
1 / 79

Concurrency Control Theory

Lecture 12: Concurrency Control Theory

2 / 79

Concurrency Control Theory

Today's Agenda

Concurrency Control Theory
1.1 Recap
1.2 Motivation
1.3 Atomicity
1.4 Consistency
1.5 Durability
1.6 Isolation
1.7 Conclusion

3 / 79

Concurrency Control Theory Recap

Recap

4 / 79

Concurrency Control Theory Recap

Anatomy of a Database System [Monologue]

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

5 / 79

Concurrency Control Theory Recap

Anatomy of a Database System [Monologue]

• Process Manager
▶ Manages client connections

• Query Processor
▶ Parse, plan and execute queries on top of storage manager

• Transactional Storage Manager
▶ Knits together buffer management, concurrency control, logging and recovery

• Shared Utilities
▶ Manage hardware resources across threads

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

6 / 79

Concurrency Control Theory Recap

Anatomy of a Database System [Monologue]

• Process Manager
▶ Connection Manager + Admission Control

• Query Processor
▶ Query Parser
▶ Query Optimizer (a.k.a., Query Planner)
▶ Query Executor

• Transactional Storage Manager
▶ Lock Manager
▶ Access Methods (a.k.a., Indexes)
▶ Buffer Pool Manager
▶ Log Manager

• Shared Utilities
▶ Memory, Disk, and Networking Manager

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

7 / 79

Concurrency Control Theory Recap

Today’s Agenda

• Motivation
• Atomicity,
• Consistency
• Durability
• Isolation

8 / 79

Concurrency Control Theory Motivation

Motivation

9 / 79

Concurrency Control Theory Motivation

Motivation

• Lost Updates:
▶ We both change the same record in a table at the same time. How to avoid race condition?
▶ Concurrency Control protocol

• Durability:
▶ You transfer $100 between bank accounts but there is a power failure. What is the correct

database state?
▶ Recovery protocol

10 / 79

Concurrency Control Theory Motivation

Concurrency Control & Recovery

• Valuable properties of DBMSs.
• Based on concept of transactions with ACID properties.
• Let’s talk about transactions . . .

11 / 79

Concurrency Control Theory Motivation

Transaction

• A transaction is the execution of a sequence of one or more operations (e.g., SQL
queries) on a database to perform some higher-level function.

• It is the basic unit of change in a DBMS:
▶ Partial transactions are not allowed!

12 / 79

Concurrency Control Theory Motivation

Transaction: Example

• Move $100 from A’s bank account to B’s account.
• Transaction:

▶ Check whether A has $100.
▶ Deduct $100 from A’s account.
▶ Add $100 to B’s account.

13 / 79

Concurrency Control Theory Motivation

Strawman Solution

• Execute each txn one-by-one (i.e., serial order) as they arrive at the DBMS.
▶ One and only one txn can be running at the same time in the DBMS.

• Before a txn starts, copy the entire database to a new file and make all changes to that
file.
▶ If the txn completes successfully, overwrite the original file with the new one.
▶ If the txn fails, just remove the dirty copy.

14 / 79

Concurrency Control Theory Motivation

Problem Statement

• A (potentially) better approach is to allow concurrent execution of independent
transactions.

• Why do we want that?
▶ Better utilization/throughput
▶ Lower response times to users.

• But we also would like:
▶ Correctness
▶ Fairness

15 / 79

Concurrency Control Theory Motivation

Transactions

• Hard to ensure correctness?
▶ What happens if A only has $100 and tries to pay off two people at the same time?

16 / 79

Concurrency Control Theory Motivation

Problem Statement

• Arbitrary interleaving of operations can lead to:
▶ Temporary Inconsistency (ok, unavoidable)
▶ Permanent Inconsistency (bad!)

• We need formal correctness criteria to determine whether an interleaving is valid.

17 / 79

Concurrency Control Theory Motivation

Definitions

• A txn may carry out many operations on the data retrieved from the database
• However, the DBMS is only concerned about what data is read/written from/to the

database.
▶ Changes to the outside world are beyond the scope of the DBMS.

18 / 79

Concurrency Control Theory Motivation

Formal Definitions

• Database: A fixed set of named data objects (e.g., A, B, C, . . .).
▶ We do not need to define what these objects are now.

