
TheDesign and Implementation of a
Non-Volatile Memory

Database Management System
Joy Arulraj

CMU-CS--
July 

School of Computer Science
Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 

Thesis Committee
Andrew Pavlo (Chair)

Todd Mowry
Greg Ganger

Samuel Madden, MIT
Donald Kossmann, Microsoft Research

Submitted in partial fulܦllment of the requirements
for the degree of Doctor of Philosophy.

Copyright ©  Joy Arulraj

This research was sponsored by the National Science Foundation under grant number CCF-, the University
Industry Research Corporation, the Samsung Fellowship, and the Samson Fellowship. The views and conclusions con-
tained in this document are those of the author and should not be interpreted as representing the official policies, either
expressed or implied, of any sponsoring institution, the U.S. government or any other entity.



Keywords: Non-Volatile Memory, Database Management System, Logging and Recovery, Stor-
age Management, Buffer Management, Indexing



To my family





Abstract

This dissertation explores the implications of non-volatile memory (NVM) for database manage-
ment systems (DBMSs). The advent of NVM will fundamentally change the dichotomy between
volatile memory and durable storage in DBMSs. These new NVM devices are almost as fast as
volatile memory, but all writes to them are persistent even after power loss. Existing DBMSs are
unable to take full advantage of this technology because their internal architectures are predicated
on the assumption that memory is volatile. With NVM, many of the components of legacy DBMSs
are unnecessary and will degrade the performance of data-intensive applications.

We present the design and implementation of DBMS architectures that are explicitly tailored for
NVM.The dissertation focuses on three aspects of a DBMS: () logging and recovery, () storage and
buffermanagement, and () indexing. First, we present a logging and recovery protocol that enables
the DBMS to support near-instantaneous recovery. Second, we propose a storage engine architec-
ture and buffer management policy that leverages the durability and byte-addressability properties
of NVM to reduce data duplication and data migration. Third, the dissertation presents the design
of a range index tailored for NVM that is latch-free yet simple to implement. All together, the work
described in this dissertation illustrates that rethinking the fundamental algorithms and data struc-
tures employed in a DBMS for NVM improves performance and availability, reduces operational
cost, and simpliٽes software development.
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Chapter 

Introduction

Changes in computer trends have given rise to new application domains, such as Internet services,
that support a large number of concurrent users and systems. What makes these modern applica-
tions unlike their predecessors is the scale in which they ingest information []. Database man-
agement systems (DBMSs) are often the critical component of these applications because they are
responsible for ensuring that operations of concurrent transactions execute in the correct order and
that their changes are not lost after a system crash [, ]. Optimizing the DBMS’s performance is
important because it determines how quickly an application can take in new information and use
it to make new decisions [].

The performance of a DBMS is affected by how fast it can read and write data on non-volatile
storage. DBMSs have always been designed to deal with the differences in the performance charac-
teristics of non-volatile storage and volatile memory (DRAM). The key assumption has been that
non-volatile storage is much slower than DRAM and only supports block-oriented read/writes. But
new non-volatile memory (NVM)  technologies, that are almost as fast as DRAM and that support
ne-grainedٽ read/writes, invalidate these previous design choices.

Existing DBMSs can be classiٽed into two types based on the primary storage location of the
database: () disk-oriented and () memory-oriented DBMSs. Disk-oriented DBMSs are based on
the same hardware assumptions that weremade in the rstٽ relational DBMSs from the s, such as
IBM’s System R []. The design of these systems target a two-level storage hierarchy comprising of
a fast but volatile byte-addressablememory for caching (i.e., DRAM), and a slow, non-volatile block-
addressable device for permanent storage (i.e., SSD). These systems take a pessimistic assumption
that a transaction could access data that is not in memory, and thus will incur a long delay to re-
trieve the needed data fromdisk. They employ legacy techniques, such as heavyweight concurrency-
control schemes, to overcome these limitations [].

