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Adaptive Query Optimization = Recap

Adaptive Query Optimization

The "plan-first execute-second" approach to query planning is notoriously error prone.

Optimizers should work with the execution engine to provide alternative plan
strategies and receive feedback.

Adaptive techniques now appear in many of the major commercial DBMSs
DB2, Oracle, MSSQL, TeraData
Approaches

Approach 1: Modify Future Invocations
Approach 2: Replan Current Invocation
Approach 3: Plan Pivot Points
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Adaptive Query Optimization = Recap

Cost Models

e Using number of tuples processed is a reasonable cost model for in-memory DBMSs.

But computing this is non-trivial.
A combination of sampling + sketches allows the DBMS to achieve accurate estimations.
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Adaptive Query Optimization = Recap

Observation

e Until now, we have assumed that all of the logic for an application is located in the
application itself.
» The application has a "conversation" with the DBMS to store/retrieve data.
Protocols: JDBC, ODBC
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Adaptive Query Optimization = Recap

Today’s Agenda

e Background
e UDF In-lining
e UDF to CTE Conversion

Georgia
Tech



Adaptive Query Optimization = Background

Background



Adaptive Query Optimization = Background

Conversational Database API

Application
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Conversational Database API
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Adaptive Query Optimization = Background

Conversational Database API

e The application has a "conversation" with the DBMS to store/retrieve data.
e Locks are held for the duration of the transaction

e Multiple network round-trips
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Adaptive Query Optimization = Background

Embedded Database Logic

e Move application logic into the DBMS to avoid multiple network round-trips and to
extend the functionality of the DBMS.
e Potential Benefits

Efficiency
Reuse logic across web and mobile applications
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Embedded Database Logic: Stored Procedures

Application PROC(x)
BEGIN
sQL

Program Logic
soL
Program Logic

'
~
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Embedded Database Logic: Stored Procedures

Application a PROC(x)
CALL PROC(x=99) < brogran Logic

< sQL

Program Logic
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~
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Adaptive Query Optimization = Background

Embedded Database Logic

Stored Procedures (may contain DML statements, call UDFs e.t.c.)
User-Defined Functions (UDFs)

o Triggers

User-Defined Types (UDTs)

User-Defined Aggregates (UDAs)
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Adaptive Query Optimization ~ User-Defined Functions

User-Defined Functions

e A user-defined function (UDF) is a function written by the application developer that
extends the system’s functionality beyond its built-in operations.
It takes in input arguments (scalars)
Perform some computation
Return a result (scalars, tables)

e Examples: PL/SQL, pIPG/SQL
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Adaptive Query Optimization = User-Defined Functions

UDF Example

e Get all the customer ids and compute their customer service level based on the
amount of money they have spent.
SELECT c_custkey, cust_level(c_custkey) FROM customer
CREATE FUNCTION cust_level(@ckey int) RETURNS char(10) AS
BEGIN
DECLARE @total float; DECLARE @level char(10);
SELECT @total = SUM(o_totalprice) FROM orders WHERE o_custkey=@ckey;
IF (@total > 1000000) SET @level = 'Platinum’;
ELSE SET @level = 'Regular';
RETURN @level;
END
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Adaptive Query Optimization ~ User-Defined Functions

UDF Advantages

e They encourage modularity and code reuse

Different queries can reuse the same application logic without having to reimplement it
each time.

e Fewer network round-trips between application server and DBMS for complex
operations.

e Some types of application logic are easier to express and read as UDFs than SQL.
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Adaptive Query Optimization ~ User-Defined Functions

UDF Disadvantages (1)

* Query optimizers treat UDFs as black boxes.
Unable to estimate cost if you don’t know what a UDF is going to do when you run it.
e It is difficult to parallelize UDFs due to correlated queries inside of them.

Some DBMSs will only execute queries with a single thread if they contain a UDFE.
Some UDFs incrementally construct queries.
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Adaptive Query Optimization ~ User-Defined Functions

UDF Disadvantages (2)

e Complex UDFs in SELECT / WHERE clauses force the DBMS to execute iteratively.
RBAR = "Row By Agonizing Row"
Things get even worse if UDF invokes queries due to implicit joins that the optimizer
cannot "see".
e Since the DBMS executes the commands in the UDF one-by-one, it is unable to
perform cross-statement optimizations.