• Transaction: A sequence of read and write operations (R(A), W(B), . . .)
▶ DBMS’s abstract view of a user program

19 / 79

Concurrency Control Theory Motivation

Transactions in SQL

• A new txn starts with the BEGIN command.
• The txn stops with either COMMIT or ABORT:

▶ If commit, the DBMS either saves all the txn’s changes or aborts it.
▶ If abort, all changes are undone so that it’s like as if the txn never executed at all.

• Abort can be either self-inflicted or caused by the DBMS.

20 / 79

Concurrency Control Theory Motivation

Correctness Criteria: ACID

• Atomicity: All actions in the txn happen, or none happen.
• Consistency: If each txn is consistent and the DB starts consistent, then it ends up

consistent.
• Isolation: Execution of one txn is isolated from that of other txns.
• Durability: If a txn commits, its effects persist.

21 / 79

Concurrency Control Theory Motivation

Correctness Criteria: ACID

• Atomicity: “all or nothing”
• Consistency: “it looks correct to me”
• Isolation: “as if alone”
• Durability: “survive failures”

22 / 79

Concurrency Control Theory Atomicity

Atomicity

23 / 79

Concurrency Control Theory Atomicity

Atomicity of Transactions

• Two possible outcomes of executing a txn:
▶ Commit after completing all its actions.
▶ Abort (or be aborted by the DBMS) after executing some actions.

• DBMS guarantees that txns are atomic.
▶ From user’s point of view: txn always either executes all its actions, or executes no actions

at all.

24 / 79

Concurrency Control Theory Atomicity

Atomicity of Transactions

• Scenario 1:
▶ We take $100 out of A’s account but then the DBMS aborts the txn before we transfer it.

• Scenario 2:
▶ We take $100 out of A’s account but then there is a power failure before we transfer it.

• What should be the correct state of A’s account after both txns abort?

25 / 79

Concurrency Control Theory Atomicity

Mechanisms For Ensuring Atomicity

• Approach 1: Logging
▶ DBMS logs all actions so that it can undo the actions of aborted transactions.
▶ Maintain undo records both in memory and on disk.
▶ Think of this like the black box in airplanes. . .

• Logging is used by almost every DBMS.
▶ Audit Trail
▶ Efficiency Reasons

26 / 79

Concurrency Control Theory Atomicity

Mechanisms For Ensuring Atomicity

• Approach 2: Shadow Paging
▶ DBMS makes copies of pages and txns make changes to those copies. Only when the txn

commits is the page made visible to others.
▶ Originally from System R.

• Few systems do this:
▶ CouchDB
▶ LMDB (OpenLDAP)

27 / 79

Concurrency Control Theory Consistency

Consistency

28 / 79

Concurrency Control Theory Consistency

Consistency

• The "world" represented by the database is logically correct. All questions asked
about the data are given logically correct answers.
▶ Database Consistency
▶ Transaction Consistency

29 / 79

Concurrency Control Theory Consistency

Database Consistency

• The database accurately models the real world and follows integrity constraints.
• Transactions in the future see the effects of transactions committed in the past inside

of the database.

30 / 79

Concurrency Control Theory Consistency

Transaction Consistency

• If the database is consistent before the transaction starts (running alone), it will also be
consistent after.

• Transaction consistency is the application’s responsibility.
▶ We won’t discuss this further.

31 / 79

Concurrency Control Theory Durability

Durability

32 / 79

Concurrency Control Theory Durability

Durability

• All of the changes of committed transactions should be persistent.
▶ No torn updates.
▶ No changes from failed transactions.

• The DBMS can use either logging or shadow paging to ensure that all changes are
durable.

33 / 79

Concurrency Control Theory Isolation

Isolation

34 / 79

Concurrency Control Theory Isolation

Isolation of Transactions

• Users submit txns, and each txn executes as if it was running by itself.
▶ Easier programming model to reason about.

• But the DBMS achieves concurrency by interleaving the actions (reads/writes of DB
objects) of txns.

• We need a way to interleave txns but still make it appear as if they ran one-at-a-time.

35 / 79

Concurrency Control Theory Isolation

Mechanisms For Ensuring Isolation

• A concurrency control protocol is how the DBMS decides the proper interleaving of
operations from multiple transactions.

