
1 / 45

Networking

Lecture 25: Networking + Course
Retrospective

JA

JA

JA

2 / 45

Networking Recap

Recap

3 / 45

Networking Recap

User-Defined Functions

• A user-defined function (UDF) is a function written by the application developer that
extends the system’s functionality beyond its built-in operations.
▶ It takes in input arguments (scalars)
▶ Perform some computation
▶ Return a result (scalars, tables)

• Examples: PL/SQL, plPG/SQL

4 / 45

Networking Recap

Froid: UDF In-lining

• Automatically convert UDFs into relational expressions that are inlined as sub-queries.
▶ Does not require the app developer to change UDF code.

• Perform conversion during the rewrite phase to avoid having to change the cost-base
optimizer.
▶ Commercial DBMSs already have powerful transformation rules for executing

sub-queries efficiently.

• Reference

https://dl.acm.org/doi/10.1145/3186728.3164140
JA

JA

JA

5 / 45

Networking Recap

Architecture Overview

JA

JA

JA

JA

JA

JA

JA

JA

JA

6 / 45

Networking Recap

Today’s Agenda

• Database Access APIs
• Database Network Protocols
• Database Replication Protocols
• Kernel Bypass Methods
• Course Retrospective

JA

JA

7 / 45

Networking Database Access APIs

Database Access APIs

8 / 45

Networking Database Access APIs

Database Access APIs

• With a terminal-based client (e.g., psql):
▶ SQL queries are written by hand.
▶ Results are printed to the terminal.

• Real programs access a database through an API:
▶ Direct Access (DBMS-specific)
▶ Open Database Connectivity (ODBC)
▶ Java Database Connectivity (JDBC)

https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Database_Connectivity
JA

JA

JA

JA

9 / 45

Networking Database Access APIs

Open Database Connectivity

• Standard API for accessing a DBMS. Designed to be independent of the DBMS and OS.
• Originally developed in the early 1990s by Microsoft and Simba Technologies.
• Every major relational DBMS now has an ODBC implementation.

JA

10 / 45

Networking Database Access APIs

Open Database Connectivity

• ODBC is based on the "device driver" model.
• The driver encapsulates the logic needed to convert a standard set of commands into

the DBMS-specific calls.
• The driver can emulate missing DBMS features (e.g., cursors).

JA

JA

JA

JA

JA

JA

11 / 45

Networking Database Access APIs

Java Database Connectivity

• Developed by Sun Microsystems in 1997 to provide a standard API for connecting a
Java program with a DBMS.

• JDBC can be considered a version of ODBC for the programming language Java
instead of C.

JA

JA

JA

JA

12 / 45

Networking Database Access APIs

Java Database Connectivity

• Approach 1: JDBC-ODBC Bridge
▶ Convert JDBC method calls into ODBC function calls.

• Approach 2: Native-API Driver
▶ Convert JDBC method calls into native calls of the target DBMS API.

• Approach 3: Network-Protocol Driver
▶ Driver connects to a middleware that converts JDBC calls into a vendor-specific DBMS

protocol.
• Approach 4: Database-Protocol Driver

▶ Pure Java implementation that converts JDBC calls directly into a vendor-specific DBMS
protocol.

JA

JA

JA

JA

JA

JA

JA

13 / 45

Networking Database Network Protocols

Database Network Protocols

14 / 45

Networking Database Network Protocols

Database Network Protocols

• All major DBMSs implement their own proprietary wire protocol over TCP/IP.
• A typical client/server interaction:

▶ Client connects to DBMS and begins authentication process. There may be an SSL
handshake.

▶ Client then sends a query.
▶ DBMS executes the query, then serializes the results and sends it back to the client.

JA

JA

JA

JA

JA

15 / 45

Networking Database Network Protocols

Existing Protocols

• Most newer systems implement one of the open-source DBMS wire protocols. This
allows them to reuse the client drivers without having to develop and support them.

• Just because on DBMS "speaks" another DBMS’s wire protocol does not mean that it is
compatible.
▶ Need to also support catalogs, SQL dialect, and other functionality.