Georgia
Tech



Adaptive Query Optimization = User-Defined Functions

UDF Performance

SELECT 1_shipmode,
SUM(CASE
WHEN o_orderpriority <> '1-URGENT' THEN 1
ELSE 0
END) AS low_line_count
FROM orders, lineitem
WHERE o_orderkey = 1_orderkey
AND 1_shipmode IN ('MAIL','SHIP')
AND 1_commitdate < l_receiptdate
AND 1_shipdate < 1_commitdate
AND 1_receiptdate >= '1994-01-01'
AND dbo.cust_name(o_custkey) IS NOT NULL --- User Defined Function
GROUP BY 1_shipmode ORDER BY 1_shipmode
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Adaptive Query Optimization = User-Defined Functions

UDF Performance

CREATE FUNCTION cust_name(@ckey int)
RETURNS char(25) AS
BEGIN
DECLARE @n char(25);
SELECT @n = c_name
FROM customer WHERE c_custkey = @ckey;
RETURN @n;
END
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Adaptive Query Optimization = User-Defined Functions

UDF Performance

e Microsoft SQL Server

e TPC-H Q12 using a UDF (Scale Factor=1).
e Reference

Original Query: 0.8 sec
Query + UDF: 13 hr 30 min
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https://www.microsoft.com/en-us/research/people/karam/

Adaptive Query Optimization ~ User-Defined Functions

Microsoft SQL Server: UDF History

2001 — Microsoft adds TSQL Scalar UDFs.

2008 — People realize that UDFs are "evil".

2010 — Microsoft acknowledges that UDFs are evil.
2014 - UDF decorrelation research @ IIT-B.

2015 - Froid project begins @ MSFT Gray Lab.
2018 — Froid added to SQL Server 2019.
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https://ieeexplore.ieee.org/document/6816679
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?view=sql-server-ver15
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Froid: UDF In-lining

e Automatically convert UDFs into relational expressions that are inlined as sub-queries.
Does not require the app developer to change UDF code.
e Perform conversion during the rewrite phase to avoid having to change the cost-base
optimizer.
Commercial DBMSs already have powerful transformation rules for executing
sub-queries efficiently.

e Reference
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https://dl.acm.org/doi/10.1145/3186728.3164140

Adaptive Query Optimization = UDEF In-lining

Sub-Queries

e The DBMS treats nested sub-queries in the where clause as functions that take
parameters and return a single value or set of values.
e Two Approaches:

Rewrite to de-correlate and/or flatten them
Decompose nested query and store result to temporary table. Then the outer joins with
the temporary table.
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Adaptive Query Optimization

Sub-Queries — De-correlate

UDF In-lining

SELECT name FROM sailors AS S
WHERE EXISTS (
SELECT * FROM reserves AS R
WHERE S.sid = R.sid
AND R.day = '2020-04-22'
)
SELECT name
FROM sailors AS S, reserves AS R
WHERE S.sid = R.sid
AND R.day = '2020-04-22'
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Adaptive Query Optimization = UDEF In-lining

Lateral Join

Subqueries appearing in FROM can be preceded by the key word LATERAL.

This allows them to reference columns provided by preceding FROM items.

Without LATERAL, each subquery is evaluated independently and so cannot
cross-reference any other FROM item.

LATERAL is primarily useful when the cross-referenced column is necessary for
computing the row(s) to be joined.
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Lateral Join

CREATE TABLE orders (
id SERIAL PRIMARY KEY, wuser_id INT, created TIMESTAMP
)5
--- Query
SELECT user_id, first_order, next_order, id FROM
(SELECT user_id, min(created) AS first_order FROM orders GROUP BY user_id) ol
INNER JOIN LATERAL
(SELECT id, created AS next_order
FROM orders
WHERE user_id = ol.user_id AND created > ol.first_order
ORDER BY created ASC LIMIT 1)
02 ON true LIMIT 1;
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Adaptive Query Optimization = UDEF In-lining

FROID Overview

Step 1 — Transform Statements
Step 2 — Break UDF into Regions
Step 3 — Merge Expressions

Step 4 — Inline UDF Expression into Query

Step 5 — Run Through Query Optimizer
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Adaptive Query Optimization

Step 1 - Transform Statements

UDF In-lining

Imperative Statements

SQL Statements

[SET elevel = 'Platinum’;

| » [sELECT 'Platinum’ As level;