• Two categories of protocols:
▶ Pessimistic: Don’t let problems arise in the first place.
▶ Optimistic: Assume conflicts are rare, deal with them after they happen.

36 / 79

Concurrency Control Theory Isolation

Example

• Assume at first A and B each have $1000.
• T1 transfers $100 from A’s account to B’s
• T2 credits both accounts with 6% interest.

37 / 79

Concurrency Control Theory Isolation

Example

• Assume at first A and B each have $1000.
• What are the possible outcomes of running T1 and T2?

38 / 79

Concurrency Control Theory Isolation

Example

• Assume at first A and B each have $1000.
• What are the possible outcomes of running T1 and T2?
• Many! But A+B should be:

▶ 2000 ∗ 1.06 =2120

• There is no guarantee that T1 will execute before T2 or vice-versa, if both are submitted
together. But the net effect must be equivalent to these two transactions running
serially in some order.

39 / 79

Concurrency Control Theory Isolation

Example

• Legal outcomes:
▶ A=954, B=1166→ A+B=2120
▶ A=960, B=1160→ A+B=2120

• The outcome depends on whether T1 executes before T2 or vice versa.

40 / 79

Concurrency Control Theory Isolation

Serial Execution Example

41 / 79

Concurrency Control Theory Isolation

Interleaving Transactions

• We interleave txns to maximize concurrency.
▶ Slow disk/network I/O.
▶ Multi-core CPUs.

• When one txn stalls because of a resource (e.g., page fault), another txn can continue
executing and make forward progress.

42 / 79

Concurrency Control Theory Isolation

Interleaving Example (Good)

43 / 79

Concurrency Control Theory Isolation

Interleaving Example (Bad)

44 / 79

Concurrency Control Theory Isolation

Interleaving Example (Bad)

45 / 79

Concurrency Control Theory Isolation

Correctness

• How do we judge whether a schedule is correct?
• If the schedule is equivalent to some serial execution.

46 / 79

Concurrency Control Theory Isolation

Formal Properties of Schedules

• Serial Schedule
▶ A schedule that does not interleave the actions of different transactions.

• Equivalent Schedules
▶ For any database state, the effect of executing the first schedule is identical to the effect of

executing the second schedule.
▶ Doesn’t matter what the arithmetic operations are!

47 / 79

Concurrency Control Theory Isolation

Formal Properties of Schedules

• Serializable Schedule
▶ A schedule that is equivalent to some serial execution of the transactions.

• If each transaction preserves consistency, every serializable schedule preserves
consistency.

48 / 79

Concurrency Control Theory Isolation

Formal Properties of Schedules

• Serializability is a less intuitive notion of correctness compared to txn initiation time or
commit order, but it provides the DBMS with additional flexibility in scheduling
operations.

• More flexibility means better parallelism.

49 / 79

Concurrency Control Theory Isolation

Conflicting Operations

• We need a formal notion of equivalence that can be implemented efficiently based on
the notion of conflicting operations

• Two operations conflict if:
▶ They are by different transactions,
▶ They are on the same object and at least one of them is a write.

50 / 79

Concurrency Control Theory Isolation

Interleaved Execution Anomalies

• Read-Write Conflicts (R-W)
• Write-Read Conflicts (W-R)
• Write-Write Conflicts (W-W)

51 / 79

Concurrency Control Theory Isolation

Read-Write Conflicts

• Unrepeatable Reads

52 / 79

Concurrency Control Theory Isolation

Write-Read Conflicts

• Reading Uncommitted Data ("Dirty Reads")

53 / 79

Concurrency Control Theory Isolation

Write-Write Conflicts

• Overwriting Uncommitted Data

54 / 79

Concurrency Control Theory Isolation

Formal Properties of Schedules

• Given these conflicts, we now can understand what it means for a schedule to be
serializable.
▶ This is to check whether schedules are correct.
▶ This is not how to generate a correct schedule.

• There are different levels of serializability:
▶ Conflict Serializability ->Most DBMSs try to support this.
▶ View Serializability -> No DBMS can do this.

