Lecture 23: Adaptive Query Optimization &
Cost Models

Adaptive Query

Iptimization

Recap

2/73

Adaptive Query Optimization Bt

Cascades Framework

Optimization tasks as data structures.

Rules to place property enforcers (e.g., sorting order).

Ordering of transformations by priority.

Predicates are first class citizens (same as logical/physical operators).

Adaptive Query Optimization Bt

Today’s Agenda

Adaptive Query Optimization
Techniques for Adaptive Query Optimization

> Modify Future Invocations
> Replan Current Invocation
> Plan Pivot Points

Cost Models
Cost Estimation

VCETLVCIONTE YOt PZ G Adaptive Query Optimization

Adaptive Query Optimization

VCETLVCIONTE YOt PZ G Adaptive Query Optimization

Observation

e The query optimizers that we have talked about so far all generate a plan for a query
before the DBMS executes a query.
e The best plan for a query can change as the database evolves over time.
> Physical design changes.
> Data modifications.

> Prepared statement parameters.
> Statistics updates.

VCETLVCIONTE YOt PZ G Adaptive Query Optimization

Bad Query Plans

e The most common problem in a query plan is incorrect join orderings.
> This occurs because of inaccurate cardinality estimates that propagate up the plan.

e If the DBMS can detect how bad a query plan is, then it can decide to adapt the plan
rather than continuing with the current sub-optimal plan.

VCETLVCIONTE YOt PZ G Adaptive Query Optimization

Bad Query Plans

e If the optimizer knew the true cardinality, would it have picked the same the join

ordering, join algorithms, or access methods?
SELECT * FROM A
JOIN B ON A.id
JOIN C ON A.id = C.id

B.id

JOIN D ON A.id = D.id
WHERE B.val = 'XXX'
AND D.val = 'YYY';

Original Plan

HASH_JOIN(APBIAC, D)

HASH_JOIN(AP<B, C) SEQ_SCAN(D)

Estimated Cardinality: 1000
:’ HASH_JOIN(A,B) SEQ_SCAN(C) Actual Cardinality.' 100000

SEQ_SCAN(A)

SEQ_SCAN(B)

VCETLVCIONTE YOt PZ G Adaptive Query Optimization

Why Good Plans Go Bad

e Estimating the execution behavior of a plan to determine its quality relative to other
plans.

e These estimations are based on a static summarization of the contents of the database
and its operating environment:

> Statistical Models / Histograms / Sampling
> Hardware Performance
> Concurrent Operations

VCETLVCIONTE YOt PZ G Adaptive Query Optimization

Adaptive Query Optimization

e Modify the execution behavior of a query by generating multiple plans for it:
> Individual complete plans.
> Embed multiple sub-plans at materialization points.
e Use information collected during query execution to improve the quality of these
plans.
> Can use this data for planning one query or merge the it back into the DBMS's statistics
catalog.

e Reference

http://cidrdb.org/cidr2005/papers/P20.pdf

Adaptive Query Optimization

Adaptive Query Optimization

e Approach 1: Modify Future Invocations
e Approach 2: Replan Current Invocation
e Approach 3: Plan Pivot Points

Adaptive Query Optimization

LCEVRTTONEAOnivAGTo il Modify Future Invocations

Modify Future Invocations

LCERLVCIORTE SO PZG N Modify Future Invocations

Modity Future Invocations

e The DBMS monitors the behavior of a query during execution and uses this
information to improve subsequent invocations.

e Approach 1: Plan Correction
e Approach 2: Feedback Loop

LCERLVCIORTE SO PZG N Modify Future Invocations

Reversion-Based Plan Correction

e The DBMS tracks the history of query invocations:

» Cost Estimations
> Query Plan
> Runtime Metrics

e If the DBMS generates a new plan for a query, then check whether that plan performs
worse than the previous plan.

> If it regresses, then switch back to the cheaper plans.

