
1 / 56

Access Methods

Lecture 3: Recap - Access Methods

JA



2 / 56

Access Methods

Administrivia

• Programming Assignment 0 released.
• Exercise Sheet 0 released.

JA

JA

JA

JA



3 / 56

Access Methods

Today’s Agenda

Access Methods
1.1 Recap
1.2 Access Methods
1.3 Hash Table
1.4 B+Tree
1.5 Index Concurrency Control
1.6 Conclusion

JA

JA



4 / 56

Access Methods Recap

Recap



5 / 56

Access Methods Recap

Storage Management

• Database systems have a layered architecture.
• Design of database system components affected by hardware properties.
• Database is physically organized as a collection of pages on disk.
• The units of database space allocation are disk blocks, extents, and segments
• The DBMS can manage that sweet, sweet memory better than the OS.
• Leverage the semantics about the query plan to make better decisions.
• It is important to choose the right storage model for the target workload

JA

JA

JA

JA

JA



6 / 56

Access Methods Recap

Storage Models

• It is important to choose the right storage model for the target workload
▶ OLTP −→ Row-Store
▶ OLAP −→ Column-Store

JA

JA



7 / 56

Access Methods Access Methods

Access Methods



8 / 56

Access Methods Access Methods

Anatomy of a Database System [Monologue]

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf
JA



9 / 56

Access Methods Access Methods

Anatomy of a Database System [Monologue]

• Process Manager
▶ Manages client connections

• Query Processor
▶ Parse, plan and execute queries on top of storage manager

• Transactional Storage Manager
▶ Knits together buffer management, concurrency control, logging and recovery

• Shared Utilities
▶ Manage hardware resources across threads

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf
JA

JA



10 / 56

Access Methods Access Methods

Anatomy of a Database System [Monologue]

• Process Manager
▶ Connection Manager + Admission Control

• Query Processor
▶ Query Parser
▶ Query Optimizer (a.k.a., Query Planner)
▶ Query Executor

• Transactional Storage Manager
▶ Lock Manager
▶ Access Methods (a.k.a., Indexes)
▶ Buffer Pool Manager
▶ Log Manager

• Shared Utilities
▶ Memory, Disk, and Networking Manager

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf
JA

JA



11 / 56

Access Methods Access Methods

Access Methods

Access methods are alternative ways for retrieving specific tuples from a relation.
• Typically, there is more than one way to retrieve tuples.
• Depends on the availability of indexes and the conditions specified in the query for

selecting the tuples
• Includes sequential scan method of unordered table heap
• Includes index scan of different types of index structures

We will look at these methods in more detail.

JA

JA



12 / 56

Access Methods Access Methods

Slotted Pages

Segment A:

123 3
3 Bytes 1 Byte

123 7 Record

TIDs

P123

567 6
TID

Overflow Record

P567

(TID size varies, but will most likely be at least 8 bytes on modern systems)

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



13 / 56

Access Methods Access Methods

Slotted Pages (2)

Tuples are stored in slotted pages

page

data data
data data data

slotsheader

• data grows from one side, slots from the other
• the page is full when both meet
• updates/deletes complicate issues, though
• might require garbage collection/compactification

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



14 / 56

Access Methods Access Methods

Slotted Pages (3)

Header:

LSN for recovery
slotCount number of used slots
firstFreeSlot to speed up locating free slots
dataStart lower end of the data
freeSpace space that would be available after compactification

Note: a slotted page can contain hundreds of entries!
Requires some care to get good performance.

JA

JA



15 / 56

Access Methods Hash Table

Hash Table



16 / 56

Access Methods Hash Table

Table Indexes

• A table index is a replica of a subset of a table’s attributes that are organized and/or
sorted for efficient access based a subset of those attributes.

• Example: {Employee Id, Dept Id} −→ Employee Tuple Pointer
• The DBMS ensures that the contents of the table and the indices are in sync.

JA

JA

JA

JA

JA

JA

JA



17 / 56

Access Methods Hash Table

Table Indexes

• It is the DBMS’s job to figure out the best index(es) to use to execute each query.
• There is a trade-off on the number of indexes to create per database.

▶ Storage Overhead
▶ Maintenance Overhead



18 / 56

Access Methods Hash Table

Table Indexes

Data is often indexed
• speeds up lookup
• de-facto mandatory for primary keys
• useful for selective queries

Two important access classes:
• point queries

find all tuples with a given value (might be a compound)
• range queries

find all tuples within a given value range

Support for more complex predicates is rare.

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA



19 / 56

Access Methods Hash Table

Hash Tables

• A hash table implements an unordered associative array that maps keys to values.
▶ mymap.insert(’a’, 50);
▶ mymap[’b’]=100;
▶ mymap.find(’a’)
▶ mymap[’a’]

• It uses a hash function to compute an offset into the array for a given key, from which
the desired value can be found.

JA

JA



20 / 56

Access Methods Hash Table

Hash Tables

• Operation Complexity:
▶ Average: O(1)
▶ Worst: O(n)

• Space Complexity: O(n)
• Constants matter in practice.
• Reminder: In theory, there is no difference between theory and practice. But in

practice, there is.