JA

JA

JA

JA

JA

16 / 45

Networking Database Network Protocols

Existing Protocols

JA

JA

JA

JA

JA

17 / 45

Networking Database Network Protocols

Protocol Design Space

• Row vs. Column Layout
• Compression
• Data Serialization
• String Handling
• Reference

https://www.vldb.org/pvldb/vol10/p1022-muehleisen.pdf
JA

JA

JA

JA

JA

JA

18 / 45

Networking Database Network Protocols

Row vs. Column Layout

• ODBC/JDBC are inherently row-oriented APIs.
▶ Server packages tuples into messages one tuple at a time.
▶ Client must deserialize data one tuple at a time.

• But modern data analysis software operates on matrices and columns.
• One potential solution is to send data in vectors.

▶ Batch of rows organized in a column-oriented layout.

JA

JA

JA

JA

JA

JA

19 / 45

Networking Database Network Protocols

Compression

• Approach 1: Naive Compression
• Approach 2: Columnar-Specific Encoding
• More heavyweight compression is better when the network is slow.
• Better compression ratios for larger message chunk sizes.

JA

JA

JA

JA

JA

JA

JA

JA

20 / 45

Networking Database Network Protocols

Data Serialization

• Approach 1: Binary Encoding
▶ Client handles endian conversion.
▶ The closer the serialized format is to the DBMS’s binary format, then the lower the

overhead to serialize.
▶ DBMS can implement its own format or rely on existing libraries (ProtoBuffers, Thrift,

FlatBuffers).
• Approach 2: Text Encoding

▶ Convert all binary values into strings (atoi).
▶ Do not have to worry about endianness.

https://developers.google.com/protocol-buffers
https://en.wikipedia.org/wiki/Apache_Thrift
https://google.github.io/flatbuffers/
http://www.cplusplus.com/reference/cstdlib/atoi/
JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

21 / 45

Networking Database Network Protocols

String Handling

• Approach 1: Null Termination
▶ Store a null byte (’

0’) to denote the end of a string.
▶ Client scans the entire string to find end.

• Approach 2: Length-Prefixes
▶ Add the length of the string at the beginning of the bytes.

• Approach 3: Fixed Width
▶ Pad every string to be the max size of that attribute.

JA

JA

JA

JA

JA

JA

JA

22 / 45

Networking Database Network Protocols

Network Protocol Performance

• Transfer One Tuple from TCP-H LINEITEM

JA

JA

JA

JA

JA

JA

JA

23 / 45

Networking Database Network Protocols

Network Protocol Performance

• Transfer One Tuple from TCP-H LINEITEM

JA

24 / 45

Networking Database Network Protocols

Network Protocol Performance

• Transfer 1m Tuples from TCP-H LINEITEM

JA

JA

JA

JA

JA

JA

25 / 45

Networking Database Replication Protocols

Database Replication Protocols

JA

26 / 45

Networking Database Replication Protocols

Replication Protocols

• DBMSs will propagate changes over the network to other nodes to increase availability.

▶ Send either physical or logical log records.
▶ Granularity of log record can differ from WAL.

• Design Decisions:
▶ Replica Configuration
▶ Propagation Scheme

JA

JA

JA

27 / 45

Networking Database Replication Protocols

Replica Configurations

• Approach 1: Master-Replica
▶ All updates go to a designated master for each object.
▶ The master propagates updates to its replicas without an atomic commit protocol.
▶ Read-only txns may be allowed to access replicas.
▶ If the master goes down, then hold an election to select a new master.

• Approach 2: Multi-Master
▶ Txns can update data objects at any replica.
▶ Replicas must synchronize with each other using an atomic commit protocol.

JA

JA

JA

28 / 45

Networking Database Replication Protocols

Replica Configurations

JA

JA

JA

JA

29 / 45

Networking Database Replication Protocols

Propagation Scheme

• When a txn commits on a replicated database, the DBMS decides whether it must wait
for that txn’s changes to propagate to other nodes before it can send the
acknowledgement to application.

• Propagation levels:
▶ Synchronous (Strong Consistency)
▶ Asynchronous (Eventual Consistency)

JA

JA

JA

JA

30 / 45

Networking Database Replication Protocols

Propagation Scheme

• Approach 1: Synchronous
▶ The master sends updates to replicas and then waits for them to acknowledge that they

fully applied (i.e., logged) the changes.