LCEVRTTONEAOnivAGTo il Modify Future Invocations

Reversion-Based Plan Correction

Original Plan

HASH_JOIN(AB<IBDGC, D)

HASH_JOIN(AD<B, C) SEQ_SCAN(D)

HASH_JOIN(A, B) SEQ_SCAN(C)

SEQ_SCAN(A) SEQ_SCAN(B)

Estimated Cost: 1000
Actual Cost: 1000-+-....,

Execution
History

LCEVRTTONEAOnivAGTo il Modify Future Invocations

Reversion-Based Plan Correction

Original Plan

New Plan

HASH_JOIN(ADBDC, D)

HASH_JOIN(A><B, C) [l SEQ_SCAN(D)

HASH_JOIN(A, B) SEQ_SCAN(C)

SEQ_SCAN(A) SEQ_SCAN(B)

NL_JOIN(CP<iBI<IA, D)

IDX_SCAN(D)

NL_JOIN(C,B)

SEQ_SCAN(C) IDX_SCAN(B)

Estimated Cost: 1000
Actual Cost: 1000

CREATE INDEX idx_b_val ON B (val);
CREATE INDEX idx_d_val ON D (val);

Estimated Cost: 800
.,.-Actual Cost: 1200

Execution
History

LCERLVCIORTE SO PZG N Modify Future Invocations

Microsoft — Plan Stitching

e Combine useful sub-plans from queries to create potentially better plans.
> Sub-plans do not need to be from the same query.
> Can still use sub-plans even if overall plan becomes invalid after a physical design change.
e Uses a dynamic programming search (bottom-up) that is not guaranteed to find a
better plan. Reference

https://www.microsoft.com/en-us/research/uploads/prod/2018/07/p1123-ding.pdf

Adaptive Query Optimization

Microsoft — Plan Stitching

Original Plan

Modify Future Invocations

New Plan

SEQ_SCAN(A)

HASH_JOIN(AD<BI(C, D)
HASH_JOIN(ADB, C)

SEQ_SCAN(D)

HASH_JOIN(A,B) SEQ_SCAN(C)

NL_JOIN(C, B

SEQ_SCAN(C)

IDX_SCAN(B)

NL_JOIN(CP<BDIA, D)

9_SCAN(B)

TDX_SCAN(D)

CREATE INDEX idx_b_val ON B (val);
CREATE INDEX idx_d_val ON D (val);

DROP INDEX idx_b_val;

LCEVRTTONEAOnivAGTo il Modify Future Invocations

Microsoft — Plan Stitching

Original Plan New Plan Sub-Plan Cost: 150

prEm——
HASH_JOIN(A>BIC, D) H NL_JOIN(CDBD<A,D)

\

i HASH_JOIN(ASB, C)
i

NL_JOIN(CP<B, A)

NL_JOIN(C,B) SEQ_SCAN(B)

SEQ_SCAN(C) IDX_SCAN(B)

Sub-Plan Cost: 600

CREATE INDEX idx_b_val ON B (val);
CREATE INDEX idx_d_val ON D (val);

DROP INDEX idx_b_val;

LCEVRTTONEAOnivAGTo il Modify Future Invocations

Microsoft — Plan Stitching

New Plan Sub-Plan Cost: 150

NL_JOIN(CDBDA, D)

Total Estimated Cost:
600 +150

HASH_JOIN(AD<B, C)

CREATE INDEX idx_b_val ON B (val);
CREATE INDEX idx_d_val ON D (val);

IDX_SCAN(D)

HASH_JOIN(A,B) SEQ_SCAN(C)

DROP INDEX idx_b_val;

SEQ_SCAN(A) SEQ_SCAN(B)

LCERLVCIORTE SO PZG N Modify Future Invocations

Identifying Equivalent Subplans

HASH_JOIN(AMB,C)

e Sub-plans are equivalent if they have the same Output:
i i i i ABBDC e g
logical expression and required physical e S
properties.

e Use simple heuristic that prunes any subplans :
that never be equivalent (e.g., access different ¥

. Output: = =
tables) and then matches based on comparing CPBDA

expression trees. =

LCEVRTTONEAOnivAGTo il Modify Future Invocations

Encoding Search Space

e Generate a graph that contains all possible sub-plans.
e Add operators to indicate alternative paths through the plan.

Adaptive Query Optimization
Encoding Search Space

Generate a graph that APIBPICPD
contains all possible
sub-plans.

CPIBPIANID
HASH_JOIN(ADBEIC, D)

Add @ operators to
indicate alternative

paths through the plan.

NL_JOIN(CBBI<A, D)

23/73

Adaptive Query Optimization
Encoding Search Space

Generate a graph that
contains all possible
sub-plans.

HASH_JOIN(AP<BI<C, D)

ADIBPIC

Add @ operators to
indicate alternative

paths through the plan.

