
1 / 74

Adaptive Query Optimization

Lecture 23: Adaptive Query Optimization &
Cost Models

2 / 74

Adaptive Query Optimization

Today's Agenda

Adaptive Query Optimization
1.1 Recap
1.2 Adaptive Query Optimization
1.3 Modify Future Invocations
1.4 Replan Current Invocation
1.5 Plan Pivot Points
1.6 Cost Models
1.7 Cost Estimation
1.8 Conclusion

3 / 74

Adaptive Query Optimization Recap

Recap

4 / 74

Adaptive Query Optimization Recap

Cascades Framework

• Optimization tasks as data structures.
• Rules to place property enforcers (e.g., sorting order).
• Ordering of transformations by priority.
• Predicates are first class citizens (same as logical/physical operators).

5 / 74

Adaptive Query Optimization Recap

Today’s Agenda

• Adaptive Query Optimization
• Techniques for Adaptive Query Optimization

▶ Modify Future Invocations
▶ Replan Current Invocation
▶ Plan Pivot Points

• Cost Models
• Cost Estimation

6 / 74

Adaptive Query Optimization Adaptive Query Optimization

Adaptive Query Optimization

7 / 74

Adaptive Query Optimization Adaptive Query Optimization

Observation

• The query optimizers that we have talked about so far all generate a plan for a query
before the DBMS executes a query.

• The best plan for a query can change as the database evolves over time.
▶ Physical design changes.
▶ Data modifications.
▶ Prepared statement parameters.
▶ Statistics updates.

8 / 74

Adaptive Query Optimization Adaptive Query Optimization

Bad Query Plans

• The most common problem in a query plan is incorrect join orderings.
▶ This occurs because of inaccurate cardinality estimates that propagate up the plan.

• If the DBMS can detect how bad a query plan is, then it can decide to adapt the plan
rather than continuing with the current sub-optimal plan.

9 / 74

Adaptive Query Optimization Adaptive Query Optimization

Bad Query Plans

• If the optimizer knew the true cardinality, would it have picked the same the join
ordering, join algorithms, or access methods?

SELECT * FROM A
JOIN B ON A.id = B.id
JOIN C ON A.id = C.id
JOIN D ON A.id = D.id
WHERE B.val = 'XXX'
AND D.val = 'YYY';

10 / 74

Adaptive Query Optimization Adaptive Query Optimization

Why Good Plans Go Bad

• Estimating the execution behavior of a plan to determine its quality relative to other
plans.

• These estimations are based on a static summarization of the contents of the database
and its operating environment:
▶ Statistical Models / Histograms / Sampling
▶ Hardware Performance
▶ Concurrent Operations

11 / 74

Adaptive Query Optimization Adaptive Query Optimization

Adaptive Query Optimization

• Modify the execution behavior of a query by generating multiple plans for it:
▶ Individual complete plans.
▶ Embed multiple sub-plans at materialization points.

• Use information collected during query execution to improve the quality of these
plans.
▶ Can use this data for planning one query or merge the it back into the DBMS’s statistics

catalog.

• Reference

http://cidrdb.org/cidr2005/papers/P20.pdf

12 / 74

Adaptive Query Optimization Adaptive Query Optimization

Adaptive Query Optimization

• Approach 1: Modify Future Invocations
• Approach 2: Replan Current Invocation
• Approach 3: Plan Pivot Points

13 / 74

Adaptive Query Optimization Modify Future Invocations

Modify Future Invocations

14 / 74

Adaptive Query Optimization Modify Future Invocations

Modify Future Invocations

• The DBMS monitors the behavior of a query during execution and uses this
information to improve subsequent invocations.

• Approach 1: Plan Correction
• Approach 2: Feedback Loop

15 / 74

Adaptive Query Optimization Modify Future Invocations

Reversion-Based Plan Correction

• The DBMS tracks the history of query invocations:
▶ Cost Estimations
▶ Query Plan
▶ Runtime Metrics

• If the DBMS generates a new plan for a query, then check whether that plan performs
worse than the previous plan.
▶ If it regresses, then switch back to the cheaper plans.

16 / 74

Adaptive Query Optimization Modify Future Invocations

Reversion-Based Plan Correction

17 / 74

Adaptive Query Optimization Modify Future Invocations

Reversion-Based Plan Correction

18 / 74

Adaptive Query Optimization Modify Future Invocations

Microsoft – Plan Stitching

• Combine useful sub-plans from queries to create potentially better plans.
▶ Sub-plans do not need to be from the same query.
▶ Can still use sub-plans even if overall plan becomes invalid after a physical design change.