Recent advances in manufacturing technologies have greatly increased the capacity of DRAM
available on a single computer. But disk-oriented systemswere not designed for the case wheremost,
if not all, of the data resides entirely in memory. The result is that many of their legacy components
have been shown to impede their scalability forOLTPworkloads []. In contrast, the architecture of
memory-orientedDBMSs assumes that all data tsٽ inmainmemory, and it therefore does awaywith

NVM is also referred to as storage-class memory or persistent memory.







NVM
DRAM PCM RRAM MRAM SSD HDD

Read latency  ns  ns  ns  ns  µs  ms
Write latency  ns  ns  ns  ns  µs  ms
Sequential bandwidth  GB/s  GB/s  GB/s  GB/s  GB/s . GB/s
/GB     . .
Addressability Byte Byte Byte Byte Block Block
Persistent No Yes Yes Yes Yes Yes
Endurance >1016 1010 108 1015 105 >1016

Table .: Technology Comparison – Comparison of emerging NVM technologies with other
storage technologies [, , , ]: phase-change memory (PCM) [, , ], memristors
(RRAM) [, ], and STT-MRAM (MRAM) [].
the slower, disk-oriented components from the system. As such, these memory-oriented DBMSs
have been shown to outperform disk-oriented DBMSs [, , , ]. But, they still have to
employ heavyweight components that can recover the database after a system crash because DRAM
is volatile.

Thedesign assumptions underlying both disk-oriented andmemory-orientedDBMSs are poised
to be upended by the advent of NVM technologies, such as phase-change memory [, , ]
and memristors [, ]. NVM supports byte-addressable loads and stores with low latency. This
means that it can be used for efficient architectures employed in memory-oriented DBMSs. But
unlike DRAM, all writes to NVM are potentially durable, and therefore a DBMS can directly access
the tuples on NVM after a system crash without needing to reload the database .rstٽ As shown in
Table ., NVM differs from other storage technologies in the following ways:

● Byte-Addressability: NVMsupports byte-addressable loads and stores unlike other non-volatile
devices that only support slow, bulk data transfers as blocks.
● HighWriteThroughput: NVMdeliversmore than anorder ofmagnitude higherwrite through-
put compared to SSD.More importantly, the gap between sequential and randomwrite through-
put of NVM is much smaller than other durable storage technologies.
● Read-Write Asymmetry: In certain NVM technologies, writes take longer to complete com-
pared to reads. Further, excessive writes to a single memory cell can destroy it.

Although the advantages of NVM are obvious, making full use of them in a DBMS is non-trivial.
Our evaluation of state-of-the-art disk-oriented andmemory-oriented DBMSs onNVM shows that
the two architectures achieve almost the same performance when using NVM []. This is because
current DBMSs assume that memory is volatile, and thus their architectures are predicated on mak-
ing redundant copies of changes on durable storage. This illustrates the need for a complete rewrite
of the database system to leverage the unique properties of NVM.
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. Thesis Statement and Overview
This dissertation presents the design and implementation of DBMS architectures that are explic-

itly tailored for NVM. The resulting NVM-centric architectures have several key advantages over
current systems:
. They adopt a logging and recovery protocol that improves the availability of the DBMS by ×

compared to the write-ahead logging protocol.
. Their storage engines leverage the durability and byte-addressability properties of NVM to

avoid unnecessary data duplication. This improves the space utilization of the NVM device
and extends its lifetime by reducing the number of device writes.

. They employ a range index tailored for NVM that is latch-free yet simple to implement. This
reduces the implementation and maintenance complexity of critical DBMS components.

. Their buffermanagement policy leverages the direct-addressability property ofNVM to reduce
data migration. This improves the system’s performance on a multi-tier storage hierarchy.
Our evaluation using different online transaction processing (OLTP) and analytical processing

(OLAP) benchmarks show that such NVM-centric architectures improve the runtime performance,
availability, operational cost, and development cost of DBMSs [–, ].