SELECT @total = SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey;

»

SELECT (
SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey
) AS total;

IF (@total > 1000000)
SET @level = 'Platinum’;

»
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SELECT (
CASE WHEN total > 1000000
THEN 'Platinum’
ELSE NULL

END) AS level;
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Step 2 — Break UDF into Regions

UDF In-lining
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BEGIN

CREATE FUNCTION cust_level(@ckey int)
RETURNS char(10) AS

dtotal tloat;

DECLARE @level char(10);

SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_custkey=@ckey;

.2
et

T
SET

ECE

tota>—800eeey
@level = 'Platinum’;

SET

@level = 'Regular’;

|~
—

(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
) As 3]

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum’
ELSE E_R1.level END) AS level
) As 3GH

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.level END) AS level

) As @GE
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Step 3 — Merge Expressions

UDF In:
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(SELECT NULL AS level,
(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total

) As FG]

(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum’

ELSE E_R1.level END) AS level

) As @GH

(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.level END) AS level

) As F@GE

SELECT E_R3.level FROM
(::::'C NOCT AS level,

(SELECT SUM(o_totalprice)
FROM orders
WHERE o_custkey=@ckey) AS total
) As Gy
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total > 1000000
THEN 'Platinum’
ELSE E_R1.level END) AS level
) As GEH
CROSS APPLY
(SELECT (
CASE WHEN E_R1.total <= 1000000
THEN 'Regular’
ELSE E_R2.1level END) AS level
) As FGE};

¥ ¥ ¥,




Adaptive Query Optimization = UDF In

Step 4 — Inline UDF Expression into Query

SELECT c_custkey, (SELECT SUM(o_totalprice)

cust_level(c_custkey) FROM orders
WHERE o_custkey=@ckey) AS total

FROM customer s

CROSS APPLY
(SELECT (

CASE WHEN E_R1.total > 1000000
@)| THEN 'Platinum’

ELSE E_R1.level END) AS level
) AS
ROSS APPLY
(SELECT (

CASE WHEN E_R1.total <= 1000000
e THEN 'Regular’

ELSE E_R2.level END) AS level
AS 3
) FROM customer;

. . (
Original Query SELECT E_R3. leve FROM
l [(SELECT NULL AS level,
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Adaptive Query Optimization = UDF In

Step 5 - Run Through Query Optimizer

SELECT c_custkey, (

SELECT E_R3.level FROM
(SELECT NULL AS level,
(SELECT SUM(o_totalprice)

FROM orders SELECT c.c_custkey,

WHERE o_custkey=@ckey) AS total CASE WHEN e.total > 1000000
) As B THEN 'Platinum’
CROSS APPLY ELSE 'Regular’
(SELECT ( END

A Sl e g oty » FROM customer c LEFT OUTER JOIN

ELSE E_R1.level END) AS level (SELECT o_custkey,
) AS SUM(o_totalprice) AS total
CROSS APPLY FROM order GROUP BY o_custkey
(SELECT ( ) AS e

CASE WHEN E_R1.total <= 1000000 ON c.c_custkey=e.o_custkey;

THEN 'Regular’
ELSE E_R2.level END) AS level

) As EIGE;

) FROM customer;
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Bonus Optimizations
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CREATE FUNCTION getVal(ex int)
RETURNS char(10) AS
BEGIN

DECLARE @val char(10);

IF (ex > 1000)

SET @val = 'high’;

ELSE

SET @val = '
RETURN @val +
END

value';

SELECT getVal(5000);
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Bonus Optimizations
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RETURNS char(10) AS
BEGIN

DECLARE @val char(10);
IF (ex > 1000)

SET @val = 'high’;
ELSE

SET @val = 'low';
RETURN @val + ' value';
END

CREATE FUNCTION getVal(@x int)

Froid ‘

SELECT returnVal FROM

BEGIN

DECLARE @val char(10);

SET @val = ’high’;
RETURN @val + ' value';
END

Dynamic Slicing

As BIf]
OUTER APPLY

(SELECT CASE WHEN €x > 1000
THEN ’high’
ELSE 'low’ END AS val)

(SELECT DT1.val + ' value’

AS returnval) 0B

»

SELECT returnVal FROM
(SELECT 'high’ AS val)
As il
OUTER APPLY
(SELECT DT1.val +

" value’
AS returnval)

