive Query Optimization Replan Current Invocation

QUICKSTEP – Lookahead Info Passing

--- Star Schema
CREATE TABLE fact(--- Fact Table
id INT PRIMARY KEY,
dim1_id INT REFERENCES dim1 (id),
dim2_id INT REFERENCES dim2 (id)

);
CREATE TABLE dim1 (--- Dimension Tables
id INT, val VARCHAR

);
CREATE TABLE dim2 (
id INT, val VARCHAR

);
SELECT COUNT(*) FROM fact AS f
JOIN dim1 ON f.dim1_id = dim1.id
JOIN dim2 ON f.dim2_id = dim2.id

JA

JA

JA

JA

38 / 73

Adaptive Query Optimization Replan Current Invocation

QUICKSTEP – Lookahead Info Passing

• First compute Bloom filters on dimension tables.
• Probe these filters using fact table tuples to determine the ordering of the joins.
• Only supports left-deep join trees on star schemas.
• Reference

https://www.vldb.org/pvldb/vol10/p889-zhu.pdf
JA

JA

JA

JA

JA

39 / 73

Adaptive Query Optimization Replan Current Invocation

QUICKSTEP – Lookahead Info Passing

JA

JA

JA

40 / 73

Adaptive Query Optimization Replan Current Invocation

QUICKSTEP – Lookahead Info Passing

JA

JA

JA

JA

JA

41 / 73

Adaptive Query Optimization Plan Pivot Points

Plan Pivot Points

JA

JA

JA

42 / 73

Adaptive Query Optimization Plan Pivot Points

Plan Pivot Points

• The optimizer embeds alternative sub-plans at materialization points in the query plan.
• The plan includes "pivot" points that guides the DBMS towards a path in the plan

based on the observed statistics.
• Approach 1: Parametric Optimization
• Approach 2: Proactive Reoptimization

JA

JA

JA

JA

43 / 73

Adaptive Query Optimization Plan Pivot Points

Parametric Optimization

• Generate multiple sub-plans per pipeline in the
query.

• Add a choose-plan operator that allows the
DBMS to select which plan to execute at
runtime.

• First introduced as part of the Volcano project in
the 1980s.

• Reference

https://dl.acm.org/doi/abs/10.1145/66926.66960
JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

44 / 73

Adaptive Query Optimization Plan Pivot Points

Proactive Reoptimization

• Generate multiple sub-plans within a single
pipeline.

• Use a switch operator to choose between
different sub-plans during execution in the
pipeline.

• Computes bounding boxes to indicate the
uncertainty of estimates used in plan.

• Reference

https://dl.acm.org/doi/10.1145/1066157.1066171
JA

JA

JA

JA

45 / 73

Adaptive Query Optimization Cost Models

Cost Models

46 / 73

Adaptive Query Optimization Cost Models

Cost-based Query Planning

• Generate an estimate of the cost of executing a particular query plan for the current
state of the database.
▶ Estimates are only meaningful internally.

• This is independent of the search strategies that we talked about.

JA

47 / 73

Adaptive Query Optimization Cost Models

Cost Model Components

• Choice 1: Physical Costs
▶ Predict CPU cycles, I/O, cache misses, RAM consumption, pre-fetching, etc. . .
▶ Depends heavily on hardware.

• Choice 2: Logical Costs
▶ Estimate result sizes per operator (e.g., join operator).
▶ Independent of the operator algorithm.
▶ Need estimations for operator result sizes.

• Choice 3: Algorithmic Costs
▶ Complexity of the operator algorithm implementation (e.g., hash join vs. nested loop join).

JA

JA

JA

JA

JA

JA

JA

JA

48 / 73

Adaptive Query Optimization Cost Models

Disk-Based DBMS: Cost Model

• The number of disk accesses will always dominate the execution time of a query.
▶ CPU costs are negligible.
▶ Have to consider sequential vs. random I/O.

