

# Lecture 15: Optimistic Concurrency Control

CREATING THE NEXT®

# Today's Agenda

## **Optimistic Concurrency Control**

- 1.1 Recap
- 1.2 Optimistic Concurrency Control
- 1.3 Phantoms
- 1.4 Isolation Levels
- 1.5 Conclusion

Projer

\$xem

# Recap

## **Basic T/O**

- Txns read and write objects without locks.
- Every object X is tagged with timestamp of the last txn that successfully did read/write:
  - V = W TS(X) Write timestamp on X
  - ightharpoonup R TS(X) Read timestamp on X
- Check timestamps for every operation:
  - If txn tries to access an object from the future it aborts and restarts.





## Partition-based T/O

WWH

- Split the database up in disjoint subsets called **horizontal partitions** (aka shards).
- Use timestamps to order txns for serial execution at each partition.
  - Only check for conflicts between txns that are running in the same partition.

Communication Cost



## Observation

- If you assume that conflicts between txns are <u>rare</u> and that most txns are <u>short-lived</u>, then forcing txns to wait to <u>acquire loc</u>ks adds a lot of overhead.
- A better approach is to optimize for the **no-conflict** case.



loner Prop of conflict



# Optimistic Concurrency Control

# **Optimistic Concurrency Control**



- The DBMS creates a private workspace for each txn.
  - Any object read is copied into workspace.
  - Modifications are applied to workspace.
- When a txn commits, the DBMS compares workspace write set to see whether it conflicts with other txns.
- If there are no conflicts, the write set is installed into the global database.

estima brild e

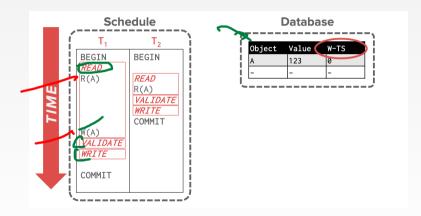
section



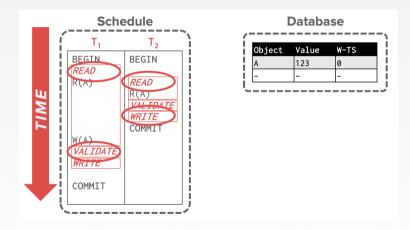
## OCC Phases

#### Phase 1 – Read:

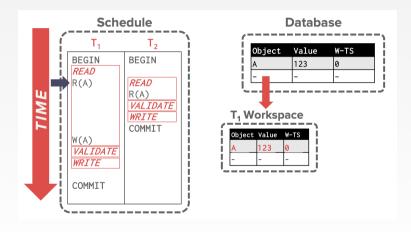
Track the read/write sets of txns and store their writes in a private workspace.


#### Phase 2 – Validation:

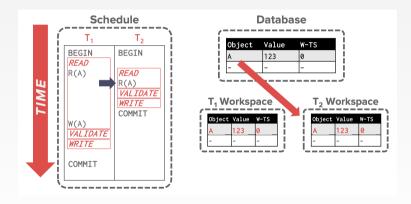
When a txn commits, check whether it conflicts with other txns.


#### Phase 3 – Write:

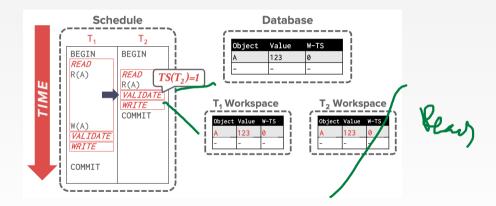
If validation succeeds, apply private changes to database. Otherwise abort and restart the txn.



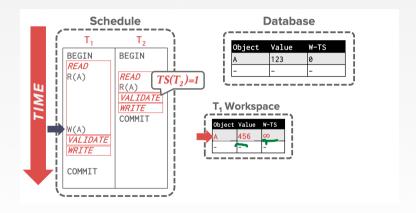


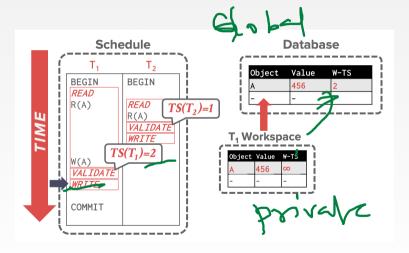



















## **OCC - Validation Phase**

- The DBMS needs to guarantee only serializable schedules are permitted.
- $T_i$  checks other txns for RW and WW conflicts and makes sure that all conflicts go one way (from older txns to younger txns).