As 3R
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Bonus Optimizations

CREATE FUNCTION getVal(@x int)
RETURNS char (10) AS
BEGIN
DECLARE @val char(10); e e
IF (ex > 1008) DECLARE eval char(10); DECLARE @val char(10);
SET @val = “high; ‘ SET @val = 'high’ . SET @val = 'high’;
ELSE ’ RETURN @val + © value'; RETURN "high value’
SET eval = 'low’; 2L
RETURN @val + ' value';
END
Froid Dynamic Slicing Const Propagation &
Folding
SELECT returnval FROM SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000 (SELECT 'high’ AS val)
THEN 'high’ So11] SELECT returnVal FROM
ELSE 'low’ END AS val) OUTER APPLY (SELECT 'high value’
As O] » (SELECT DT1.val + » AS returnVal)
OUTER APPLY * value’ As O]
(SELECT DT1.val + ' value’ AS returnval)
AS returnval) 0B As B
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Adapt

Bonus Optimizations

CREATE FUNCTION getVal(ex int)
RETURNS char(10) AS
GIN

DECLARE @val char(10);
IF (ex > 1000)

BEGIN

BEGIN

SELECT returnVal FROM
(SELECT CASE WHEN @x > 1000
THEN ’high’
ELSE 'low’
As 0§l
OUTER APPLY
(SELECT DT1.val + ' value’
AS returnval) BB

END AS val)

»

SELECT returnVal FROM
(SELECT 'high’ AS val)
AS )
OUTER APPLY
(SELECT DT1.val +

AS returnval)

As 0P

Georgia
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DECLARE eval char(10); DECLARE eval. char (10);
SET eval = 'high’; » SET @val = 'hi. ‘ SET @val = 'high’
a8 H RETURN Gval +  volue’; RETURN ’high value’;
SET @val = 'low’; END END
RETURN @val + ' value’
END
Froi [‘ Dynamic Slicing Const Propagation &

Folding

SELECT returnVal FROM
(SELECT 'high value’

AS returnval)
071

GIN
RETURN high value';
END

‘BE

Dead Code Elimination

SELECT h value




Adaptive Query Optimization = UDEF In-lining

Supported Operations (2019)

T-SQL Syntax:
DECLARE, SET (variable declaration, assignment)
SELECT (SQL query, assignment )
IF | ELSE / ELSEIF (arbitrary nesting)
RETURN (multiple occurrences)
EXISTS, NOTEXISTS, ISNULL, IN, . .. (Other relational algebra operations)

UDF invocation (nested/recursive with configurable depth)
All SQL datatypes.
Limitations: Loops, Dynamic Queries, Exceptions
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Adaptive Query Optimization = UDEF In-lining

Applicability / Coverage

Workloads Number of Scalar UDFs Froid Compatible

Workload 1 178 150

Workload 2 90 82

Workload 3 22 21
Georgia

Tech



UDF Improvement Study
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Adaptive Query Optimization ~ UDFs to CTEs Conversion

UDFs-to-CTEs

Rewrite UDFs into plain SQL commands.

e Use recursive common table expressions (CTEs) to support iterations and other control
flow concepts not supported in Froid.

DBMS Agnostic

Can be implemented as a rewrite middleware layer on top of any DBMS that supports
CTEs.

Reference
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http://cidrdb.org/cidr2020/papers/p1-duta-cidr20.pdf

Adaptive Query Optimization ~ UDFs to CTEs Conversion

UDFs-to-CTEs Overview

Step 1 - Static Single Assignment Form

Step 2 — Administrative Normal Form

Step 3 — Mutual to Direct Recursion
Step 4 — Tail Recursion to WITH RECURSIVE
Step 5 — Run Through Query Optimizer
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https://en.wikipedia.org/wiki/Static_single_assignment_form
https://en.wikipedia.org/wiki/A-normal_form

Adaptive Query Optimization

Step 1 — Static Single Assignment Form

UDFs to CTEs C

CREATE FUNCTION pow(x int, n int)
RETURNS int AS

$$

DECLARE

WHILE i < n LOOP
p=p*x;
i i+1;
END LOOP;
RETURN p;
END;
$$

pow(x,n):

iy « 0;
Po « 0;

1 iy« ©(d,,1y);

P < ®(Py,P2);
if i, < n then
goto loop;

else
goto exit;

