
1 / 62

Adaptive Query Optimization

Lecture 24: Server-side Logic Execution



2 / 62

Adaptive Query Optimization

Today's Agenda

Adaptive Query Optimization
1.1 Recap
1.2 Background
1.3 User-Defined Functions
1.4 UDF In-lining
1.5 UDFs to CTEs Conversion
1.6 Course Retrospective



3 / 62

Adaptive Query Optimization Recap

Recap



4 / 62

Adaptive Query Optimization Recap

Adaptive Query Optimization

• The "plan-first execute-second" approach to query planning is notoriously error prone.
• Optimizers should work with the execution engine to provide alternative plan

strategies and receive feedback.
• Adaptive techniques now appear in many of the major commercial DBMSs

▶ DB2, Oracle, MSSQL, TeraData
• Approaches

▶ Approach 1: Modify Future Invocations
▶ Approach 2: Replan Current Invocation
▶ Approach 3: Plan Pivot Points



5 / 62

Adaptive Query Optimization Recap

Cost Models

• Using number of tuples processed is a reasonable cost model for in-memory DBMSs.
▶ But computing this is non-trivial.
▶ A combination of sampling + sketches allows the DBMS to achieve accurate estimations.



6 / 62

Adaptive Query Optimization Recap

Observation

• Until now, we have assumed that all of the logic for an application is located in the
application itself.

• The application has a "conversation" with the DBMS to store/retrieve data.
▶ Protocols: JDBC, ODBC



7 / 62

Adaptive Query Optimization Recap

Today’s Agenda

• Background
• UDF In-lining
• UDF to CTE Conversion



8 / 62

Adaptive Query Optimization Background

Background



9 / 62

Adaptive Query Optimization Background

Conversational Database API



10 / 62

Adaptive Query Optimization Background

Conversational Database API



11 / 62

Adaptive Query Optimization Background

Conversational Database API



12 / 62

Adaptive Query Optimization Background

Conversational Database API



13 / 62

Adaptive Query Optimization Background

Conversational Database API



14 / 62

Adaptive Query Optimization Background

Conversational Database API

• The application has a "conversation" with the DBMS to store/retrieve data.
• Locks are held for the duration of the transaction
• Multiple network round-trips



15 / 62

Adaptive Query Optimization Background

Embedded Database Logic

• Move application logic into the DBMS to avoid multiple network round-trips and to
extend the functionality of the DBMS.

• Potential Benefits
▶ Efficiency
▶ Reuse logic across web and mobile applications



16 / 62

Adaptive Query Optimization Background

Embedded Database Logic: Stored Procedures



17 / 62

Adaptive Query Optimization Background

Embedded Database Logic: Stored Procedures



18 / 62

Adaptive Query Optimization Background

Embedded Database Logic

• Stored Procedures (may contain DML statements, call UDFs e.t.c.)
• User-Defined Functions (UDFs)
• Triggers
• User-Defined Types (UDTs)
• User-Defined Aggregates (UDAs)



19 / 62

Adaptive Query Optimization User-Defined Functions

User-Defined Functions



20 / 62

Adaptive Query Optimization User-Defined Functions

User-Defined Functions

• A user-defined function (UDF) is a function written by the application developer that
extends the system’s functionality beyond its built-in operations.
▶ It takes in input arguments (scalars)
▶ Perform some computation
▶ Return a result (scalars, tables)

• Examples: PL/SQL, plPG/SQL



21 / 62

Adaptive Query Optimization User-Defined Functions

UDF Example

• Get all the customer ids and compute their customer service level based on the
amount of money they have spent.

SELECT c_custkey, cust_level(c_custkey) FROM customer

CREATE FUNCTION cust_level(@ckey int) RETURNS char(10) AS
BEGIN
DECLARE @total float; DECLARE @level char(10);
SELECT @total = SUM(o_totalprice) FROM orders WHERE o_custkey=@ckey;
IF (@total > 1000000) SET @level = 'Platinum';
ELSE SET @level = 'Regular';
RETURN @level;
END



22 / 62

Adaptive Query Optimization User-Defined Functions

UDF Advantages

• They encourage modularity and code reuse
▶ Different queries can reuse the same application logic without having to reimplement it

each time.

• Fewer network round-trips between application server and DBMS for complex
operations.

• Some types of application logic are easier to express and read as UDFs than SQL.



23 / 62

Adaptive Query Optimization User-Defined Functions

UDF Disadvantages (1)

• Query optimizers treat UDFs as black boxes.
▶ Unable to estimate cost if you don’t know what a UDF is going to do when you run it.

• It is difficult to parallelize UDFs due to correlated queries inside of them.
▶ Some DBMSs will only execute queries with a single thread if they contain a UDF.
▶ Some UDFs incrementally construct queries.



24 / 62

Adaptive Query Optimization User-Defined Functions

UDF Disadvantages (2)

• Complex UDFs in SELECT /WHERE clauses force the DBMS to execute iteratively.
▶ RBAR = "Row By Agonizing Row"
▶ Things get even worse if UDF invokes queries due to implicit joins that the optimizer

cannot "see".