JA

JA

JA



21 / 56

Access Methods Hash Table

Naïve Hash Table

• Allocate a giant array that has one slot for every
element you need to store.

• To find an entry, mod the key by the number of
elements to find the offset in the array.

JA

JA

JA



22 / 56

Access Methods Hash Table

Naïve Hash Table

• Allocate a giant array that has one slot for every
element you need to store.

• To find an entry, mod the key by the number of
elements to find the offset in the array.

JA

JA

JA

JA



23 / 56

Access Methods Hash Table

Assumptions

• You know the number of elements ahead of time.
• Each key is unique (e.g., SSN ID −→ Name).
• Perfect hash function (no collision).

▶ If key1 != key2, then hash(key1) != hash(key2)

JA



24 / 56

Access Methods Hash Table

Hash Table: Design Decisions

• Design Decision 1: Hash Function
▶ How to map a large key space into a smaller domain of array offsets.
▶ Trade-off between being fast vs. collision rate.

• Design Decision 2: Hashing Scheme
▶ How to handle key collisions after hashing.
▶ Trade-off between allocating a large hash table vs. additional steps to find/insert keys.

JA

JA

JA



25 / 56

Access Methods B+Tree

B+Tree



26 / 56

Access Methods B+Tree

B-Tree

B-Trees (including variants) are the dominant data structure for external storage.

Classical definition:
• a B-Tree has a degree k
• each node except the root has at least k entries
• each node has at most 2k entries
• all leaf nodes are at the same depth

JA

JA

JA

JA

JA

JA

JA

JA

JA



27 / 56

Access Methods B+Tree

B-Tree (2)

Example:

B-Tree
with k = 2, h = 3K47

K25 K36

K02 K03 K16 K41 K43

K26 K29 K35 K51 K53 K55 K58 K78 K86

K67 K88

K91 K95

The • is the TID of the corresponding tuple.

JA

JA

JA

JA

JA



28 / 56

Access Methods B+Tree

B+-Tree

Most DBMS use the B+-Tree variant:
B+-Tree
with k = 2, h = 3K49

K25 K35

K02 K03 K16 K36 K41

K26 K29 K35 K51 K53 K55 K58 K67 K78

K58 K90

K91 K95K25 K43 K47

K86 K88

• key+TID only in leaf nodes
• inner nodes contain separators, might or might not occur in the data
• increases the fanout of inner nodes
• simplifies the B-Tree logic

JA

JA

JA



29 / 56

Access Methods B+Tree

Page Structure

Inner Node:
LSN for recovery
upper page of right-most child
count number of entries
key/child key/child-page pairs
... ...

Leaf Node:
LSN for recovery
~0 leaf node marker
next next leaf node
count number of entries
key/tid key/TID pairs
... ...

Similar to slotted pages for variable keys.

JA

JA

JA

JA

JA

JA

JA

JA



30 / 56

Access Methods Index Concurrency Control

Index Concurrency Control



31 / 56

Access Methods Index Concurrency Control

Index Structures: Design Decisions

• Meta-Data Organization
▶ How to organize meta-data on disk or in memory to support efficient access to specific

tuples?
• Concurrency

▶ How to allow multiple threads to access the derived data structure at the same time
without causing problems?

JA

JA

JA



32 / 56

Access Methods Index Concurrency Control

Observation

• We assumed that all the data structures that we have discussed so far are
single-threaded.

• But we need to allow multiple threads to safely access our data structures to take
advantage of additional CPU cores and hide disk I/O stalls.

JA

JA

JA



33 / 56

Access Methods Index Concurrency Control

Concurrency Control

• A concurrency control protocol is the method that the DBMS uses to ensure "correct"
results for concurrent operations on a shared object.

• A protocol’s correctness criteria can vary:
▶ Logical Correctness: Am I reading the data that I am supposed to read?
▶ Physical Correctness: Is the internal representation of the object sound?

JA

JA



34 / 56

Access Methods Index Concurrency Control

Locks vs. Latches

• Locks
▶ Protects the database’s logical contents from other txns.
▶ Held for the duration of the transaction.
▶ Need to be able to rollback changes.

• Latches
▶ Protects the critical sections of the DBMS’s internal physical data structures from other

threads.
▶ Held for the duration of the operation.
▶ Do not need to be able to rollback changes.

JA

JA



35 / 56

Access Methods Index Concurrency Control

Locks vs. Latches

Locks Latches

Separate. . . User transactions Threads
Protect. . . Database Contents In-Memory Data Structures
During. . . Entire Transactions Critical Sections
Modes. . . Shared, Exclusive, Update, Intention Read, Write (a.k.a., Shared, Exclusive)
Deadlock Detection & Resolution Avoidance
. . . by. . . Waits-for, Timeout, Aborts Coding Discipline
Kept in. . . Lock Manager Protected Data Structure

Reference

https://dl.acm.org/doi/10.1145/1806907.1806908
JA

JA

JA

JA



36 / 56

Access Methods Index Concurrency Control

Latch Modes

• Read Mode
▶ Multiple threads can read the same object at the same time.
▶ A thread can acquire the read latch if another thread has it in read mode.