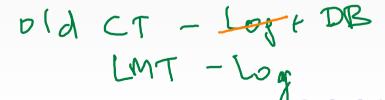


## OCC - Serial Validation

- Maintain global view of all active txns.
- Record read set and write set while txns are running and write into private workspace.
- Execute Validation and Write phase inside a protected critical section.






### OCC - Read Phase

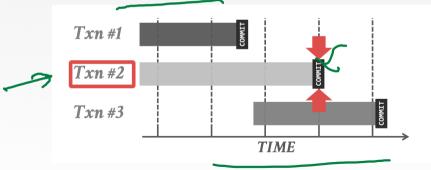
- Track the read/write sets of txns and store their writes in a private workspace.
- The DBMS copies every tuple that the txn accesses from the shared database to its workspace ensure repeatable reads.



## OCC - Validation Phase

- Each txn's timestamp is assigned at the **beginning of the validation phase** (different from 2PL).
- Check the timestamp ordering of the committing txn with all other running txns. If  $TS(T_i) < TS(T_j)$ , then one of the following three scenarios must hold. . .

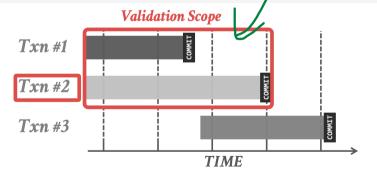



### **OCC - Validation Phase**

- When the txn invokes *COMMIT*, the DBMS checks if it conflicts with other txns.
- Two methods for this phase:
  - ✓ Backward Validation
    - Forward Validation



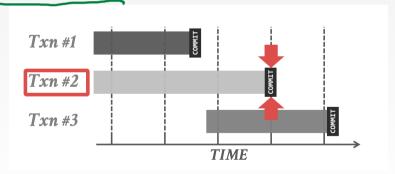
## **OCC - Backward Validation**


• Check whether the committing txn intersects its read/write sets with those of any txns that have already committed.





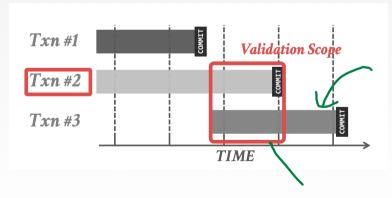
## **OCC - Backward Validation**


 Check whether the committing txn intersects its read/write sets with those of any txns that have already committed.





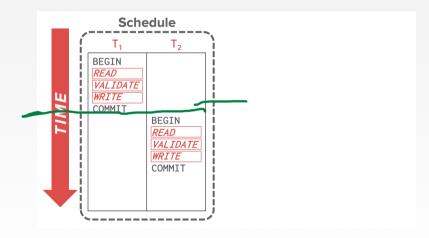
## **OCC - Forward Validation**


• Check whether the committing txn intersects its read/write sets with any active txns that have not yet committed.





## **OCC - Forward Validation**


• Check whether the committing txn intersects its read/write sets with any active txns that have not yet committed.

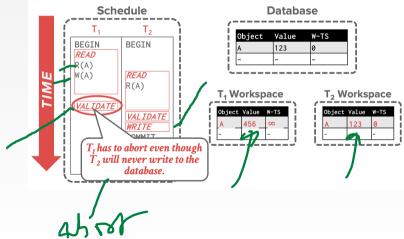




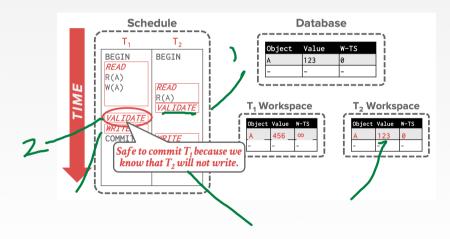
- Scenario 1:
- $T_i$  completes all three phases before  $T_j$  begins.