Thesis Statement: Rethinking the fundamental algorithms and data structures employed in a
database management system to leverage the characteristics of non-volatile memory improves avail-
ability, operational cost, development cost, and performance.

In the remainder of this chapter, we summarize the primary contributions of this work and
conclude with an outline of this dissertation.

. Contributions
This dissertation answers the following research questions with the speciٽc contributions listed:

. How do state-of-the-art memory-oriented and disk-oriented DBMSs perform on non-volatile
memory? [, ] ( Chapter  )

● A study of the impact of NVM on two OLTP DBMSs.
● We explore two possible architectures using non-volatile memory (i.e., NVM-only and
NVM+DRAM architectures).

. How should the storage engine architecture evolve to leverage NVM? [] ( Chapter  )

● We implement three storage engine architectures in a single DBMS: () in-place updates
with logging, () copy-on-write updates without logging, and () log-structured updates.
● We then develop NVM-optimized variants for these architectures that improve the com-
putational overhead, storage footprint, and wear-out of NVM devices.

. What changes are required in the logging and recovery algorithms to support fast recovery
from failures? [, ] ( Chapter  )
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● We present a logging and recovery protocol that is designed for a hybrid storage hierarchy
with NVM and DRAM.
● We examine the impact of this redesign on the transactional throughput, latency, avail-
ability, and storage footprint of the DBMS.

. How should we adapt the design of a range index for NVM? [] ( Chapter  )

● We propose the design of such an index that supports near-instantaneous recovery with-
out requiring special-purpose recovery code.
● An evaluation of the impact of this redesign on the software development and mainte-
nance complexity, performance, and availability.

. How should the DBMS manage data in a multi-tier storage hierarchy comprising of DRAM,
NVM, and SSD? ( Chapter  )

● We construct a new class of buffer management policies that are tailored for NVM.
● We characterize the impact of NVM on the performance of the DBMS across diverse
storage hierarchy designs and varied workloads.

. Outline
The remainder of this dissertation is organized as follows. Chapter  presents our initial foray

into the use of NVM in existing DBMSs and makes the case for a new NVM-aware DBMS. Chap-
ter  covers the design of NVM-aware variants of three different storage engine architectures that
leverage the persistence and byte-addressability properties of NVM. Chapter  makes the case for
a new logging and recovery protocol, called write-behind logging, that enables a DBMS to recover
nearly instantaneously from system failures. Chapter  presents the design of a latch-free range in-
dex tailored for NVM that supports near-instantaneous recovery without requiring special-purpose
recovery code. Chapter  introduces a new class of buffer management policies that maximize the
utility of NVM in amulti-tier storage hierarchy. Chapter  presents a discussion of the related work.
We highlight possible areas for future work in Chapter  and conclude the dissertation in Chapter .



Chapter 

The Case for a NVM-oriented DBMS

This chapter presents our initial foray into the use of NVM in OLTPDBMSs. We test several DBMS
architectures on a hardware-based NVM emulator and explore their trade-offs using two OLTP
benchmarks. The read andwrite latencies of the emulator are conٽgurable, and thus we can evaluate
multiple potential NVM proٽles that are not speciٽc to a particular technology. To the best of our
knowledge, our investigation is the rstٽ to use emulated NVM for OLTP DBMSs.

Since it is unknown what future memory hierarchies will look like with NVM, we consider two
potential use cases. The rstٽ is where the DBMS only has NVM storage with no DRAM.The second
case is where NVM is added as another level of the storage hierarchy between DRAM and SSD. In
both these conٽgurations, the system still uses volatile CPU caches.

NVM storage devices are currently prohibitively expensive and only support small capacities.
For this reason, we use a NVM hardware emulator developed by Intel Labs in our evaluations in
this dissertation []. Appendix A presents the architecture of the hardware emulator and the
interfaces that it exports to the DBMS. We use the emulator’s NUMA interface for evaluating the
NVM-only DBMS architecture. We use the persistent memory leٽ system (PMFS) interface in the
evaluation of both the NVM-only and NVM+DRAM architectures.