55 / 79

Concurrency Control Theory Isolation

Conflict Serializable Schedules

• Two schedules are conflict equivalent iff:
▶ They involve the same actions of the same transactions, and
▶ Every pair of conflicting actions is ordered the same way.

• Schedule S is conflict serializable if:
▶ S is conflict equivalent to some serial schedule.

56 / 79

Concurrency Control Theory Isolation

Conflict Serializablity: Intuition

• Schedule S is conflict serializable if you are able to transform S into a serial schedule by
swapping consecutive non-conflicting operations of different transactions.

57 / 79

Concurrency Control Theory Isolation

Conflict Serializablity: Intuition

58 / 79

Concurrency Control Theory Isolation

Conflict Serializablity: Intuition

59 / 79

Concurrency Control Theory Isolation

Conflict Serializablity: Intuition

60 / 79

Concurrency Control Theory Isolation

Conflict Serializablity: Intuition

61 / 79

Concurrency Control Theory Isolation

Conflict Serializablity: Intuition

62 / 79

Concurrency Control Theory Isolation

Conflict Serializablity: Intuition

63 / 79

Concurrency Control Theory Isolation

Serializablity

• Swapping operations is easy when there are only two txns in the schedule. It’s
cumbersome when there are many txns.

• Are there any faster algorithms to figure this out other than transposing operations?

64 / 79

Concurrency Control Theory Isolation

Dependency Graphs

• One node per txn.
• Edge from Ti to Tj if:

▶ An operation Oi of Ti conflicts with an operation Oj of Tj and
▶ Oi appears earlier in the schedule than Oj.

• Also known as a precedence graph. A schedule is conflict serializable iff its
dependency graph is acyclic.

65 / 79

Concurrency Control Theory Isolation

Example 1

66 / 79

Concurrency Control Theory Isolation

Example 2

67 / 79

Concurrency Control Theory Isolation

Example 3 – Inconsistent Analysis

68 / 79

Concurrency Control Theory Isolation

Example 3 – Inconsistent Analysis

69 / 79

Concurrency Control Theory Isolation

Example 3 – Inconsistent Analysis

70 / 79

Concurrency Control Theory Isolation

View Serializability

• Alternative (weaker) notion of serializability.
• Schedules S1 and S2 are view equivalent if:

▶ If T1 reads initial value of A in S1, then T1 also reads initial value of A in S2.
▶ If T1 reads value of A written by T2 in S1, then T1 also reads value of A written by T2 in S2.
▶ If T1 writes final value of A in S1, then T1 also writes final value of A in S2.

71 / 79

Concurrency Control Theory Isolation

View Serializability

72 / 79

Concurrency Control Theory Isolation

View Serializability

73 / 79

Concurrency Control Theory Isolation

Serializability

• View Serializability allows for (slightly) more schedules than Conflict Serializability
does.
▶ But is difficult to enforce efficiently.

• Neither definition allows all schedules that you would consider "serializable".
▶ This is because they don’t understand the meanings of the operations or the data (recall

Example 3)

74 / 79

Concurrency Control Theory Isolation

Serializability

• In practice, Conflict Serializability is what systems support because it can be enforced
efficiently.

• To allow more concurrency, some special cases get handled separately at the
application level.

75 / 79

Concurrency Control Theory Isolation

Universe of Schedules

76 / 79

Concurrency Control Theory Conclusion

Conclusion

77 / 79

Concurrency Control Theory Conclusion

ACID Properties

• Atomicity: All actions in the txn happen, or none happen.
• Consistency: If each txn is consistent and the DB starts consistent, then it ends up

consistent.
• Isolation: Execution of one txn is isolated from that of other txns.
• Durability: If a txn commits, its effects persist.

78 / 79

Concurrency Control Theory Conclusion

Parting Thoughts

• Concurrency control and recovery are among the most important functions provided
by a DBMS.

• Concurrency control is automatic
▶ System automatically inserts lock/unlock requests and schedules actions of different txns.
▶ Ensures that resulting execution is equivalent to executing the txns one after the other in

some order.

79 / 79

Concurrency Control Theory Conclusion

Next Class

• Two-Phase Locking
• Isolation Levels

	Concurrency Control Theory
	Recap
	Motivation
	Atomicity
	Consistency
	Durability
	Isolation
	Conclusion

