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Cascades Framework

Optimization tasks as data structures.

Rules to place property enforcers (e.g., sorting order).

Ordering of transformations by priority.

Predicates are first class citizens (same as logical/physical operators).
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Today’s Agenda

Adaptive Query Optimization
Techniques for Adaptive Query Optimization

> Modify Future Invocations
> Replan Current Invocation
> Plan Pivot Points

Cost Models
Cost Estimation
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Observation

e The query optimizers that we have talked about so far all generate a plan for a query
before the DBMS executes a query.
e The best plan for a query can change as the database evolves over time.
> Physical design changes.
> Data modifications.

> Prepared statement parameters.
> Statistics updates.
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Bad Query Plans

e The most common problem in a query plan is incorrect join orderings.
> This occurs because of inaccurate cardinality estimates that propagate up the plan.

e If the DBMS can detect how bad a query plan is, then it can decide to adapt the plan
rather than continuing with the current sub-optimal plan.
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Bad Query Plans

e If the optimizer knew the true cardinality, would it have picked the same the join

ordering, join algorithms, or access methods?
SELECT * FROM A
JOIN B ON A.id
JOIN C ON A.id = C.id

B.id

JOIN D ON A.id = D.id
WHERE B.val = 'XXX'
AND D.val = 'YYY';

Original Plan

HASH_JOIN(APBIAC, D)

HASH_JOIN(AP<B, C) SEQ_SCAN(D)

Estimated Cardinality: 1000
:’ HASH_JOIN(A,B) SEQ_SCAN(C) Actual Cardinality.' 100000

SEQ_SCAN(A)

SEQ_SCAN(B)
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Why Good Plans Go Bad

e Estimating the execution behavior of a plan to determine its quality relative to other
plans.

e These estimations are based on a static summarization of the contents of the database
and its operating environment:

> Statistical Models / Histograms / Sampling
> Hardware Performance
> Concurrent Operations
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Adaptive Query Optimization

e Modify the execution behavior of a query by generating multiple plans for it:
> Individual complete plans.
> Embed multiple sub-plans at materialization points.
e Use information collected during query execution to improve the quality of these
plans.
> Can use this data for planning one query or merge the it back into the DBMS's statistics
catalog.

e Reference


http://cidrdb.org/cidr2005/papers/P20.pdf

Adaptive Query Optimization

Adaptive Query Optimization

e Approach 1: Modify Future Invocations
e Approach 2: Replan Current Invocation
e Approach 3: Plan Pivot Points

Adaptive Query Optimization
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Modity Future Invocations

e The DBMS monitors the behavior of a query during execution and uses this
information to improve subsequent invocations.

e Approach 1: Plan Correction
e Approach 2: Feedback Loop
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Reversion-Based Plan Correction

e The DBMS tracks the history of query invocations:

» Cost Estimations
> Query Plan
> Runtime Metrics

e If the DBMS generates a new plan for a query, then check whether that plan performs
worse than the previous plan.

> If it regresses, then switch back to the cheaper plans.
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Reversion-Based Plan Correction

Original Plan

HASH_JOIN(AB<IBDGC, D)

HASH_JOIN(AD<B, C) SEQ_SCAN(D)

HASH_JOIN(A, B) SEQ_SCAN(C)

SEQ_SCAN(A) SEQ_SCAN(B)

Estimated Cost: 1000
Actual Cost: 1000-+-....,

Execution
History
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Reversion-Based Plan Correction

Original Plan

New Plan

HASH_JOIN(ADBDC, D)

HASH_JOIN(A><B, C) [l SEQ_SCAN(D)

HASH_JOIN(A, B) SEQ_SCAN(C)

SEQ_SCAN(A) SEQ_SCAN(B)

NL_JOIN(CP<iBI<IA, D)

IDX_SCAN(D)

NL_JOIN(C,B)

SEQ_SCAN(C) IDX_SCAN(B)

Estimated Cost: 1000
Actual Cost: 1000

CREATE INDEX idx_b_val ON B (val);
CREATE INDEX idx_d_val ON D (val);

Estimated Cost: 800
.,.-Actual Cost: 1200

Execution
History
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Microsoft — Plan Stitching

e Combine useful sub-plans from queries to create potentially better plans.
> Sub-plans do not need to be from the same query.
> Can still use sub-plans even if overall plan becomes invalid after a physical design change.
e Uses a dynamic programming search (bottom-up) that is not guaranteed to find a
better plan. Reference


https://www.microsoft.com/en-us/research/uploads/prod/2018/07/p1123-ding.pdf

Adaptive Query Optimization

Microsoft — Plan Stitching

Original Plan

Modify Future Invocations

New Plan

SEQ_SCAN(A)