NL_JOIN(CPdBD<A, D)

HASH_JOIN(AD<B, C)

NL_JOIN(C><B,A)

A

24 /73

LCEVRTTONEAOnivAGTo il Modify Future Invocations

Encoding Search Space

1
Generate a graph that
COntainS aH pOSSible HASH_JOIN(AB<BIC, D) NL_JOIN(CP<BP<A, D)
sub-plans. —

HASH_JOIN(AP<B, C) NL_JOIN(CD<B, A)

v

B NL_JOIN(C,B)

Add @ operators to
indicate alternative
paths through the plan.

HASH_JOIN(A,B)

IDX_SCAN(B)

SEQ_SCAN(B)

SEQ_SCAN(A) seq_scAn(c) [l seq_scan(o) [l TDX_SCAN(D)

LCEVRTTONEAOnivAGTo il Modify Future Invocations

Constructing Stitched Plans

e Perform bottom-up search that selects the cheapest sub-plan for each OR node.

LCEVRTTONEAOnivAGTo il Modify Future Invocations

Constructing Stitched Plans

Perform bottom-up search
that selects the cheapest
sub-plan for each OR node.

HASH_JOIN(ADBDIC, D) NL_JOIN(CB<BDA, D;

[oo Il vsomo
o sco0 IOl voiono)

HASH_JOIN(AD<B, C)

NL_JOIN(CP<B,A)

1

HASH_JOIN(A,B)

IDX_SCAN(B)

SEQ_SCAN(C)

SEQ_SCAN(D)

SEQ_SCAN(A) SEQ_SCAN(B) IDX_SCAN(D)

LCEVRTTONEAOnivAGTo il Modify Future Invocations

Constructing Stitched Plans

Perform bottom-up search
that selects the cheapest
sub-plan for each OR node.

HASH_JOIN(A>BDC, D) NL_JOIN(CPdA, D)

-
m
o - e

HASH_JOIN(AP<B, C) NL_JOIN(CP<iB, A)

HASH_JOIN(A, B)

SEQ_SCAN(A) IDX_SCAN(B)

SEQ_SCAN(B) SEQ_SCAN(C)

SEQ_SCAN(D) IDX_SCAN(D)

LCEVRTTONEAOnivAGTo il Modify Future Invocations

Constructing Stitched Plans

Perform bottom-up search
that selects the cheapest
sub-plan for each OR node.

HASH_JOIN(A>BDIC, D) NL_JOIN(CP<BD4A, D)

m o
EEm
e e
[cocuce [om0

HASH_JOIN(AP<B, C) NL_JOIN(CP<B, A)

HASH_JOIN(A,B)

SEQ_SCAN(A) SEQ_SCAN(B) IDX_SCAN(B) SEQ_SCAN(C) SEQ_SCAN(D) IDX_SCAN(D)

LCEVRTTONEAOnivAGTo il Modify Future Invocations

Constructing Stitched Plans

Perform bottom-up search
that selects the cheapest
sub-plan for each OR node.

NL_JOIN(CP<BIA, D)

m e
e (e
Em s
e - [

HASH_JOIN(AD<B, C)

HASH_JOIN(A,B)

SEQ_SCAN(B)

SEQ_SCAN(C) IDX_SCAN(D)

LCERLVCIORTE SO PZG N Modify Future Invocations

REDSHIFT - Codegen Stitching

e Redshift is a transpilation-based codegen engine.

e To avoid the compilation cost for every query, the DBMS caches subplans and then
combines them at runtime for new queries.

Adaptive Query Optimization

REDSHIFT — Codegen Stitching

SELECT x FROM A
JOIN B ON A.id = B.id
JOIN C ON A.id = C.id
JOIN D ON A.id = D.id
val =

AND D-Val | vy ;

for t in scan(B):
if t.val=$arg: emit(t)

Codegen
Cache
x86 Code

il
it
S
el
Q

32/73

Adaptive Que:

REDSHIFT — Codegen Stitching

SELECT * FROM A

SELECT * FROM A

va

JOIN B ON A.id = B.id

for t in scan(B):

if t.val=$arg: emit(t) |

for t in scan(B):

if t.val=$arg: emit(t)

Codegen
Cache

x86 Code

I
(O8]
~
N
W

LCERLVCIORTE SO PZG N Modify Future Invocations

IBM DB2 — Learning Optimizer

e Update table statistics as the DBMS scans a table during normal query processing.

