
1 / 49

Logging (Part 2)

Lecture 6: Logging (Part 2)



2 / 49

Logging (Part 2)

Today’s Agenda

Logging (Part 2)
1.1 Recap
1.2 Write-Ahead Logging
1.3 Logging Schemes
1.4 Checkpoints
1.5 Conclusion



3 / 49

Logging (Part 2) Recap

Recap



4 / 49

Logging (Part 2) Recap

Crash Recovery

• Recovery algorithms are techniques to ensure database consistency, transaction
atomicity, and durability despite failures.

• Recovery algorithms have two parts:
▶ Actions during normal txn processing to ensure that the DBMS can recover from a failure.
▶ Actions after a failure to recover the database to a state that ensures atomicity, consistency,

and durability.



5 / 49

Logging (Part 2) Recap

Failure Classification

• Type 1 – Transaction Failures
• Type 2 – System Failures
• Type 3 – Storage Media Failures



6 / 49

Logging (Part 2) Recap

Undo vs. Redo

• Undo: The process of removing the effects of an incomplete or aborted txn.
• Redo: The process of re-instating the effects of a committed txn for durability.
• How the DBMS supports this functionality depends on how it manages the buffer

pool. . .



7 / 49

Logging (Part 2) Recap

NO-STEAL + FORCE

• This approach is the easiest to implement:
▶ Never have to undo changes of an aborted txn because the changes were not written to

disk.
▶ Never have to redo changes of a committed txn because all the changes are guaranteed to

be written to disk at commit time (assuming atomic hardware writes).

• Cannot support write sets that exceed the amount of physical memory available.



8 / 49

Logging (Part 2) Recap

Shadow Paging

• Maintain two separate copies of the database:
▶ Master: Contains only changes from committed txns.
▶ Shadow: Temporary database with changes made from uncommitted txns.

• Txns only make updates in the shadow copy.
• When a txn commits, atomically switch the shadow to become the new master.
• Buffer Pool Policy: NO-STEAL + FORCE



9 / 49

Logging (Part 2) Recap

Shadow Paging – Example



10 / 49

Logging (Part 2) Recap

Shadow Paging – Disadvantages

• Copying the entire page table is expensive:
▶ Use a page table structured like a B+tree.
▶ No need to copy entire tree, only need to copy paths in the tree that lead to updated leaf

nodes.
• Commit overhead is high:

▶ Flush every updated page, page table, and root.
▶ Data gets fragmented.
▶ Need garbage collection.
▶ Only supports one writer txn at a time or txns in a batch.



11 / 49

Logging (Part 2) Recap

Observation

• Shadowing page requires the DBMS to perform writes to random non-contiguous
pages on disk.

• We need a way for the DBMS convert random writes into sequential writes.



12 / 49

Logging (Part 2) Write-Ahead Logging

Write-Ahead Logging



13 / 49

Logging (Part 2) Write-Ahead Logging

Write-Ahead Logging (WAL) Protocol

• Maintain a log file separate from data files that contains the changes that txns make to
database.
▶ Assume that the log is on stable storage.
▶ Log contains enough information to perform the necessary undo and redo actions to

restore the database.



14 / 49

Logging (Part 2) Write-Ahead Logging

WAL Protocol

• DBMS must write to disk the log file records that correspond to changes made to a
database object before it can flush that object to disk.

• Buffer Pool Policy: STEAL + NO-FORCE
▶ This decouples writing a transaction’s dirty pages to database on disk from committing

the transaction.
▶ We only need to write its corresponding log records.
▶ If a txn updates a 100 tuples stored in 100 pages, we only need to write 100 log records

(which could be a few pages) instead of 100 dirty pages.



15 / 49

Logging (Part 2) Write-Ahead Logging

WAL Protocol

• The DBMS stages all a txn’s log records in volatile storage (usually backed by buffer
pool).

• All log records pertaining to an updated page are written to non-volatile storage before
the page itself is over-written in non-volatile storage.

• A txn is not considered committed until all its log records have been written to stable
storage.



16 / 49

Logging (Part 2) Write-Ahead Logging

WAL Protocol

• Write a <BEGIN> record to the log for each txn to mark its starting point.
• When a txn finishes, the DBMS will:

▶ Write a <COMMIT> record on the log
▶ Make sure that all log records are flushed before it returns an acknowledgement to

application.
▶ This allows us to later redo the changes of the committed txns by replaying the log

records.



17 / 49

Logging (Part 2) Write-Ahead Logging

WAL Protocol

• Each log entry contains information about the change to a single object:
▶ Transaction Id
▶ Object Id
▶ Before Value (UNDO)
▶ After Value (REDO)



18 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Example



19 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Example



20 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Example



21 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Example



22 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Implementation

• When should the DBMS write log entries to disk?
▶ When the transaction commits.
▶ Can use group commit to batch multiple log flushes together to amortize overhead.



23 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Group Commit



24 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Group Commit



25 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Group Commit



26 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Group Commit



27 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Implementation

• When should the DBMS write log entries to disk?
▶ When the transaction commits.
▶ Can use group commit to batch multiple log flushes together to amortize overhead.

• When should the DBMS write dirty records to disk?
▶ Every time the txn executes an update?
▶ Once when the txn commits?