JA

JA

31 / 45

Networking Database Replication Protocols

Propagation Scheme

• Approach 2: Asynchronous
▶ The master immediately returns the acknowledgement to the client without waiting for

replicas to apply the changes.

JA

JA

32 / 45

Networking Database Replication Protocols

Observation

• The DBMS’s network protocol implementation is not the only source of slowdown.
• The OS’s TCP/IP stack is slow.

▶ Expensive context switches / interrupts
▶ Data copying
▶ Lots of latches in the kernel

JA

JA

JA

JA

JA

33 / 45

Networking Kernel Bypass Methods

Kernel Bypass Methods

JA

34 / 45

Networking Kernel Bypass Methods

Kernel Bypass Methods

• Allows the system to get data directly from the NIC into the DBMS address space.
▶ No unnecessary data copying.
▶ No OS TCP/IP stack.

• Approach 1: Data Plane Development Kit
• Approach 2: Remote Direct Memory Access

JA

JA

JA

JA

JA

35 / 45

Networking Kernel Bypass Methods

Data Plane Development Kit (DPDK)

• Set of libraries that allows programs to access NIC directly. Treat the NIC as a bare
metal device.

• Requires the DBMS code to do more to manage memory and buffers.
▶ No data copying.
▶ No system calls.

• Example: ScyllaDB

https://dpdk.org/
https://www.scylladb.com/
JA

JA

JA

JA

36 / 45

Networking Kernel Bypass Methods

Remote Direct Memory Access

• Read and write memory directly on a remote host without going through OS.
▶ The client needs to know the correct address of the data that it wants to access.
▶ The server is unaware that memory is being accessed remotely (i.e., no callbacks).

• Example: Oracle RAC, Microsoft FaRM

https://en.wikipedia.org/wiki/Oracle_RAC
https://www.microsoft.com/en-us/research/publication/farm-fast-remote-memory/
JA

JA

JA

37 / 45

Networking Kernel Bypass Methods

Data Export Performance

• Transfer 7GB of Tuples from TCP-C ORDER_LINE

JA

JA

JA

JA

38 / 45

Networking Conclusion

Conclusion

39 / 45

Networking Conclusion

Conclusion

• A DBMS’s networking protocol is an often overlooked bottleneck for performance.
• Kernel bypass methods greatly improve performance but require more bookkeeping.

▶ Probably more useful for internal DBMS communication.

JA

JA

40 / 45

Networking Course Retrospective

Retrospective

41 / 45

Networking Course Retrospective

Lessons learned

• Let’s take a step back and think about what happened
• Systems programming is both hard and rewarding
• Become a better programmer through the study of database systems internals
• Going forth, you should have a good understanding how systems work

42 / 45

Networking Course Retrospective

Big Ideas

• Database systems are awesome – but are not magic.
• Elegant abstractions are magic.
• Declarativity enables usability and performance.
• Building systems software is more than hacking
• There are recurring motifs in systems programming.
• CS has an intellectual history and you can contribute.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

43 / 45

Networking Course Retrospective

What Next?

• We have covered the entire stack of systems programming
▶ Storage Management (Part 1)
▶ Access Methods (Part 1)
▶ Query Execution (Part 1)
▶ Logging and Recovery Methods (Part 2)
▶ Concurrency Control (Part 2)
▶ Query Optimization (Part 2)

• Stay in touch
▶ Tell me when this course helps you out with future courses (or jobs!)
▶ Ask me cool DBMS questions

JA

JA

JA

JA

44 / 45

Networking Course Retrospective

Parting Thoughts

• You have surmounted several challenges in this course.
• You make it all worthwhile.
• Please share your feedback via CIOS.
• Go forth and spread the gospel of data systems!

JA

45 / 45

Networking Course Retrospective

Next Class

• Project Presentations

	Networking
	Recap
	Database Access APIs
	Database Network Protocols
	Database Replication Protocols
	Kernel Bypass Methods
	Conclusion
	Course Retrospective