• Since the DBMS executes the commands in the UDF one-by-one, it is unable to
perform cross-statement optimizations.



25 / 62

Adaptive Query Optimization User-Defined Functions

UDF Performance

SELECT l_shipmode,
SUM(CASE

WHEN o_orderpriority <> '1-URGENT' THEN 1
ELSE 0

END) AS low_line_count
FROM orders, lineitem
WHERE o_orderkey = l_orderkey
AND l_shipmode IN ('MAIL','SHIP')
AND l_commitdate < l_receiptdate
AND l_shipdate < l_commitdate
AND l_receiptdate >= '1994-01-01'
AND dbo.cust_name(o_custkey) IS NOT NULL --- User Defined Function

GROUP BY l_shipmode ORDER BY l_shipmode



26 / 62

Adaptive Query Optimization User-Defined Functions

UDF Performance

CREATE FUNCTION cust_name(@ckey int)
RETURNS char(25) AS
BEGIN
DECLARE @n char(25);
SELECT @n = c_name
FROM customer WHERE c_custkey = @ckey;

RETURN @n;
END



27 / 62

Adaptive Query Optimization User-Defined Functions

UDF Performance

• Microsoft SQL Server
• TPC-H Q12 using a UDF (Scale Factor=1).
• Reference

▶ Original Query: 0.8 sec
▶ Query + UDF: 13 hr 30 min

https://www.microsoft.com/en-us/research/people/karam/


28 / 62

Adaptive Query Optimization User-Defined Functions

Microsoft SQL Server: UDF History

• 2001 – Microsoft adds TSQL Scalar UDFs.
• 2008 – People realize that UDFs are "evil".
• 2010 – Microsoft acknowledges that UDFs are evil.
• 2014 – UDF decorrelation research @ IIT-B.
• 2015 – Froid project begins @ MSFT Gray Lab.
• 2018 – Froid added to SQL Server 2019.

https://ieeexplore.ieee.org/document/6816679
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?view=sql-server-ver15


29 / 62

Adaptive Query Optimization UDF In-lining

UDF In-lining



30 / 62

Adaptive Query Optimization UDF In-lining

Froid: UDF In-lining

• Automatically convert UDFs into relational expressions that are inlined as sub-queries.
▶ Does not require the app developer to change UDF code.

• Perform conversion during the rewrite phase to avoid having to change the cost-base
optimizer.
▶ Commercial DBMSs already have powerful transformation rules for executing

sub-queries efficiently.

• Reference

https://dl.acm.org/doi/10.1145/3186728.3164140


31 / 62

Adaptive Query Optimization UDF In-lining

Sub-Queries

• The DBMS treats nested sub-queries in the where clause as functions that take
parameters and return a single value or set of values.

• Two Approaches:
▶ Rewrite to de-correlate and/or flatten them
▶ Decompose nested query and store result to temporary table. Then the outer joins with

the temporary table.



32 / 62

Adaptive Query Optimization UDF In-lining

Sub-Queries – De-correlate

SELECT name FROM sailors AS S
WHERE EXISTS (
SELECT * FROM reserves AS R
WHERE S.sid = R.sid
AND R.day = '2020-04-22'

)

SELECT name
FROM sailors AS S, reserves AS R
WHERE S.sid = R.sid
AND R.day = '2020-04-22'



33 / 62

Adaptive Query Optimization UDF In-lining

Lateral Join

• Subqueries appearing in FROM can be preceded by the key word LATERAL.
• This allows them to reference columns provided by preceding FROM items.
• Without LATERAL, each subquery is evaluated independently and so cannot

cross-reference any other FROM item.
• LATERAL is primarily useful when the cross-referenced column is necessary for

computing the row(s) to be joined.



34 / 62

Adaptive Query Optimization UDF In-lining

Lateral Join

CREATE TABLE orders (
id SERIAL PRIMARY KEY, user_id INT, created TIMESTAMP

);
--- Query
SELECT user_id, first_order, next_order, id FROM
(SELECT user_id, min(created) AS first_order FROM orders GROUP BY user_id) o1
INNER JOIN LATERAL
(SELECT id, created AS next_order
FROM orders
WHERE user_id = o1.user_id AND created > o1.first_order
ORDER BY created ASC LIMIT 1)
o2 ON true LIMIT 1;



35 / 62

Adaptive Query Optimization UDF In-lining

FROID Overview

• Step 1 – Transform Statements
• Step 2 – Break UDF into Regions
• Step 3 – Merge Expressions
• Step 4 – Inline UDF Expression into Query
• Step 5 – Run Through Query Optimizer