• Uses a dynamic programming search (bottom-up) that is not guaranteed to find a
better plan. Reference

https://www.microsoft.com/en-us/research/uploads/prod/2018/07/p1123-ding.pdf

19 / 74

Adaptive Query Optimization Modify Future Invocations

Microsoft – Plan Stitching

20 / 74

Adaptive Query Optimization Modify Future Invocations

Microsoft – Plan Stitching

21 / 74

Adaptive Query Optimization Modify Future Invocations

Microsoft – Plan Stitching

22 / 74

Adaptive Query Optimization Modify Future Invocations

Identifying Equivalent Subplans

• Sub-plans are equivalent if they have the same
logical expression and required physical
properties.

• Use simple heuristic that prunes any subplans
that never be equivalent (e.g., access different
tables) and then matches based on comparing
expression trees.

23 / 74

Adaptive Query Optimization Modify Future Invocations

Encoding Search Space

• Generate a graph that contains all possible sub-plans.
• Add operators to indicate alternative paths through the plan.

24 / 74

Adaptive Query Optimization Modify Future Invocations

Encoding Search Space

25 / 74

Adaptive Query Optimization Modify Future Invocations

Encoding Search Space

26 / 74

Adaptive Query Optimization Modify Future Invocations

Encoding Search Space

27 / 74

Adaptive Query Optimization Modify Future Invocations

Constructing Stitched Plans

• Perform bottom-up search that selects the cheapest sub-plan for each OR node.

28 / 74

Adaptive Query Optimization Modify Future Invocations

Constructing Stitched Plans

29 / 74

Adaptive Query Optimization Modify Future Invocations

Constructing Stitched Plans

30 / 74

Adaptive Query Optimization Modify Future Invocations

Constructing Stitched Plans

31 / 74

Adaptive Query Optimization Modify Future Invocations

Constructing Stitched Plans

32 / 74

Adaptive Query Optimization Modify Future Invocations

REDSHIFT – Codegen Stitching

• Redshift is a transpilation-based codegen engine.
• To avoid the compilation cost for every query, the DBMS caches subplans and then

combines them at runtime for new queries.

33 / 74

Adaptive Query Optimization Modify Future Invocations

REDSHIFT – Codegen Stitching

34 / 74

Adaptive Query Optimization Modify Future Invocations

REDSHIFT – Codegen Stitching

35 / 74

Adaptive Query Optimization Modify Future Invocations

IBM DB2 – Learning Optimizer

• Update table statistics as the DBMS scans a table during normal query processing.
• Check whether the optimizer’s estimates match what it encounters in the real data and

incrementally updates them.
• Reference

https://dl.acm.org/doi/10.5555/645927.672349

36 / 74

Adaptive Query Optimization Replan Current Invocation

Replan Current Invocation

37 / 74

Adaptive Query Optimization Replan Current Invocation

Replan Current Invocation

• If the DBMS determines that the observed execution behavior of a plan is far from its
estimated behavior, them it can halt execution and generate a new plan for the query.

• Approach 1: Start-Over from Scratch
• Approach 2: Keep Intermediate Results

38 / 74

Adaptive Query Optimization Replan Current Invocation

QUICKSTEP – Lookahead Info Passing

--- Star Schema
CREATE TABLE fact(--- Fact Table
id INT PRIMARY KEY,
dim1_id INT REFERENCES dim1 (id),
dim2_id INT REFERENCES dim2 (id)

);
CREATE TABLE dim1 (--- Dimension Tables
id INT, val VARCHAR

);
CREATE TABLE dim2 (
id INT, val VARCHAR

);
SELECT COUNT(*) FROM fact AS f
JOIN dim1 ON f.dim1_id = dim1.id
JOIN dim2 ON f.dim2_id = dim2.id

39 / 74

Adaptive Query Optimization Replan Current Invocation

QUICKSTEP – Lookahead Info Passing

• First compute Bloom filters on dimension tables.
• Probe these filters using fact table tuples to determine the ordering of the joins.
• Only supports left-deep join trees on star schemas.
• Reference

https://www.vldb.org/pvldb/vol10/p889-zhu.pdf

40 / 74

Adaptive Query Optimization Replan Current Invocation

QUICKSTEP – Lookahead Info Passing

41 / 74

Adaptive Query Optimization Replan Current Invocation

QUICKSTEP – Lookahead Info Passing

42 / 74

Adaptive Query Optimization Plan Pivot Points

Plan Pivot Points

43 / 74

Adaptive Query Optimization Plan Pivot Points

Plan Pivot Points

• The optimizer embeds alternative sub-plans at materialization points in the query plan.
• The plan includes "pivot" points that guides the DBMS towards a path in the plan

based on the observed statistics.
• Approach 1: Parametric Optimization
• Approach 2: Proactive Reoptimization

44 / 74

Adaptive Query Optimization Plan Pivot Points

Parametric Optimization

• Generate multiple sub-plans per pipeline in the
query.