• This is easier to model if the DBMS has full control over buffer management.
▶ We will know the replacement strategy, pinning, and assume exclusive access to disk.

JA

JA

JA

49 / 73

Adaptive Query Optimization Cost Models

Postgres

• Uses a combination of CPU and I/O costs that are weighted by “magic” constant
factors.

• Default settings are obviously for a disk-resident database without a lot of memory:
▶ Processing a tuple in memory is 400× faster than reading a tuple from disk.
▶ Sequential I/O is 4× faster than random I/O.

JA

JA

JA

JA

JA

50 / 73

Adaptive Query Optimization Cost Models

IBM DB2

• Database characteristics in system catalogs
• Hardware environment (microbenchmarks)
• Storage device characteristics (microbenchmarks)
• Communications bandwidth (distributed only)
• Memory resources (buffer pools, sort heaps)
• Concurrency Environment

▶ Average number of users
▶ Isolation level / blocking
▶ Number of available locks

• Reference

http://cs.stanford.edu/people/widom/cs346/db2-talk.pdf
JA

JA

JA

JA

JA

JA

JA

JA

JA

51 / 73

Adaptive Query Optimization Cost Models

In-Memory DBMS: Cost Model

• No I/O costs, but now we have to account for CPU and memory access costs.
• Memory cost is more difficult because the DBMS has no control over

CPU cache management.
▶ Unknown replacement strategy, no pinning, shared caches, non-uniform memory access.

• The number of tuples processed per operator is a reasonable estimate for the CPU cost.

JA

JA

JA

JA

JA

52 / 73

Adaptive Query Optimization Cost Models

Smallbase

• Two-phase model that automatically generates hardware costs from a logical model.
• Phase 1: Identify Execution Primitives

▶ List of ops that the DBMS does when executing a query
▶ Example: evaluating predicate, index probe, sorting.

• Phase 2: Microbenchmark
▶ On start-up, profile ops to compute CPU/memory costs
▶ These measurements are used in formulas that compute operator cost based on table size.

JA

JA

JA

JA

JA

53 / 73

Adaptive Query Optimization Cost Models

Selectivity

• The selectivity of an operator is the percentage of data accessed for a predicate.
▶ Modeled as probability of whether a predicate on any given tuple will be satisfied.

• The DBMS estimates selectivities using:
▶ Domain Constraints
▶ Precomputed Statistics (Zone Maps)
▶ Histograms / Approximations
▶ Sampling

JA

JA

JA

JA

JA

JA

54 / 73

Adaptive Query Optimization Cost Models

Observation

• The number of tuples processed per operator depends on three factors:
▶ The access methods available per table
▶ The distribution of values in the database’s attributes
▶ The predicates used in the query

• Simple queries are easy to estimate. More complex queries are not.

JA

JA

JA

JA

55 / 73

Adaptive Query Optimization Cost Estimation

Cost Estimation

56 / 73

Adaptive Query Optimization Cost Estimation

Approximations

• Maintaining exact statistics about the database is expensive and slow.
• Use approximate data structures called sketches to generate error-bounded estimates.

▶ Count Distinct
▶ Quantiles
▶ Frequent Items
▶ Tuple Sketch

• Example: Yahoo! Sketching Library

https://datasketches.github.io/
JA

JA

JA

JA

JA

JA

JA

JA

JA

57 / 73

Adaptive Query Optimization Cost Estimation

Sampling

• Another approximation technique
• Execute a predicate on a random sample of the target data set.
• The number of tuples to examine depends on the size of the table.
• Approach 1: Maintain Read-Only Copy

▶ Periodically refresh to maintain accuracy.
• Approach 2: Sample Real Tables

▶ Use READ UNCOMMITTED isolation.
▶ May read multiple versions of same logical tuple.