e Check whether the optimizer’s estimates match what it encounters in the real data and
incrementally updates them.

e Reference

https://dl.acm.org/doi/10.5555/645927.672349

LCERLACIONTE V@ liintPAG Nl Replan Current Invocation

Replan Current Invocation

LCERACIORTE V@it PAG Nl Replan Current Invocation

Replan Current Invocation

e If the DBMS determines that the observed execution behavior of a plan is far from its
estimated behavior, them it can halt execution and generate a new plan for the query.

e Approach 1: Start-Over from Scratch
e Approach 2: Keep Intermediate Results

PCETAZIONTE S @i WAGIO M Replan Current Invocation

QUICKSTEP - Lookahead Info Passing

--- Star Schema

CREATE TABLE fact(--- Fact Table
id INT PRIMARY KEY,
diml_id INT REFERENCES diml (id),
dim2_id INT REFERENCES dim2 (id)

DN

CREATE TABLE diml (--- Dimension Tables
id INT, val VARCHAR

)

CREATE TABLE dim2 (
id INT, val VARCHAR

N

SELECT COUNT(*) FROM fact AS f
JOIN diml ON f.diml_id = diml.id
JOIN dim2 ON f.dim2_id = dim2.id

LCERLACIONTE V@ liintPAG Nl Replan Current Invocation

QUICKSTEP - Lookahead Info Passing

First compute Bloom filters on dimension tables.

Probe these filters using fact table tuples to determine the ordering of the joins.

Only supports left-deep join trees on star schemas.

Reference

https://www.vldb.org/pvldb/vol10/p889-zhu.pdf

Adaptive Query Optimization

QUICKSTEP - Lookahead Info Passing

Yoo

/N\

MR

FACT DIM1

= Dalx 39/73

Adaptive Query Optimization

QUICKSTEP - Lookahead Info Passing

= Dalx 40/73

Adaptive Query Optimization Plan Pivot Points

Plan Pivot Points

Adaptive Query Optimization Plan Pivot Points

Plan Pivot Points

e The optimizer embeds alternative sub-plans at materialization points in the query plan.

e The plan includes "pivot" points that guides the DBMS towards a path in the plan
based on the observed statistics.

e Approach 1: Parametric Optimization

e Approach 2: Proactive Reoptimization

Adaptive Query Optimization Plan Pivot Points

Parametric Optimization

1 1 1 1 SELECT * FROM A
] -

Generate multiple sub-plans per pipeline in the TN b N A = B g

query. JOIN C ON A.id = C.id;
¢ Add a choose-plan operator that allows the CeSE e
. [l HASH_JOIN(AP<B,C) :
DBMS to select which plan to execute at linput > X, choos 1 _ |
runtime. ﬁﬂ
i i : : e dalelpe N e .
e First introduced as part of the Volcano project in wssomcrs I« onvs,o
Q_SCAN(B) : :
e Reference e '

https://dl.acm.org/doi/abs/10.1145/66926.66960

Adaptive Query Optimization

Proactive Reoptimization

Plan Pivot Points

Generate multiple sub-plans within a single

pipeline.

Use a switch operator to choose between

different sub-plans during execution in the

pipeline.

Computes bounding boxes to indicate the
uncertainty of estimates used in plan.

Reference

SELECT * FROM A
JOIN B ON A.id

n n
O
=
o

JOIN C ON A.id

Compute Bounding Boxes

Op timizer Generate Switchable Plans

Reoptimize

Execution Execute Query

Collect Statistics

Engine

Switch Plans

https://dl.acm.org/doi/10.1145/1066157.1066171

Adaptive Query Optimization ECEAYLEEE

Cost Models

Adaptive Query Optimization ECEAYLEEE

Cost-based Query Planning

* Generate an estimate of the cost of executing a particular query plan for the current
state of the database.

> Estimates are only meaningful internally.

e This is independent of the search strategies that we talked about.

Cost Models
Cost Model Components

e Choice 1: Physical Costs

> Predict CPU cycles, I/O, cache misses, RAM consumption, pre-fetching, etc. . .
> Depends heavily on hardware.

e Choice 2: Logical Costs

> Estimate result sizes per operator (e.g., join operator).
> Independent of the operator algorithm.
> Need estimations for operator result sizes.

e Choice 3: Algorithmic Costs

> Complexity of the operator algorithm implementation (e.g., hash join vs. nested loop join).