. NVM-Only Architecture
In the NVM-only architecture, the DBMS uses NVM exclusively for its storage. We compare a

memory-oriented DBMSwith a disk-oriented DBMSwhen both are running entirely on NVM stor-
age using the emulator’s NUMA interface. For the former, we use the H-Store DBMS [], while for
the latter we use MySQL (v.) with the InnoDB storage engine. Both systems are tuned according
to their “best practice” guidelines for OLTP workloads.

The NVM-only architecture has implications for the DBMS’s recovery scheme. In all DBMSs,
some form of logging is used to guarantee recoverability in the event of a failure []. Disk-oriented
DBMSs provide durability through the use of a write-ahead log, which is a type of physical logging
wherein updated versions of data are logged to disk with each write operation. Such an approach
has a signiٽcant performance overhead for main memory-oriented DBMSs [, ]. Thus, others
have argued for the use of logical logging for main memory DBMSs where the log contains a record
of the high-level operations that each transaction executed.


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Figure .: NVM-Only Architecture – System conٽgurations that use NVM exclusively for storage.

The overhead of writing out logical log records and the size of the log itself is much smaller
for logical logging. The downside, however, is that the recovery process takes longer because the
DBMS must re-execute each transaction to restore the database state. In contrast, during recovery
in a physical logging system, the log is replayed forward to redo the effects of committed transactions
and then replayed backward to undo the effects of uncommitted transactions [, ]. But since all
writes tomemory are persistent under the NVM-only conٽguration, heavyweight logging protocols
such as these are excessive and inefficient.

We now discuss the runtime operations of the memory-oriented and disk-oriented DBMSs that
we evaluated on the NVM-only conٽguration in more detail (see Figure .). For each architecture,
we analyze the potential complications and performance pitfalls from using NVM in the storage
hierarchy.

.. Memory-oriented System
We use the emulator’s NUMA interface to ensure that all of H-Store’s in-memory data is stored

on NVM. This data includes all tuples, indexes, and other database elements. We did not change
any part of H-Store’s storagemanager or execution engine to use the byte-addressable NVM storage.
But this means that the DBMS is not aware that writes to the memory are potentially durable.

Since H-Store was designed for DRAM, it employs a disk-oriented logical logging scheme [].
To reduce recovery time, the DBMS also periodically takes a non-blocking checkpoint of all the
partitions and writes them out to a disk-resident checkpoint. For our experiments in Section .,
we conٽgured H-Store to write its checkpoints and log lesٽ to PMFS.

.. Disk-oriented System
In a disk-orientedDBMS, the system’s internal data is divided into in-memory and disk-resident

components. The DBMSmaintains a buffer pool in memory to store copies of pages retrieved from
the database’s primary storage location on disk. We use the emulator’s NUMA interface to store the
DBMS’s buffer pool in the byte-addressable NVM storage, while its data lesٽ and logs are stored in
NVM through the PMFS interface.
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Figure .: NVM+DRAM Architecture – System conٽgurations that use both DRAM and NVM
for storage.

Like with H-Store, MySQL is not aware that modiٽcations to the buffer pool are persistent when
using the NUMA interface. MySQL uses a doublewrite mechanism for ushingپ data to persistent
storage. This involves rstٽ writing out the pages to a contiguous buffer on disk before writing them
out to the data .leٽ The doublewrite mechanism serves two purposes. First, it protects against torn
writes that can occur when the DBMS has to atomically commit data that is larger the page size of
the underlying storage device. Second, it also improves the performance of (synchronous) logging
as writes to the log buffer are sequential. This mechanism is not useful, however, in the NVM-only
architecture where both the doublewrite buffer and the data leٽ are on NVM. Since the doublewrite
mechanism maintains multiple copies of each tuple, the DBMS unnecessarily wastes storage space
in theNVM.Theperformance difference between random and sequential I/O onNVM is alsomuch
smaller than disk, thus batching the writes together in the doublewrite buffer does not provide the
same gains as it does on a disk. Furthermore, the overhead of fsync in PMFS is also lower than in
disk-oriented leٽ systems.