JA

JA

JA

JA

JA

58 / 73

Adaptive Query Optimization Cost Estimation

Result Cardinality

• The number of tuples that will be generated per operator is computed from its
selectivity multiplied by the number of tuples in its input.
▶ Assumption 1: Uniform Data

▶ The distribution of values (except for the heavy hitters) is the same.
▶ Assumption 2: Independent Predicates

▶ The predicates on attributes are independent
▶ Assumption 3: Inclusion Principle

▶ The domain of join keys overlap such that each key in the inner relation will also exist in the
outer table.

JA

JA

JA

59 / 73

Adaptive Query Optimization Cost Estimation

Correlated Attributes

• Consider a database of automobiles:
▶ Number of Makes = 10, Number of Models = 100

• And the following query:
▶ (make="Honda" AND model="Accord")

• With the independence and uniformity assumptions, the selectivity is:
▶ 1/10 × 1/100 = 0.001

• But since only Honda makes Accords the real selectivity is 1/100 = 0.01

JA

JA

JA

JA

JA

JA

JA

60 / 73

Adaptive Query Optimization Cost Estimation

Column Group Statistics

• The DBMS can track statistics for groups of attributes together rather than just treating
them all as independent variables.
▶ Mostly supported in commercial systems.
▶ Requires the DBA to declare manually.

JA

JA

JA

JA

61 / 73

Adaptive Query Optimization Cost Estimation

Estimation Problem

JA

62 / 73

Adaptive Query Optimization Cost Estimation

Estimation Problem

JA

JA

JA

63 / 73

Adaptive Query Optimization Cost Estimation

Estimator Quality

• Evaluate the correctness of cardinality estimates generated by DBMS optimizers as the
number of joins increases.
▶ Let each DBMS perform its stats collection.
▶ Extract measurements from query plan.

• Compared five DBMSs using 100k queries.
• Reference

https://www.vldb.org/pvldb/vol9/p204-leis.pdf
JA

JA

JA

JA

JA

64 / 73

Adaptive Query Optimization Cost Estimation

Estimator Quality

JA

JA

65 / 73

Adaptive Query Optimization Cost Estimation

Estimator Quality

JA

66 / 73

Adaptive Query Optimization Cost Estimation

Estimator Quality

JA

JA

JA

JA

67 / 73

Adaptive Query Optimization Cost Estimation

Estimator Quality

JA

JA

JA

JA

68 / 73

Adaptive Query Optimization Cost Estimation

Estimator Quality

JA

JA

JA

JA

69 / 73

Adaptive Query Optimization Cost Estimation

Execution Slowdown

• Slowdown compared to using true cardinalities

JA

JA

JA

JA

JA

70 / 73

Adaptive Query Optimization Cost Estimation

Lessons Learned

• Query opt is more important than a fast engine
▶ Cost-based join ordering is necessary

• Cardinality estimates are routinely wrong
▶ Try to use operators that do not rely on estimates

• Hash joins + seq scans are a robust exec model
▶ The more indexes that are available, the more brittle the plans become (but also faster on

average)
• Working on accurate models is a waste of time

▶ Better to improve cardinality estimation instead

JA

JA

JA

JA

JA

JA

71 / 73

Adaptive Query Optimization Conclusion

Conclusion

72 / 73

Adaptive Query Optimization Conclusion

Parting Thoughts

• The "plan-first execute-second" approach to query planning is notoriously error prone.
• Optimizers should work with the execution engine to provide alternative plan

strategies and receive feedback.
• Adaptive techniques now appear in many of the major commercial DBMSs

▶ DB2, Oracle, MSSQL, TeraData
• Using number of tuples processed is a reasonable cost model for in-memory DBMSs.

▶ But computing this is non-trivial.

• A combination of sampling + sketches allows the DBMS to achieve accurate
estimations.

JA

JA

JA

JA

JA

JA

73 / 73

Adaptive Query Optimization Conclusion

Next Class

• User-defined functions.

JA

	Adaptive Query Optimization
	Recap
	Adaptive Query Optimization
	Modify Future Invocations
	Replan Current Invocation
	Plan Pivot Points
	Cost Models
	Cost Estimation
	Conclusion