Adaptive Query Optimization ECEAYLEEE

Disk-Based DBMS: Cost Model

e The number of disk accesses will always dominate the execution time of a query.

> CPU costs are negligible.
> Have to consider sequential vs. random I/O.

e This is easier to model if the DBMS has full control over buffer management.
> We will know the replacement strategy, pinning, and assume exclusive access to disk.

Adaptive Query Optimization ECEAYLEEE

Postgres

e Uses a combination of CPU and I/O costs that are weighted by “magic” constant
factors.
e Default settings are obviously for a disk-resident database without a lot of memory:

> Processing a tuple in memory is 400x faster than reading a tuple from disk.
> Sequential I/O is 4x faster than random I/O.

Adaptive Query Optimization ECEAYLEEE

IBM DB2

Database characteristics in system catalogs

Hardware environment (microbenchmarks)

Storage device characteristics (microbenchmarks)
e Communications bandwidth (distributed only)
e Memory resources (buffer pools, sort heaps)

e Concurrency Environment

> Average number of users
> Isolation level / blocking
» Number of available locks

Reference

http://cs.stanford.edu/people/widom/cs346/db2-talk.pdf

Adaptive Query Optimization ECEAYLEEE

In-Memory DBMS: Cost Model

e No I/O costs, but now we have to account for CPU and memory access costs.

e Memory cost is more difficult because the DBMS has no control over
CPU cache management.

> Unknown replacement strategy, no pinning, shared caches, non-uniform memory access.

e The number of tuples processed per operator is a reasonable estimate for the CPU cost.

Adaptive Query Optimization ECEAYLEEE

Smallbase

e Two-phase model that automatically generates hardware costs from a logical model.
e Phase 1: Identify Execution Primitives

> List of ops that the DBMS does when executing a query
> Example: evaluating predicate, index probe, sorting.

e Phase 2: Microbenchmark

> On start-up, profile ops to compute CPU/memory costs
> These measurements are used in formulas that compute operator cost based on table size.

Adaptive Query Optimization ECEAYLEEE

Selectivity

e The selectivity of an operator is the percentage of data accessed for a predicate.
> Modeled as probability of whether a predicate on any given tuple will be satisfied.
e The DBMS estimates selectivities using:

> Domain Constraints

> Precomputed Statistics (Zone Maps)
> Histograms / Approximations

> Sampling

Adaptive Query Optimization ECEAYLEEE

Observation

e The number of tuples processed per operator depends on three factors:

> The access methods available per table
> The distribution of values in the database’s attributes
> The predicates used in the query

e Simple queries are easy to estimate. More complex queries are not.

LCEREORT V@ liintPAG Nl Cost Estimation

Cost Estimation

LCEREORT V@ liintPAG Nl Cost Estimation

Approximations

e Maintaining exact statistics about the database is expensive and slow.
e Use approximate data structures called sketches to generate error-bounded estimates.

» Count Distinct
> Quantiles

> Frequent Items
> Tuple Sketch

e Example: Yahoo! Sketching Library

https://datasketches.github.io/

LCEREORT V@ liintPAG Nl Cost Estimation
Sampling

Another approximation technique

Execute a predicate on a random sample of the target data set.

The number of tuples to examine depends on the size of the table.
Approach 1: Maintain Read-Only Copy

> Periodically refresh to maintain accuracy.
Approach 2: Sample Real Tables

> Use READ UNCOMMITTED isolation.
> May read multiple versions of same logical tuple.

Cost Estimation
Result Cardinality

e The number of tuples that will be generated per operator is computed from its
selectivity multiplied by the number of tuples in its input.
> Assumption 1: Uniform Data

> The distribution of values (except for the heavy hitters) is the same.
> Assumption 2: Independent Predicates

> The predicates on attributes are independent
> Assumption 3: Inclusion Principle

> The domain of join keys overlap such that each key in the inner relation will also exist in the
outer table.

LCEREORT V@ liintPAG Nl Cost Estimation

Correlated Attributes

Consider a database of automobiles:
» Number of Makes = 10, Number of Models = 100

And the following query:
> (make="Honda" AND model="Accord")

With the independence and uniformity assumptions, the selectivity is:
> 1/10 x 1/100 = 0.001

But since only Honda makes Accords the real selectivity is 1/100 = 0.01

LCEREORT V@ liintPAG Nl Cost Estimation

Column Group Statistics

e The DBMS can track statistics for groups of attributes together rather than just treating
them all as independent variables.