. NVM+DRAMArchitecture
In this conٽguration, the DBMS relies on both DRAM and NVM for satisfying its storage re-

quirements. If we assume that the entire dataset cannot tٽ in DRAM, the question arises of how to
split data between the two storage layers. Because of the relative latency advantage of DRAM over
NVM, one strategy is to attempt to keep the hot data in DRAM and the cold data in NVM. One way
is to use a buffer pool to cache hot data, as in traditional disk-oriented DBMSs. With this architec-
ture, there are two copies of cached data, one persistent copy on disk and another copy cached in
the DRAM-based buffer pool. The DBMS copies pages into the buffer pool as they are needed, and
then writes out dirty pages to the NVM for durability.

Another approach is to use the anti-caching system design proposed in [] where all data initial
resides in memory and then cold data is evicted out to disk over time. One fundamental difference
in this design is that exactly one copy of the data exists at any point in time. Thus, a tuple is either
in memory or the anti-cache. An overview of these two architectures is shown in Figure ..
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.. Anti-Caching System
Anti-caching is a memory-oriented DBMS design that allows the system to manage databases

that are larger than the amount ofmemory available without incurring the performance penalty of a
disk-oriented system []. When the amount of in-memory data exceeds a user-deٽned threshold,
the DBMS moves data to disk to free up space for new data. To do this, the system dynamically
constructs blocks of the coldest tuples and writes them asynchronously to the anti-cache on disk.
TheDBMSmaintains in-memory “tombstones” for each evicted tuple. When a running transaction
attempts to access an evicted tuple through its tombstone, the DBMS aborts that transaction and
fetches that it needs from the anti-cache without blocking other transactions. Once the data that
the transaction needs is moved back into memory, it is restarted.

For this study, we propose an extension of anti-caching where the cold data is stored in anNVM-
optimized hash table rather than disk. We modify the cold data storage manager to adapt the anti-
caching system to NVM. In the original implementation, we use the BerkeleyDB [] key-value
store to manage anti-caching blocks. For NVM-backed data ,lesٽ BerkeleyDB proved to be too
heavyweight as we need ner-grainedٽ control over writes to NVM. To this end, we implemented a
lightweight array-based block store using the emulator’s PMFS interface. Elements of the array are
anti-cache blocks and array indexes correspond to the anti-cache block id. If a block is transferred
from the anti-cache to DRAM, the array index where the block was stored is added to a free list.
When a new anti-cache block needs to be written, a vacant block is acquired from the free list. We
use a slab-based allocation method, where each time the anti-cache is full, a new slab is allocated
and added to the free list. If the anti-cache shrinks, then the DBMS compacts by deallocating sparse
slabs.

.. Disk-oriented System
We conٽgure a disk-oriented DBMS to run on the NVM+DRAM architecture. We allow the

buffer pool to remain in DRAM and store the data and log lesٽ using the PMFS interface. The
main difference between this conٽguration and the NVM-only MySQL conٽguration presented in
Section .. is that all main memory accesses in this conٽguration go to DRAM instead of NVM.