- Scenario 2:
- $T_i$  completes before  $T_j$  starts its <u>Write</u> phase, and  $T_i$  does not write to any object read by  $T_i$ .
- $T_j$ .

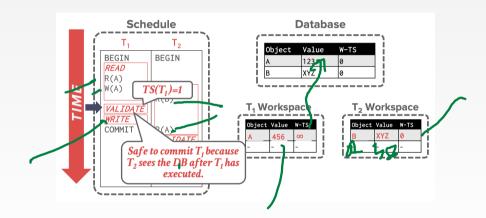

  WriteSet( $T_i$ )  $\cap$  ReadSet( $T_j$ ) =  $\emptyset$



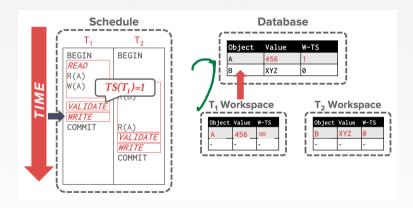




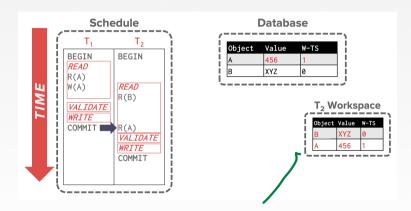








- Scenario 3:
- Ti completes its Read phase before Tj completes its Read phase
- And Ti does not write to any object that is either read or written by Tj:
  - ▶ WriteSet(Ti)  $\cap$  ReadSet(Tj) =  $\emptyset$
  - ▶ WriteSet(Ti)  $\cap$  WriteSet(Tj) =  $\emptyset$


















## **OCC** – Observation

• OCC works well when the number of conflicts is low:

All txns are read-only (ideal).

Txns access disjoint subsets of data.

• If the database is large and the workload is not skewed, then there is a low probability of conflict, so again locking is wasteful.

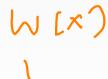


poner





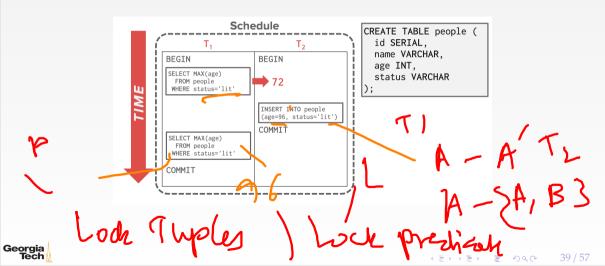
### **OCC – Performance Issues**


- High overhead for copying data locally.
- Validation/Write phase bottlenecks.
- Aborts are more wasteful than in 2PL because they only occur <u>after</u> a txn has already executed.

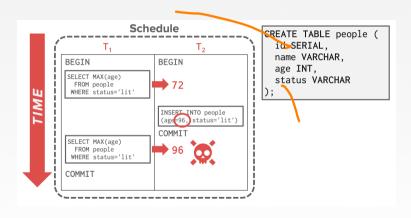


#### Observation

- Recall that so far we have only dealing with transactions that read and update data.
- But now if we have insertions, updates, and deletions, we have new problems. . .


RCAI WLA)






# **Phantoms**

### The Phantom Problem



### The Phantom Problem





#### The Phantom Problem

- How did this happen?
  - ightharpoonup Because  $T_1$  locked only existing records and not ones under way!
- Conflict serializability on reads and writes of individual items guarantees serializability only if the set of objects is fixed.



# **Predicate Locking**

- Lock records that satisfy a logical predicate:
  - Example: status =' lit'
- In general, predicate locking has a lot of locking overhead.
- Index locking is a special case of predicate locking that is potentially more efficient.



# **Index Locking**

- If there is a dense index on the status field then the txn can lock index page containing the data with status =' lit'.
- If there are no records with status = 'lit', the txn must lock the index page where such a data entry would be, if it existed.