HASH_JOIN(AD<BI(C, D)
HASH_JOIN(ADB, C)

SEQ_SCAN(D)

HASH_JOIN(A,B) SEQ_SCAN(C)

NL_JOIN(C, B

SEQ_SCAN(C)

IDX_SCAN(B)

NL_JOIN(CP<BDIA, D)

9_SCAN(B)

TDX_SCAN(D)

CREATE INDEX idx_b_val ON B (val);
CREATE INDEX idx_d_val ON D (val);

DROP INDEX idx_b_val;
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Microsoft — Plan Stitching

Original Plan New Plan  Sub-Plan Cost: 150

prEm——
HASH_JOIN(A>BIC, D) H NL_JOIN(CDBD<A,D)

\

i HASH_JOIN(ASB, C)
i

NL_JOIN(CP<B, A)

NL_JOIN(C,B) SEQ_SCAN(B)

SEQ_SCAN(C) IDX_SCAN(B)

Sub-Plan Cost: 600

CREATE INDEX idx_b_val ON B (val);
CREATE INDEX idx_d_val ON D (val);

DROP INDEX idx_b_val;
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Microsoft — Plan Stitching

New Plan  Sub-Plan Cost: 150

NL_JOIN(CDBDA, D)

Total Estimated Cost:
600 +150

HASH_JOIN(AD<B, C)

CREATE INDEX idx_b_val ON B (val);
CREATE INDEX idx_d_val ON D (val);

IDX_SCAN(D)

HASH_JOIN(A,B) SEQ_SCAN(C)

DROP INDEX idx_b_val;

SEQ_SCAN(A) SEQ_SCAN(B)
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Identifying Equivalent Subplans

HASH_JOIN(AMB,C)

e Sub-plans are equivalent if they have the same Output:
i i i i ABBDC e g
logical expression and required physical e S
properties.

e Use simple heuristic that prunes any subplans :
that never be equivalent (e.g., access different ¥

. Output: = =
tables) and then matches based on comparing CPBDA

expression trees. =
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Encoding Search Space

e Generate a graph that contains all possible sub-plans.
e Add operators to indicate alternative paths through the plan.



Adaptive Query Optimization
Encoding Search Space

Generate a graph that APIBPICPD
contains all possible
sub-plans.

CPIBPIANID
HASH_JOIN(ADBEIC, D)

Add @ operators to
indicate alternative

paths through the plan.

NL_JOIN(CBBI<A, D)

23/73



Adaptive Query Optimization
Encoding Search Space

Generate a graph that
contains all possible
sub-plans.

HASH_JOIN(AP<BI<C, D)

ADIBPIC

Add @ operators to
indicate alternative

paths through the plan.

NL_JOIN(CPdBD<A, D)

HASH_JOIN(AD<B, C)

NL_JOIN(C><B,A)

A
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Encoding Search Space

1
Generate a graph that
COntainS aH pOSSible HASH_JOIN(AB<BIC, D) NL_JOIN(CP<BP<A, D)
sub-plans. —

HASH_JOIN(AP<B, C) NL_JOIN(CD<B, A)

v

B NL_JOIN(C,B)

Add @ operators to
indicate alternative
paths through the plan.

HASH_JOIN(A,B)

IDX_SCAN(B)

SEQ_SCAN(B)

SEQ_SCAN(A) seq_scAn(c) [l seq_scan(o) [l TDX_SCAN(D)



LCEVRTTONEAOnivAGTo il Modify Future Invocations

Constructing Stitched Plans

e Perform bottom-up search that selects the cheapest sub-plan for each OR node.
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Constructing Stitched Plans

Perform bottom-up search
that selects the cheapest
sub-plan for each OR node.

HASH_JOIN(ADBDIC, D) NL_JOIN(CB<BDA, D;

[ oo Il vsomo
o sco0 IOl voiono )

HASH_JOIN(AD<B, C)

NL_JOIN(CP<B,A)

1

HASH_JOIN(A,B)

IDX_SCAN(B)

SEQ_SCAN(C)

SEQ_SCAN(D)

SEQ_SCAN(A) SEQ_SCAN(B) IDX_SCAN(D)
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Constructing Stitched Plans

Perform bottom-up search
that selects the cheapest
sub-plan for each OR node.