. Experimental Evaluation
To evaluate these memory conٽgurations and DBMS designs, we performed a series of exper-

iments on the NVM emulator. We deployed four different system conٽgurations: two executing
entirely on NVM and two executing on a hybrid NVM+DRAM hierarchy. For the NVM-only anal-
ysis, we conٽguredMySQL to execute entirely out ofNVMand compared it withH-Store conٽgured
to run entirely in NVM. For the NVM+DRAM hierarchy analysis, we conٽgured MySQL to use a
DRAM-based buffer pool and store all persistent data in PMFS. As a comparison, we implemented
theNVMadaptations to the anti-caching system described above bymodifying the original H-Store
based anti-caching implementation. We used two benchmarks in our evaluation and a range of dif-
ferent conٽguration parameters.
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.. System Conٽguration
All experiments were conducted on the NVM emulator described in Appendix A.. For each

system, we evaluate the benchmarks on two different NVM latencies: × DRAM and × DRAM,
where the base DRAM latency is approximately  ns. We consider these latencies to represent the
best case and worst case NVM latencies respectively. We chose this range of latencies to make our
results as independent from the underlying NVM technology as possible. The sustained bandwidth
of NVM is likely to be lower than that of DRAM.We leverage the bandwidth throttling mechanism
in the emulator to throttle the NVM bandwidth to . GB/s, which is × lower than the available
DRAM bandwidth on the platform [].

.. Benchmarks
We use the YCSB and TPC-C benchmarks in our evaluation. A detailed description of these

benchmarks is provided in Appendix B. We use H-Store’s internal benchmarking framework for
both the H-Store on NVM and the anti-caching analysis. For the MySQL benchmarking, we use
the OLTP-Bench [] framework.

For the TPC-C benchmark, we use  warehouses and , items, resulting in a total data
size of GB. For the anti-cache trials, we evict data from the HISTORY, ORDERS, and ORDER_LINE
tables, as these are the only tableswhere transactions insert newdata. Wewill nowdiscuss the results
of executing the benchmarks on each of the NVM-only and NVM-DRAM architectures described
in Sections . and ..

.. NVM-Only Architecture
YCSB: We evaluate YCSB on each system across the range of skew parameters and workload

mixtures described above. We rstٽ consider the impact of NVM latency on the throughput of
memory-oriented and disk-oriented systems. The results for the read-heavy workload shown in
Figure .b indicate that increasing NVM latency decreases the throughput of H-Store and MySQL
by 12.3% and 14.8% respectively. There is no signiٽcant impact onH-Store’s performance in the read-
only workload shown in Figure .a, which indicates that latency mainly impacts the performance
of logging.

The throughput varieswith the amount of skew in theworkload. The impact of skewonH-Store’s
performance is more pronounced in the read-heavy workload shown in Figure .b. Throughput
drops by 18.2% in the read-heavy workload as the skew level is reduced. The drop in throughput
is due to the application’s larger working set size, which increases the number of cache misses and
subsequent accesses to NVM. In contrast, MySQL performs poorly on high-skew workloads but its
throughput improves by × as skew decreases. This is because a disk-oriented system uses locks to
allow transactions to execute concurrently. Thus, if a signiٽcant portion of the transactions access
the same tuples, then lock contention becomes a bottleneck.

We can summarize the above observations as follows: () increasing NVM latency impacts
the performance of the logging mechanism, and () the throughput of memory-oriented and disk-
oriented systems varies differently as skew decreases. We contend that the ideal system for a NVM-
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Figure .: YCSB Performance on NVM-only Architecture – Performance comparison for the
YCSB benchmark across different workload mixtures.

only architecture will possess features of both memory-oriented and disk-oriented systems.

TPC-C:For theTPC-Cbenchmark,most transactions insert or access new records (i.e., NewOrder),
and older records are almost never accessed. As such, there is strong temporal skew built into the
semantics of the benchmark. Only a subset of the tables are increasing in size, and the rest are
static. In Figure .a, we see that throughput of both systems only varies slightly with an increase in
NVM latency, and that for both latencies the throughput of H-Store is × higher than that of the
disk-oriented system.