# Locking without an Index

• If there is no suitable index, then the txn must obtain:

A lock on every page in the table to prevent a record's status =' lit' from being changed to

The lock for the table itself to prevent records with *status* =' *lit*' from being added or deleted.



# **Repeating Scans**

- An alternative is to just re-execute every scan again when the txn commits and check whether it gets the same result.
  - ► Have to retain the scan set for every range query in a txn.

Range Says "Stein-14"



#### Weaker Levels of Isolation

- Serializability is useful because it allows programmers to ignore concurrency issues.
- But enforcing it may allow too little concurrency and limit performance.
- We may want to use a weaker level of consistency to improve scalability.



- Controls the extent that a txn is exposed to the actions of other concurrent txns.
- Provides for greater concurrency at the cost of exposing txns to uncommitted changes:
  - Dirty Reads
  - Unrepeatable Reads
  - Phantom Reads



- Isolation (High→Low)
- SERIALIZABLE: No phantoms, all reads repeatable, no dirty reads.
- <u>REPEATABLE READS:</u> Phantoms may happen.
- **READ COMMITTED:** Phantoms and unrepeatable reads may happen.
- **READ UNCOMMITTED:** All of them may happen.



| Level            | Dirty Read | Unrepeatable Read | Phantom |
|------------------|------------|-------------------|---------|
| SERIALIZABLE     | No         | No                | No      |
| REPEATABLE READ  | No         | No                | Maybe   |
| READ COMMITTED   | No         | Maybe             | Maybe   |
| READ UNCOMMITTED | Maybe      | Maybe             | Maybe   |



- **SERIALIZABLE:** Obtain all locks first; plus index locks, plus strict 2PL.
- REPEATABLE READS: Same as above, but no index locks.
- READ COMMITTED: Same as above, but S locks are released immediately.
- **READ UNCOMMITTED:** Same as above, but allows dirty reads (no S locks).





### **SQL-92 Isolation Levels**

- You set a txn's isolation level before you execute any queries in that txn.
- Not all DBMSs support all isolation levels in all execution scenarios
  - Replicated Environments
- The default depends on implementation...

```
SET TRANSACTION Isolation LEVEL <isolation-level>;
```

```
BEGIN TRANSACTION ISOLATION LEVEL <isolation-level>;
```



### **Isolation Levels (2013)**

| DBMS                   | Default          | Maximum /          |
|------------------------|------------------|--------------------|
| Actian Ingres 10.0/10S | SERIALIZABLE     | SERIALIZABLE       |
| Aerospike              | READ COMMITTED   | READ COMMITTED     |
| Greenplum 4.1          | READ COMMITTED   | SERIALIZABLE       |
| MySQL 5.6              | REPEATABLE READS | SERIALIZABLE       |
| MemSQL 1b              | READ COMMITTED   | READ COMMITTED     |
| MS SQL Server 2012     | READ COMMITTED   | SERIALIZABLE       |
| Oracle 11g             | READ COMMITTED   | SNAPSHOT ISOLATION |
| Postgres 9.2.2         | READ COMMITTED   | SERIALIZABLE       |
| SAP HANA               | READ COMMITTED   | SERIALIZABLE       |
| ScaleDB 1.02           | READ COMMITTED   | READ COMMITTED     |
| VoltDB                 | SERIALIZABLE     | SERIALIZABLE       |

### **SOL-92 Access Modes**

- You can provide hints to the DBMS about whether a txn will modify the database during its lifetime.
- Only two possible modes:
  - READ WRITE (Default)
  - READ ONLY
- Not all DBMSs will optimize execution if you set a txn to in **READ ONLY** mode.

```
SET TRANSACTION <access-mode>;
```

```
BEGIN TRANSACTION <access-mode>:
```



# Conclusion

## **Parting Thoughts**

- Every concurrency control can be broken down into the basic concepts that I have described in the last two lectures.
  - Two-Phase Locking (2PL): Assumption that collisions are commonplace
  - Timestamp Ordering (T/O): Assumption that collisions are rare.
- Optimistic protocols defer the validation phase to the end of the txn
- I am not showing benchmark results because I don't want you to get the wrong idea.





### **Next Class**

• Multi-Version Concurrency Control