28 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Deferred Updates

• If we prevent the DBMS from writing dirty records to disk until the txn commits, then
the DBMS does not need to store their original values.



29 / 49

Logging (Part 2) Write-Ahead Logging

WAL – Deferred Updates

• This won’t work if the change set of a txn is larger than the amount of memory
available.

• The DBMS cannot undo changes for an aborted txn if it doesn’t have the original
values in the log.

• We need to use the STEAL policy.



30 / 49

Logging (Part 2) Write-Ahead Logging

Buffer Pool Policies

• Almost every DBMS uses NO-FORCE + STEAL



31 / 49

Logging (Part 2) Write-Ahead Logging

Buffer Pool Policies

• Almost every DBMS uses NO-FORCE + STEAL



32 / 49

Logging (Part 2) Logging Schemes

Logging Schemes



33 / 49

Logging (Part 2) Logging Schemes

Logging Schemes

• Physical Logging
▶ Record the changes made to a specific location in the database.
▶ Example: git diff

• Logical Logging
▶ Record the high-level operations executed by txns.
▶ Not necessarily restricted to single page.
▶ Example: The UPDATE, DELETE, and INSERT queries invoked by a txn.



34 / 49

Logging (Part 2) Logging Schemes

Physical vs. Logical Logging

• Logical logging requires less data written in each log record than physical logging.
• Difficult to implement recovery with logical logging if you have concurrent txns.

▶ Hard to determine which parts of the database may have been modified by a query before
crash.

▶ Also takes longer to recover because you must re-execute every txn all over again.



35 / 49

Logging (Part 2) Logging Schemes

Physiological Logging

• Hybrid approach where log records target a single page but do not specify data
organization of the page.

• This is the most popular approach.



36 / 49

Logging (Part 2) Logging Schemes

Logging Schemes

UPDATE foo SET val = XYZ WHERE id = 1;



37 / 49

Logging (Part 2) Logging Schemes

Log Flushing

• Approach 1: All-at-Once Flushing
▶ Wait until a txn has fully committed before writing out log records to disk.
▶ Do not need to store abort records because uncommitted changes are never written to disk.

• Approach 2: Incremental Flushing
▶ Allow the DBMS to write a txn’s log records to disk before it has committed.



38 / 49

Logging (Part 2) Logging Schemes

Group Commit Optimization

• Batch together log records from multiple txns and flush them together with a single
fsync.
▶ Logs are flushed either after a timeout or when the buffer gets full.
▶ Originally developed in IBM IMS FastPath in the 1980s

• This amortizes the cost of I/O over several txns.

https://en.wikipedia.org/wiki/IBM_Information_Management_System#.22Fast_Path.22_databases


39 / 49

Logging (Part 2) Logging Schemes

Early Lock Release Optimization

• A txn’s locks can be released before its commit record is written to disk if it does not
return results to the client before becoming durable.

• Other txns that speculatively read data updated by a pre-committed txn become
dependent on it and must wait for their predecessor’s log records to reach disk.



40 / 49

Logging (Part 2) Checkpoints

Checkpoints



41 / 49

Logging (Part 2) Checkpoints

Checkpoints

• The WAL will grow forever.
• After a crash, the DBMS has to replay the entire log which will take a long time.
• The DBMS periodically takes a checkpoint where it flushes all buffers out to disk.



42 / 49

Logging (Part 2) Checkpoints

Checkpoints

• Output onto stable storage all log records currently residing in main memory.
• Output to the disk all modified blocks.
• Write a <CHECKPOINT> entry to the log and flush to stable storage.



43 / 49

Logging (Part 2) Checkpoints

Checkpoints

• Any txn that committed before the checkpoint is
ignored (T1).



44 / 49

Logging (Part 2) Checkpoints

Checkpoints

• T2 + T3 did not commit before the last
checkpoint.
▶ Need to redo T2 because it committed after

checkpoint.
▶ Need to undo T3 because it did not commit

before the crash.



45 / 49

Logging (Part 2) Checkpoints

Checkpoints – Challenges

• We have to stall all txns when take a checkpoint to ensure a consistent snapshot.
• Scanning the log to find uncommitted txns can take a long time.
• Not obvious how often the DBMS should take a checkpoint. . .



46 / 49

Logging (Part 2) Checkpoints

Checkpoints – Frequency

• Checkpointing too often causes the runtime performance to degrade.
▶ System spends too much time flushing buffers.

• But waiting a long time is just as bad:
▶ The checkpoint will be large and slow.
▶ Makes recovery time much longer.



47 / 49

Logging (Part 2) Conclusion

Conclusion



48 / 49

Logging (Part 2) Conclusion

Parting Thoughts

• Write-Ahead Logging is (almost) always the best approach to handle loss of volatile
storage.
▶ Use incremental updates (STEAL + NO-FORCE) with checkpoints.
▶ On recovery: undo uncommitted txns + redo committed txns.



49 / 49

Logging (Part 2) Conclusion

Next Class

• Recovery with ARIES protocol.


	Logging (Part 2)
	Recap
	Write-Ahead Logging
	Logging Schemes
	Checkpoints
	Conclusion