> Mostly supported in commercial systems.
> Requires the DBA to declare manually.

Adaptive Query Optimization
Estimation Problem

SELECT A.id Compute the cardinality of base tables
FROM A, B, C
WHERE A’id = B.id A— |Al
AND A.id = C.id
AND B.id > 100

B.id>100 — |B|xsel(B.id>100)
TC-.id c—lc
t

61/73

Adaptive Query Optimization
Estimation Problem

SELECT A.id Compute the cardinality of base tables
WHERE ﬁﬁ;%:ca.;d A— |A]
AND Aid = € id B.id>100 — |B|xsel(B.id>100)
TC-.id c—lcl
t Compute the cardinality of join results
e o ADB = (|Alx[BJ) /
— max(sel(A.id=B.id), sel(B.id>100))
D<p iv-s.10
AN (AIB)<C = (|Alx[B|x|C]) /
A C
B.id>100

max(sel(A.id=B.id), sel(B.id>100),
sel(A.id=C.id))

62/73

LCEREORT V@ liintPAG Nl Cost Estimation

Estimator Quality

e Evaluate the correctness of cardinality estimates generated by DBMS optimizers as the
number of joins increases.

> Let each DBMS perform its stats collection.
> Extract measurements from query plan.

e Compared five DBMSs using 100k queries.

e Reference

https://www.vldb.org/pvldb/vol9/p204-leis.pdf

Adaptive Query Optimization

Estimator Quality

« underestimation ~ [log scale] overestimation -

1e24 '

1e24

2 3
number of joins

64/

N

w

Adaptive Query Optimization

Estimator Quality

{log scale]

4 5
number of joins

W

DA 65/7

Estimator Quality

[log scale]

01 2 3 45 6 01 5 6 01 23 456 0123456

2 3 4
number of joins

Do 66/73

Estimator Quality

Adaptive Que:

ptimization

1e24

{log scale]

1e24

5 6 0 1

2 3 4
number of joins

A

LCEREORT V@ liintPAG Nl Cost Estimation

Estimator Quality

@ PostgreSQL. Z gﬂé’il_ Server ORACLE

B7] st HyPer

ted P H 3
B Py '

1624 |

=

8 14

a

E

g

1e2

1e4

*tes ! !

1€8 ~——F—T—T—T—T 7T T +— ——T——T—T—

01 2 3 456 01 2 3 456 01 2 3 45
number of joins

LCEREORT V@ liintPAG Nl Cost Estimation

Execution Slowdown

e Slowdown compared to using true cardinalities

Postgres 9.4 - JOB Workload
Default Planner No NL Join Dynamic Rehashing

60% 60% 60% -
40% 60 6% » 40% » 40%
o

20% 4 II 20%
% I-_ 0% 4— -—
T

2RSS S @x\w\@@@ AR
S &

20%

0%

Q\\ Q\\ 0\\
'::0.' \ rgq ot q
g e RGN NN

Slowdown compared to using true cardinalmes

LCEREORT V@ liintPAG Nl Cost Estimation

Lessons Learned

e Query opt is more important than a fast engine
> Cost-based join ordering is necessary

Cardinality estimates are routinely wrong
> Try to use operators that do not rely on estimates
Hash joins + seq scans are a robust exec model

> The more indexes that are available, the more brittle the plans become (but also faster on
average)

Working on accurate models is a waste of time
> Better to improve cardinality estimation instead

Adaptive Query Optimization

Conclusion

71/73

Conclusion
Parting Thoughts

e The "plan-first execute-second" approach to query planning is notoriously error prone.
e Optimizers should work with the execution engine to provide alternative plan
strategies and receive feedback.
e Adaptive techniques now appear in many of the major commercial DBMSs
> DB2, Oracle, MSSQL, TeraData
e Using number of tuples processed is a reasonable cost model for in-memory DBMSs.
> But computing this is non-trivial.
e A combination of sampling + sketches allows the DBMS to achieve accurate
estimations.

Next Class

Adaptive Query Optimization

e User-defined functions.

	Adaptive Query Optimization
	Recap
	Adaptive Query Optimization
	Modify Future Invocations
	Replan Current Invocation
	Plan Pivot Points
	Cost Models
	Cost Estimation
	Conclusion