36 / 62

Adaptive Query Optimization UDF In-lining

Step 1 – Transform Statements



37 / 62

Adaptive Query Optimization UDF In-lining

Step 2 – Break UDF into Regions



38 / 62

Adaptive Query Optimization UDF In-lining

Step 3 – Merge Expressions



39 / 62

Adaptive Query Optimization UDF In-lining

Step 4 – Inline UDF Expression into Query



40 / 62

Adaptive Query Optimization UDF In-lining

Step 5 - Run Through Query Optimizer



41 / 62

Adaptive Query Optimization UDF In-lining

Bonus Optimizations



42 / 62

Adaptive Query Optimization UDF In-lining

Bonus Optimizations



43 / 62

Adaptive Query Optimization UDF In-lining

Bonus Optimizations



44 / 62

Adaptive Query Optimization UDF In-lining

Bonus Optimizations



45 / 62

Adaptive Query Optimization UDF In-lining

Supported Operations (2019)

• T-SQL Syntax:
▶ DECLARE, SET (variable declaration, assignment)
▶ SELECT (SQL query, assignment )
▶ IF / ELSE / ELSEIF (arbitrary nesting)
▶ RETURN (multiple occurrences)
▶ EXISTS, NOTEXISTS, ISNULL, IN, . . . (Other relational algebra operations)

• UDF invocation (nested/recursive with configurable depth)
• All SQL datatypes.
• Limitations: Loops, Dynamic Queries, Exceptions



46 / 62

Adaptive Query Optimization UDF In-lining

Applicability / Coverage

Workloads Number of Scalar UDFs Froid Compatible

Workload 1 178 150
Workload 2 90 82
Workload 3 22 21



47 / 62

Adaptive Query Optimization UDF In-lining

UDF Improvement Study



48 / 62

Adaptive Query Optimization UDFs to CTEs Conversion

UDFs to CTEs Conversion



49 / 62

Adaptive Query Optimization UDFs to CTEs Conversion

UDFs-to-CTEs

• Rewrite UDFs into plain SQL commands.
• Use recursive common table expressions (CTEs) to support iterations and other control

flow concepts not supported in Froid.
• DBMS Agnostic

▶ Can be implemented as a rewrite middleware layer on top of any DBMS that supports
CTEs.

• Reference

http://cidrdb.org/cidr2020/papers/p1-duta-cidr20.pdf


50 / 62

Adaptive Query Optimization UDFs to CTEs Conversion

UDFs-to-CTEs Overview

• Step 1 – Static Single Assignment Form
• Step 2 – Administrative Normal Form
• Step 3 – Mutual to Direct Recursion
• Step 4 – Tail Recursion to WITH RECURSIVE
• Step 5 – Run Through Query Optimizer

https://en.wikipedia.org/wiki/Static_single_assignment_form
https://en.wikipedia.org/wiki/A-normal_form


51 / 62

Adaptive Query Optimization UDFs to CTEs Conversion

Step 1 – Static Single Assignment Form



52 / 62

Adaptive Query Optimization UDFs to CTEs Conversion

Step 2 – Administrative Normal Form



53 / 62

Adaptive Query Optimization UDFs to CTEs Conversion

Step 3 – Mutual to Direct Recursion



54 / 62

Adaptive Query Optimization UDFs to CTEs Conversion

Step 4 – WITH RECURSIVE



55 / 62

Adaptive Query Optimization UDFs to CTEs Conversion

UDFs-to-CTEs Evaluation



56 / 62

Adaptive Query Optimization UDFs to CTEs Conversion

Summary

• This is huge. You rarely get 500× speed up without either switching to a new DBMS or
rewriting your application.

• Another optimization approach is to compile the UDF into machine code.
▶ This does not solve the optimizer’s cost model problem.



57 / 62

Adaptive Query Optimization Course Retrospective

Retrospective



58 / 62

Adaptive Query Optimization Course Retrospective

Lessons learned

• Let’s take a step back and think about what happened
• Systems programming is both hard and rewarding
• Become a better programmer through the study of database systems internals
• Going forth, you should have a good understanding how systems work



59 / 62

Adaptive Query Optimization Course Retrospective

Big Ideas

• Database systems are awesome – but are not magic.
• Elegant abstractions are magic.
• Declarativity enables usability and performance.
• Building systems software is more than hacking
• There are recurring motifs in systems programming.
• CS has an intellectual history and you can contribute.



60 / 62

Adaptive Query Optimization Course Retrospective

What Next?

• We have covered the entire stack of systems programming
▶ Storage Management (Part 1)
▶ Access Methods (Part 1)
▶ Query Execution (Part 1)
▶ Logging and Recovery Methods (Part 2)
▶ Concurrency Control (Part 2)
▶ Query Optimization (Part 2)

• Stay in touch
▶ Tell me when this course helps you out with future courses (or jobs!)
▶ Ask me cool DBMS questions



61 / 62

Adaptive Query Optimization Course Retrospective

Parting Thoughts

• You have surmounted several challenges in this course.
• You make it all worthwhile.
• Please share your feedback via CIOS.
• Go forth and spread the gospel of data systems!



62 / 62

Adaptive Query Optimization Course Retrospective

Next Class

• Project Presentations


	Adaptive Query Optimization
	Recap
	Background
	User-Defined Functions
	UDF In-lining
	UDFs to CTEs Conversion
	Course Retrospective