• Add a choose-plan operator that allows the
DBMS to select which plan to execute at
runtime.

• First introduced as part of the Volcano project in
the 1980s.

• Reference

https://dl.acm.org/doi/abs/10.1145/66926.66960

45 / 74

Adaptive Query Optimization Plan Pivot Points

Proactive Reoptimization

• Generate multiple sub-plans within a single
pipeline.

• Use a switch operator to choose between
different sub-plans during execution in the
pipeline.

• Computes bounding boxes to indicate the
uncertainty of estimates used in plan.

• Reference

https://dl.acm.org/doi/10.1145/1066157.1066171

46 / 74

Adaptive Query Optimization Cost Models

Cost Models

47 / 74

Adaptive Query Optimization Cost Models

Cost-based Query Planning

• Generate an estimate of the cost of executing a particular query plan for the current
state of the database.
▶ Estimates are only meaningful internally.

• This is independent of the search strategies that we talked about.

48 / 74

Adaptive Query Optimization Cost Models

Cost Model Components

• Choice 1: Physical Costs
▶ Predict CPU cycles, I/O, cache misses, RAM consumption, pre-fetching, etc. . .
▶ Depends heavily on hardware.

• Choice 2: Logical Costs
▶ Estimate result sizes per operator (e.g., join operator).
▶ Independent of the operator algorithm.
▶ Need estimations for operator result sizes.

• Choice 3: Algorithmic Costs
▶ Complexity of the operator algorithm implementation (e.g., hash join vs. nested loop join).

49 / 74

Adaptive Query Optimization Cost Models

Disk-Based DBMS: Cost Model

• The number of disk accesses will always dominate the execution time of a query.
▶ CPU costs are negligible.
▶ Have to consider sequential vs. random I/O.

• This is easier to model if the DBMS has full control over buffer management.
▶ We will know the replacement strategy, pinning, and assume exclusive access to disk.

50 / 74

Adaptive Query Optimization Cost Models

Postgres

• Uses a combination of CPU and I/O costs that are weighted by “magic” constant
factors.

• Default settings are obviously for a disk-resident database without a lot of memory:
▶ Processing a tuple in memory is 400× faster than reading a tuple from disk.
▶ Sequential I/O is 4× faster than random I/O.

51 / 74

Adaptive Query Optimization Cost Models

IBM DB2

• Database characteristics in system catalogs
• Hardware environment (microbenchmarks)
• Storage device characteristics (microbenchmarks)
• Communications bandwidth (distributed only)
• Memory resources (buffer pools, sort heaps)
• Concurrency Environment

▶ Average number of users
▶ Isolation level / blocking
▶ Number of available locks

• Reference

http://cs.stanford.edu/people/widom/cs346/db2-talk.pdf

52 / 74

Adaptive Query Optimization Cost Models

In-Memory DBMS: Cost Model

• No I/O costs, but now we have to account for CPU and memory access costs.
• Memory cost is more difficult because the DBMS has no control over

CPU cache management.
▶ Unknown replacement strategy, no pinning, shared caches, non-uniform memory access.

• The number of tuples processed per operator is a reasonable estimate for the CPU cost.

53 / 74

Adaptive Query Optimization Cost Models

Smallbase

• Two-phase model that automatically generates hardware costs from a logical model.
• Phase 1: Identify Execution Primitives

▶ List of ops that the DBMS does when executing a query
▶ Example: evaluating predicate, index probe, sorting.

• Phase 2: Microbenchmark
▶ On start-up, profile ops to compute CPU/memory costs
▶ These measurements are used in formulas that compute operator cost based on table size.

54 / 74

Adaptive Query Optimization Cost Models

Selectivity

• The selectivity of an operator is the percentage of data accessed for a predicate.
▶ Modeled as probability of whether a predicate on any given tuple will be satisfied.

• The DBMS estimates selectivities using:
▶ Domain Constraints
▶ Precomputed Statistics (Zone Maps)
▶ Histograms / Approximations
▶ Sampling

55 / 74

Adaptive Query Optimization Cost Models

Observation

• The number of tuples processed per operator depends on three factors:
▶ The access methods available per table
▶ The distribution of values in the database’s attributes
▶ The predicates used in the query

• Simple queries are easy to estimate. More complex queries are not.