HASH_JOIN(A>BDC, D) NL_JOIN(CP<B>dA, D)

-
m
o - e

HASH_JOIN(AP<B, C) NL_JOIN(CP<iB, A)

HASH_JOIN(A, B)

SEQ_SCAN(A) IDX_SCAN(B)

SEQ_SCAN(B) SEQ_SCAN(C)

SEQ_SCAN(D) IDX_SCAN(D)
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Constructing Stitched Plans

Perform bottom-up search
that selects the cheapest
sub-plan for each OR node.

HASH_JOIN(A>BDIC, D) NL_JOIN(CP<BD4A, D)

m o
EEm
e e
[cocuce [ om0

HASH_JOIN(AP<B, C) NL_JOIN(CP<B, A)

HASH_JOIN(A,B)

SEQ_SCAN(A) SEQ_SCAN(B) IDX_SCAN(B) SEQ_SCAN(C) SEQ_SCAN(D) IDX_SCAN(D)




LCEVRTTONEAOnivAGTo il Modify Future Invocations

Constructing Stitched Plans

Perform bottom-up search
that selects the cheapest
sub-plan for each OR node.

NL_JOIN(CP<BIA, D)

m e
e (e
Em s
e - [

HASH_JOIN(AD<B, C)

HASH_JOIN(A,B)

SEQ_SCAN(B)

SEQ_SCAN(C) IDX_SCAN(D)
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REDSHIFT - Codegen Stitching

e Redshift is a transpilation-based codegen engine.

e To avoid the compilation cost for every query, the DBMS caches subplans and then
combines them at runtime for new queries.
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REDSHIFT — Codegen Stitching

SELECT x FROM A
JOIN B ON A.id = B.id
JOIN C ON A.id = C.id
JOIN D ON A.id = D.id
val =

AND D-Val | vy ;

for t in scan(B):
if t.val=$arg: emit(t)

Codegen
Cache
x86 Code

il
it
S
el
Q

32/73
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REDSHIFT — Codegen Stitching

SELECT * FROM A

SELECT * FROM A

va

JOIN B ON A.id = B.id

for t in scan(B):

if t.val=$arg: emit(t) |

for t in scan(B):

if t.val=$arg: emit(t)

Codegen
Cache

x86 Code

I
(O8]
~
N
W
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IBM DB2 — Learning Optimizer

e Update table statistics as the DBMS scans a table during normal query processing.

e Check whether the optimizer’s estimates match what it encounters in the real data and
incrementally updates them.

e Reference


https://dl.acm.org/doi/10.5555/645927.672349
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Replan Current Invocation
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Replan Current Invocation

e If the DBMS determines that the observed execution behavior of a plan is far from its
estimated behavior, them it can halt execution and generate a new plan for the query.

e Approach 1: Start-Over from Scratch
e Approach 2: Keep Intermediate Results
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QUICKSTEP - Lookahead Info Passing

--- Star Schema

CREATE TABLE fact( --- Fact Table
id INT PRIMARY KEY,
diml_id INT REFERENCES diml (id),
dim2_id INT REFERENCES dim2 (id)

DN

CREATE TABLE diml ( --- Dimension Tables
id INT, val VARCHAR

)

CREATE TABLE dim2 (
id INT, val VARCHAR

N

SELECT COUNT(*) FROM fact AS f
JOIN diml ON f.diml_id = diml.id
JOIN dim2 ON f.dim2_id = dim2.id
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QUICKSTEP - Lookahead Info Passing

First compute Bloom filters on dimension tables.

Probe these filters using fact table tuples to determine the ordering of the joins.

Only supports left-deep join trees on star schemas.

Reference


https://www.vldb.org/pvldb/vol10/p889-zhu.pdf

Adaptive Query Optimization

QUICKSTEP - Lookahead Info Passing

Yoo

/N\

MR

FACT DIM1

= Dalx 39/73
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QUICKSTEP - Lookahead Info Passing

= Dalx 40/73
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Plan Pivot Points

e The optimizer embeds alternative sub-plans at materialization points in the query plan.

e The plan includes "pivot" points that guides the DBMS towards a path in the plan
based on the observed statistics.

e Approach 1: Parametric Optimization

e Approach 2: Proactive Reoptimization
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Parametric Optimization

1 1 1 1 SELECT * FROM A
] -

Generate multiple sub-plans per pipeline in the TN b N A = B g

query. JOIN C ON A.id = C.id;
¢ Add a choose-plan operator that allows the CeSE e
. [l HASH_JOIN(AP<B,C) :
DBMS to select which plan to execute at linput > X, choos 1 _ |
runtime. ﬁﬂ
i i : : e dalelpe N e .
e First introduced as part of the Volcano project in wssomcrs I« onvs,o
Q_SCAN(B) : :
e Reference e '



https://dl.acm.org/doi/abs/10.1145/66926.66960

Adaptive Query Optimization

Proactive Reoptimization

Plan Pivot Points

Generate multiple sub-plans within a single

pipeline.