PP =Py *X;

i, « iy + 1;
goto while;

: return p;;




Adaptive Query Optimization =~ UDFs to CTEs C

Step 2 — Administrative Normal Form

pow(x,n): pow(x,n) =
i, « 0; let i, = @ in
Pp < 0; let p, = 1 in
while: i, « ®(i,,1,); while(i,,pg,X,Nn)
P « ©(Pe,P2); »
if i, < n then while(i,,p;,x,n) =
goto loop; let t, = i, >= n in
else if t, then p,
goto exit; else body(i,,p;,x,n)
loop: p, — p; * X;
i, « i3 +1; body(i;,p;,x,n) =
goto while; let p, = p; * x in
exit: return p;; let i, =i, + 1 in
while(i,,p,,x,n)
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Adaptive Query Optimization =~ UDFs to CTEs C

Step 3 — Mutual to Direct Recursion

Georgia
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pow(x,n) =
let i, = @ in
let p, = 1 in

while(ig,Ppy,X,n)

while(i;,p;,x,n) =
let t, = i; >= n in
if t, then p,
else body(i,,p;,x,n)

body(i;,p;,x,n) =
let p, = p; * x in
let i, = i; + 1 in
while(i,,p,,X,n)

pow(x,n) =
let i, = @ in
let p, = 1 in

run(iy, pe,X,N)

run(i,,p;,x,n) =
let t, = i; >= n in
if t, then p,
else
let p, = p; * x in
let i, =i, + 1 in
run(i,,p,,x,n)




Adaptive Que:

Step 4 - WITH RECURSIVE

[powex,n) =

WITH RECURSIVE

let i, = 0 in
let p, =1 in
run(iy,Pe, X, N)

run(”call?”,i1,p1,x,n,result) AS (

_.FELECT true,0,1,x,n,NULC |

UNION ALL

run(iy,py,x,n) =
let t, = i, >= n in

SELECT iter.* FROM run, LATERAL (

T £al
—rarses 050500 pt

if t, then p,

WHERE i1 >= n

€15¢

UNION ALL

o IeTP, = Py * X 1IN
let i, =i, + 1 in

run(i,,p;,X,n)

ELECT true,il+1,p1*x,x,n,0@
WHERE i1 < n

\ e |

"call?"

i1,pl1,x,n,result|

WHERE run."call?”

Georgia
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SELECT * FROM run;




Adaptive Query Optimization = UDFs to CTEs Conversion

UDPFs-to-CTEs Evaluation

POW UDF on Postgres vil.3
--PL/SQL *-CTE
4500

_
§ 3000

£

[

§ 1500 -+

54

0 T

10 20 30 40 50 60 70 80 90 100
# of Iterations (x1000)

Georgia
Tech



Adaptive Query Optimization ~ UDFs to CTEs Conversion

Summary

e This is huge. You rarely get 500 x speed up without either switching to a new DBMS or
rewriting your application.
e Another optimization approach is to compile the UDF into machine code.
This does not solve the optimizer’s cost model problem.
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Retrospective



Adaptive Query Optimization = Course Retrospective

Lessons learned

Let’s take a step back and think about what happened

Systems programming is both hard and rewarding

Become a better programmer through the study of database systems internals

Going forth, you should have a good understanding how systems work

Georgia
Tech



Adaptive Query Optimization = Course Retrospective

Big Ideas

Database systems are awesome — but are not magic.

Elegant abstractions are magic.

Declarativity enables usability and performance.

Building systems software is more than hacking

There are recurring motifs in systems programming.

CS has an intellectual history and you can contribute.
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Adaptive Query Optimization = Course Retrospective

What Next?

e We have covered the entire stack of systems programming
Storage Management (Part 1)
Access Methods (Part 1)
Query Execution (Part 1)
Logging and Recovery Methods (Part 2)
Concurrency Control (Part 2)
Query Optimization (Part 2)
e Stay in touch

Tell me when this course helps you out with future courses (or jobs!)
Ask me cool DBMS questions

Georgia
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Adaptive Query Optimization ~ Course Retrospective

Parting Thoughts

You have surmounted several challenges in this course.

You make it all worthwhile.

Please share your feedback via CIOS.

Go forth and spread the gospel of data systems!
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Adaptive Query Optimization ~ Course Retrospective

Next Class

e Project Presentations

Georgia
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