.. NVM+DRAMArchitecture
YCSB:We use the same YCSB skew and workload mixes, but conٽgure the amount of DRAM

available to the DBMSs to be 1
8 of the total database size. There are several conclusions to draw from

the results shown in Figure .. The rstٽ is that the throughput of the two systems trend differently
as skew changes. For the read-heavy workload in Figure .b, anti-caching achieves × higher
throughput over MySQL when skew is high, but only a .× improvement when skew is low. Other
workload mixes have similar trends. This is because the anti-caching system performs best when
there is a high skew since it needs to fetch fewer blocks and restart fewer transactions. In contrast,
the disk-oriented system performs worse on the high skew workloads due to high lock contention.
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Figure .: YCSB Performance on NVM+DRAMArchitecture – Performance comparison for the
YCSB benchmark across different workload mixtures.

We note that at the lowest skew level, MySQL’s throughput decreases due to lower hit rates for data
in the CPU’s caches.

Another notable ndingٽ is that both systems do not exhibit a major change in performance with
longer NVM latencies. This is signiٽcant, as it implies that neither architecture is bottlenecked by
the I/O on the NVM. Instead, the decrease in performance is due to the overhead of fetching and
evicting data from NVM. For the disk-oriented system, this overhead comes from managing the
buffer pool, while in the anti-caching system it is from restarting transactions and asynchronously
fetching previously evicted data.

We can summarize the above observations as follows: () the throughput of the anti-caching
systemdecreases as skew decreases, () the throughput of the disk-oriented system increases as skew
decreases, and () neither architecture is bottlenecked by I/O when the latency of NVM is between
-× the latency of DRAM. Given these results, we believe that the ideal system architecture for
a NVM+DRAM memory hierarchy would need to possess features of both anti-caching and disk-
oriented systems to enable it to achieve high throughput regardless of skew.

TPC-C:Wenext ran theTPC-Cbenchmark on the anti-caching and disk-orientedDBMSs using
different NVM latencies. The results in Figure .b show that the throughput of both DBMSs do not
change signiٽcantly as NVM latency increases. This is expected, since all of the transactions’ write
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Figure .: NVM Latency Evaluation – Performance comparison for the TPC-C benchmark using
different NVM latencies.

operations are initially stored onDRAM.These results corroborate previous studies that have shown
the × performance advantage of an anti-caching system over the disk-oriented DBMS []. For
the anti-caching system, this workload essentiallymeasures how efficiently it can evict data to PMFS
(since no transaction reads old data).

.. Recovery

Lastly, we evaluate recovery schemes in H-Store using the emulator’s NUMA interface. We
implemented logical logging (i.e., command logging) and physical logging (i.e., ARIES) recovery
schemes within H-Store. For each scheme, we rstٽ measure the DBMS’s runtime performance
when executing a xedٽ number of TPC-C transactions (,). We then simulate a system fail-
ure and then measure how long it takes the DBMS to recover the database state from each scheme’s
corresponding log stored on PMFS.

For the runtime measurements, the results in Figure .a show that H-Store achieves × higher
throughput when using logical logging compared to physical logging. This is because logical logging
only records the executed commands and thus is more lightweight. The amount of logging data for
theworkload using scheme is only MB. In contrast, physical logging keeps track of allmodiٽcations
made at tuple-level granularity and its corresponding log MB. This reduced footprint makes
logical loggingmore attractive for the rstٽ NVMdevices that are expected to have limited capacities.

Next, in the results for the recovery times, Figure .b shows that logical logging × is slower
than physical logging. One could reduce this time in logical logging by having theDBMS checkpoint
more frequently, but this will impact steady-state performance [].

We note that both schemes are essentially doing unnecessary work, since all writes to memory
when using the NUMA interface are potentially durable. A better approach is to use a recovery
scheme that is designed for NVM.This would allow a DBMS to combine the faster runtime perfor-
mance of logical logging with the faster recovery of physical logging.
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Figure .: Recovery Evaluation – Comparison of recovery schemes in H-Store using the TPC-C
benchmark.