• Write Mode
▶ Only one thread can access the object.
▶ A thread cannot acquire a write latch if another thread holds the latch in any mode.

Read Write

Read ✓ X
Write X X

JA



37 / 56

Access Methods Index Concurrency Control

Latch Implementations

• Blocking OS Mutex
• Test-and-Set Spin Latch
• Reader-Writer Latch

JA



38 / 56

Access Methods Index Concurrency Control

Latch Implementations

• Approach 1: Blocking OS Mutex
▶ Simple to use
▶ Non-scalable (about 25 ns per lock/unlock invocation)
▶ Example: std::mutex

std::mutex m;

m.lock();
// Do something special...
m.unlock();

https://en.cppreference.com/w/cpp/thread/mutex
JA

JA

JA



39 / 56

Access Methods Index Concurrency Control

Latch Implementations

• Approach 2: Test-and-Set Spin Latch (TAS)
▶ Very efficient (single instruction to latch/unlatch)
▶ Non-scalable, not cache friendly
▶ Example: std::atomic<T>
▶ Unlike OS mutex, spin latches do not suspend thread execution
▶ Atomic operations are faster if contention between threads is sufficiently low

std::atomic_flag latch; // atomic of boolean type (lock-free)

while (latch.test_and_set(...)) {
// Retry? Yield? Abort?

}

https://en.cppreference.com/w/cpp/atomic/atomic
JA

JA

JA

JA

JA

JA

JA

JA

JA



40 / 56

Access Methods Index Concurrency Control

Latch Implementations

• Approach 3: Reader-Writer Latch

▶ Allows for concurrent readers

▶ Must manage read/write
queues to avoid starvation

▶ Can be implemented on top of
spinlocks

JA

JA

JA



41 / 56

Access Methods Index Concurrency Control

Latch Implementations

• Approach 3: Reader-Writer Latch

▶ Allows for concurrent readers

▶ Must manage read/write
queues to avoid starvation

▶ Can be implemented on top of
spinlocks

JA

JA



42 / 56

Access Methods Index Concurrency Control

B+Tree Concurrency Control

• We want to allow multiple threads to read and update a B+Tree at the same time.
• We need to handle two types of problems:

▶ Threads trying to modify the contents of a node at the same time.
▶ One thread traversing the tree while another thread splits/merges nodes.



43 / 56

Access Methods Index Concurrency Control

Latch Crabbing/Coupling

• Protocol to allow multiple threads to access/modify B+Tree at the same time.
• Basic Idea:

▶ Get latch for parent.
▶ Get latch for child
▶ Release latch for parent if “safe”.

• A safe node is one that will not split or merge when updated.
▶ Not full (on insertion)
▶ More than half-full (on deletion)

JA

JA



44 / 56

Access Methods Index Concurrency Control

Latch Crabbing/Coupling

• Find: Start at root and go down; repeatedly,
▶ Acquire R latch on child
▶ Then unlatch parent

• Insert/Delete: Start at root and go down, obtaining W latches as needed. Once child is
latched, check if it is safe:
▶ If child is safe, release all latches on ancestors.

JA

JA

JA



45 / 56

Access Methods Index Concurrency Control

Example 1 - Find 38

JA



46 / 56

Access Methods Index Concurrency Control

Example 1 - Find 38

JA



47 / 56

Access Methods Index Concurrency Control

Example 1 - Find 38

JA



48 / 56

Access Methods Index Concurrency Control

Example 1 - Find 38



49 / 56

Access Methods Index Concurrency Control

Example 1 - Find 38



50 / 56

Access Methods Index Concurrency Control

Example 1 - Find 38



51 / 56

Access Methods Index Concurrency Control

Example 1 - Find 38



52 / 56

Access Methods Index Concurrency Control

Example 1 - Find 38



53 / 56

Access Methods Conclusion

Conclusion



54 / 56

Access Methods Conclusion

Parting Thoughts

• Access methods are the alternative ways for retrieving specific tuples
• We covered two access methods: sequential scan and index scan
• Sequential scan is done over an unordered table heap
• Index scan is done over an ordered B-Tree or an unordered hash table
• Hash tables are fast data structures that support O(1) look-ups

JA

JA



55 / 56

Access Methods Conclusion

Parting Thoughts

• Hash tables are usually not what you want to use for a indexing tables
▶ Lack of ordering in widely-used hashing schemes
▶ Lack of locality of reference −→ more disk seeks
▶ Persistent data structures are much more complex (logging and recovery)
▶ Reference

• The venerable B+Tree is always a good choice for your DBMS.
• Making a data structure thread-safe is notoriously difficult in practice.
• We focused on B+Trees but the same high-level techniques are applicable to other data

structures.

https://www.evanjones.ca/ordered-vs-unordered-indexes.html
JA

JA

JA

JA



56 / 56

Access Methods Conclusion

Next Class

• Recap of query processing


	Access Methods
	Recap
	Access Methods
	Hash Table
	B+Tree
	Index Concurrency Control
	Conclusion