56 / 74

Adaptive Query Optimization Cost Estimation

Cost Estimation

57 / 74

Adaptive Query Optimization Cost Estimation

Approximations

• Maintaining exact statistics about the database is expensive and slow.
• Use approximate data structures called sketches to generate error-bounded estimates.

▶ Count Distinct
▶ Quantiles
▶ Frequent Items
▶ Tuple Sketch

• Example: Yahoo! Sketching Library

https://datasketches.github.io/

58 / 74

Adaptive Query Optimization Cost Estimation

Sampling

• Another approximation technique
• Execute a predicate on a random sample of the target data set.
• The number of tuples to examine depends on the size of the table.
• Approach 1: Maintain Read-Only Copy

▶ Periodically refresh to maintain accuracy.
• Approach 2: Sample Real Tables

▶ Use READ UNCOMMITTED isolation.
▶ May read multiple versions of same logical tuple.

59 / 74

Adaptive Query Optimization Cost Estimation

Result Cardinality

• The number of tuples that will be generated per operator is computed from its
selectivity multiplied by the number of tuples in its input.
▶ Assumption 1: Uniform Data

▶ The distribution of values (except for the heavy hitters) is the same.
▶ Assumption 2: Independent Predicates

▶ The predicates on attributes are independent
▶ Assumption 3: Inclusion Principle

▶ The domain of join keys overlap such that each key in the inner relation will also exist in the
outer table.

60 / 74

Adaptive Query Optimization Cost Estimation

Correlated Attributes

• Consider a database of automobiles:
▶ Number of Makes = 10, Number of Models = 100

• And the following query:
▶ (make="Honda" AND model="Accord")

• With the independence and uniformity assumptions, the selectivity is:
▶ 1/10 × 1/100 = 0.001

• But since only Honda makes Accords the real selectivity is 1/100 = 0.01

61 / 74

Adaptive Query Optimization Cost Estimation

Column Group Statistics

• The DBMS can track statistics for groups of attributes together rather than just treating
them all as independent variables.
▶ Mostly supported in commercial systems.
▶ Requires the DBA to declare manually.

62 / 74

Adaptive Query Optimization Cost Estimation

Estimation Problem

63 / 74

Adaptive Query Optimization Cost Estimation

Estimation Problem

64 / 74

Adaptive Query Optimization Cost Estimation

Estimator Quality

• Evaluate the correctness of cardinality estimates generated by DBMS optimizers as the
number of joins increases.
▶ Let each DBMS perform its stats collection.
▶ Extract measurements from query plan.

• Compared five DBMSs using 100k queries.
• Reference

https://www.vldb.org/pvldb/vol9/p204-leis.pdf

65 / 74

Adaptive Query Optimization Cost Estimation

Estimator Quality

66 / 74

Adaptive Query Optimization Cost Estimation

Estimator Quality

67 / 74

Adaptive Query Optimization Cost Estimation

Estimator Quality

68 / 74

Adaptive Query Optimization Cost Estimation

Estimator Quality

69 / 74

Adaptive Query Optimization Cost Estimation

Estimator Quality

70 / 74

Adaptive Query Optimization Cost Estimation

Execution Slowdown

• Slowdown compared to using true cardinalities

71 / 74

Adaptive Query Optimization Cost Estimation

Lessons Learned

• Query opt is more important than a fast engine
▶ Cost-based join ordering is necessary

• Cardinality estimates are routinely wrong
▶ Try to use operators that do not rely on estimates

• Hash joins + seq scans are a robust exec model
▶ The more indexes that are available, the more brittle the plans become (but also faster on

average)
• Working on accurate models is a waste of time

▶ Better to improve cardinality estimation instead

72 / 74

Adaptive Query Optimization Conclusion

Conclusion

73 / 74

Adaptive Query Optimization Conclusion

Parting Thoughts

• The "plan-first execute-second" approach to query planning is notoriously error prone.
• Optimizers should work with the execution engine to provide alternative plan

strategies and receive feedback.
• Adaptive techniques now appear in many of the major commercial DBMSs

▶ DB2, Oracle, MSSQL, TeraData
• Using number of tuples processed is a reasonable cost model for in-memory DBMSs.

▶ But computing this is non-trivial.

• A combination of sampling + sketches allows the DBMS to achieve accurate
estimations.

74 / 74

Adaptive Query Optimization Conclusion

Next Class

• User-defined functions.

	Adaptive Query Optimization
	Recap
	Adaptive Query Optimization
	Modify Future Invocations
	Replan Current Invocation
	Plan Pivot Points
	Cost Models
	Cost Estimation
	Conclusion