Use a switch operator to choose between

different sub-plans during execution in the

pipeline.

Computes bounding boxes to indicate the
uncertainty of estimates used in plan.

Reference

SELECT * FROM A
JOIN B ON A.id

n n
O
=
o

JOIN C ON A.id

Compute Bounding Boxes

Op timizer Generate Switchable Plans

Reoptimize

Execution Execute Query

Collect Statistics

Engine

Switch Plans



https://dl.acm.org/doi/10.1145/1066157.1066171
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Cost Models
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Cost-based Query Planning

* Generate an estimate of the cost of executing a particular query plan for the current
state of the database.

> Estimates are only meaningful internally.

e This is independent of the search strategies that we talked about.




Cost Models
Cost Model Components

e Choice 1: Physical Costs

> Predict CPU cycles, I/O, cache misses, RAM consumption, pre-fetching, etc. . .
> Depends heavily on hardware.

e Choice 2: Logical Costs

> Estimate result sizes per operator (e.g., join operator).
> Independent of the operator algorithm.
> Need estimations for operator result sizes.

e Choice 3: Algorithmic Costs

> Complexity of the operator algorithm implementation (e.g., hash join vs. nested loop join).
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Disk-Based DBMS: Cost Model

e The number of disk accesses will always dominate the execution time of a query.

> CPU costs are negligible.
> Have to consider sequential vs. random I/O.

e This is easier to model if the DBMS has full control over buffer management.
> We will know the replacement strategy, pinning, and assume exclusive access to disk.
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Postgres

e Uses a combination of CPU and I/O costs that are weighted by “magic” constant
factors.
e Default settings are obviously for a disk-resident database without a lot of memory:

> Processing a tuple in memory is 400x faster than reading a tuple from disk.
> Sequential I/O is 4x faster than random I/O.
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IBM DB2

Database characteristics in system catalogs

Hardware environment (microbenchmarks)

Storage device characteristics (microbenchmarks)
e Communications bandwidth (distributed only)
e Memory resources (buffer pools, sort heaps)

e Concurrency Environment

> Average number of users
> Isolation level / blocking
» Number of available locks

Reference


http://cs.stanford.edu/people/widom/cs346/db2-talk.pdf

Adaptive Query Optimization ECEAYLEEE

In-Memory DBMS: Cost Model

e No I/O costs, but now we have to account for CPU and memory access costs.

e Memory cost is more difficult because the DBMS has no control over
CPU cache management.

> Unknown replacement strategy, no pinning, shared caches, non-uniform memory access.

e The number of tuples processed per operator is a reasonable estimate for the CPU cost.
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Smallbase

e Two-phase model that automatically generates hardware costs from a logical model.
e Phase 1: Identify Execution Primitives

> List of ops that the DBMS does when executing a query
> Example: evaluating predicate, index probe, sorting.

e Phase 2: Microbenchmark

> On start-up, profile ops to compute CPU/memory costs
> These measurements are used in formulas that compute operator cost based on table size.
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Selectivity

e The selectivity of an operator is the percentage of data accessed for a predicate.
> Modeled as probability of whether a predicate on any given tuple will be satisfied.
e The DBMS estimates selectivities using:

> Domain Constraints

> Precomputed Statistics (Zone Maps)
> Histograms / Approximations

> Sampling
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Observation

e The number of tuples processed per operator depends on three factors:

> The access methods available per table
> The distribution of values in the database’s attributes
> The predicates used in the query

e Simple queries are easy to estimate. More complex queries are not.
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Cost Estimation
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Approximations

e Maintaining exact statistics about the database is expensive and slow.
e Use approximate data structures called sketches to generate error-bounded estimates.

» Count Distinct
> Quantiles

> Frequent Items
> Tuple Sketch

e Example: Yahoo! Sketching Library


https://datasketches.github.io/
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Sampling

Another approximation technique

Execute a predicate on a random sample of the target data set.

The number of tuples to examine depends on the size of the table.
Approach 1: Maintain Read-Only Copy

> Periodically refresh to maintain accuracy.
Approach 2: Sample Real Tables

> Use READ UNCOMMITTED isolation.
> May read multiple versions of same logical tuple.




Cost Estimation
Result Cardinality

e The number of tuples that will be generated per operator is computed from its
selectivity multiplied by the number of tuples in its input.
> Assumption 1: Uniform Data

> The distribution of values (except for the heavy hitters) is the same.
> Assumption 2: Independent Predicates

> The predicates on attributes are independent
> Assumption 3: Inclusion Principle

> The domain of join keys overlap such that each key in the inner relation will also exist in the
outer table.
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Correlated Attributes

Consider a database of automobiles:
» Number of Makes = 10, Number of Models = 100

And the following query:
> (make="Honda" AND model="Accord")

With the independence and uniformity assumptions, the selectivity is:
> 1/10 x 1/100 = 0.001

But since only Honda makes Accords the real selectivity is 1/100 = 0.01
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Column Group Statistics

e The DBMS can track statistics for groups of attributes together rather than just treating
them all as independent variables.

> Mostly supported in commercial systems.
> Requires the DBA to declare manually.
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Estimation Problem

SELECT A.id Compute the cardinality of base tables
FROM A, B, C
WHERE A’id = B.id A— |Al
AND A.id = C.id
AND B.id > 100

B.id>100 — |B|xsel(B.id>100)
TC-.id c—lc
t
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Estimation Problem

SELECT A.id Compute the cardinality of base tables
WHERE ﬁﬁ;%:ca.;d A— |A]
AND Aid = € id B.id>100 — |B|xsel(B.id>100)
TC-.id c—lcl
t Compute the cardinality of join results
e o ADB = (|Alx[BJ) /
— max(sel(A.id=B.id), sel(B.id>100))
D<p iv-s.10
AN (AIB)<C = (|Alx[B|x|C]) /
A C
B.id>100

max(sel(A.id=B.id), sel(B.id>100),
sel(A.id=C.id))

62/73
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Estimator Quality

e Evaluate the correctness of cardinality estimates generated by DBMS optimizers as the
number of joins increases.

> Let each DBMS perform its stats collection.
> Extract measurements from query plan.

e Compared five DBMSs using 100k queries.

e Reference


https://www.vldb.org/pvldb/vol9/p204-leis.pdf

Adaptive Query Optimization

Estimator Quality

« underestimation ~ [log scale] overestimation -

1e24 '

1e24

2 3
number of joins
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Estimator Quality

{log scale]

4 5
number of joins

W
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Estimator Quality

[log scale]

01 2 3 45 6 01 5 6 01 23 456 0123456

2 3 4
number of joins
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Estimator Quality

Adaptive Que:

ptimization

1e24

{log scale]

1e24

5 6 0 1

2 3 4
number of joins
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Estimator Quality

@ PostgreSQL. Z gﬂé’il_ Server ORACLE
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Execution Slowdown

e Slowdown compared to using true cardinalities

Postgres 9.4 - JOB Workload
Default Planner No NL Join Dynamic Rehashing

60% 60% 60% -
40% 60 6% » 40% » 40%
o

20% 4 II 20%
% I-_ 0% 4— -—
T

2RSS S @x\w\@@@ AR
S &

20%

0%

Q\\ Q\\ 0\\
'::0.' \ rgq ot q
g e RGN NN

Slowdown compared to using true cardinalmes
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Lessons Learned

e Query opt is more important than a fast engine
> Cost-based join ordering is necessary

Cardinality estimates are routinely wrong
> Try to use operators that do not rely on estimates
Hash joins + seq scans are a robust exec model

> The more indexes that are available, the more brittle the plans become (but also faster on
average)

Working on accurate models is a waste of time
> Better to improve cardinality estimation instead



Adaptive Query Optimization

Conclusion
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Conclusion
Parting Thoughts

e The "plan-first execute-second" approach to query planning is notoriously error prone.
e Optimizers should work with the execution engine to provide alternative plan
strategies and receive feedback.
e Adaptive techniques now appear in many of the major commercial DBMSs
> DB2, Oracle, MSSQL, TeraData
e Using number of tuples processed is a reasonable cost model for in-memory DBMSs.
> But computing this is non-trivial.
e A combination of sampling + sketches allows the DBMS to achieve accurate
estimations.



Next Class

Adaptive Query Optimization

e User-defined functions.
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