. Discussion
For both conٽgurations, our results show thatmemory-oriented system outperforms traditional

disk-oriented system on NVM.This difference is most pronounced when the skew in the workload
is high, as this introduces signiٽcant lock contention in a disk-oriented system. However, the per-
formance of the memory-oriented system decreases as skew decreases while the performance of the
disk-oriented system increases as skew decreases. This convergence is interesting, as it signiٽes that
neither architecture is ideally suited for NVM.

Wenext discuss possible system architectures forNVMthat leverage bothmemory-oriented and
disk-oriented design features, thereby allowing uniform performance across all workload skews. In
addition, we propose new possibilities for recovery schemes that take advantage of the persistence
of NVM to provide nearly-instant recovery.

.. NVM-aware DBMS
The results in Figure . show that the performance of the memory-oriented architecture con-

verges with that of the disk-oriented system in workloads that involve writes, especially as skew
decreases. We attribute this to the overhead of logging and diminishing beneٽts from H-Store’s
concurrency control scheme that is optimized for main memory []. In the recovery experiments
shown in Figure .b, we observe that recovery latency is high for logical logging. We can reduce
this overhead by checkpointingmore frequently, but this also degrades performance []. Based on
these constraints, we recognize the need to design a new DBMS that is designed explicitly for NVM.
The recoverability mechanism of this system will leverage the persistence properties of NVM. We
envision that this new DBMS will be a hybrid architecture that borrows ideas from both memory-
oriented and disk-oriented systems.

.. Anti-Caching with Synchronous Fetches
As our results in Figure . show, the anti-caching system outperforms the disk-oriented archi-

tecture across all skew levels, but that its performance advantage decreases as skew decreases. This
is due to the overhead of aborting and restarting transactions when the DBMS must fetch evicted



.. GOAL OF THIS DISSERTATION 

data. Synchronously performing this retrieval is prohibitively high in disk-based storage. Thus, the
cost of restarting the transaction once the block is fetched is justiٽed. However, if we replace the
disk with NVM, then the cost of fetching a block is signiٽcantly less. This means that it is better
just to stall the transaction and retrieve the data that it needs immediately rather than aborting the
transaction and restarting it after the data that it needs is moved into memory [].

. Goal of this Dissertation
In this chapter, we presented the results of our investigation on the impact of NVM on exist-

ing DBMSs. We explored two possible architectures using non-volatile memory (i.e., NVM-only
and NVM+DRAM architectures). For each architecture, we evaluated memory-oriented and disk-
oriented OLTPDBMSs. Our analysis shows that memory-oriented systems are better-suited to take
advantage of NVM and outperform their disk-oriented counterparts. However, in both the NVM-
only and NVM+DRAM architectures, the throughput of the memory-oriented systems decreases
as workload skew is reduced while the throughput of the disk-oriented architectures increases as
workload skew is decreased. Because of this, we conclude that neither system is ideally suited for
NVM. Instead, a new system is needed with principles of both disk-oriented and memory-oriented
systems and a lightweight recovery scheme designed to utilize the non-volatile property of NVM.

In the remainder of this dissertation, we will present the design and implementation of such a
DBMS that leverages the properties of NVM in its storage and recovery methods.



Chapter 

Storage Management

In this chapter, we explore the fundamentals of storage and recovery methods in OLTP DBMSs
running on a NVM-only storage hierarchy. This allows us to examine how the DBMS can leverage
NVM while avoiding the overhead of dealing with the volatility of DRAM. We later extend these
methods to a three-tier storage system that also includes DRAM and SSD in Chapters  and .

We implemented three storage engine architectures in a single DBMS: () in-place updates with
logging, () copy-on-write updates without logging, and () log-structured updates. We then de-
veloped optimized variants for these approaches that reduce the computational overhead, storage
footprint, and wear-out of NVM devices. For our evaluation, we conٽgure the systems to only use
NVMand volatile CPU-level caches on the hardware emulator (i.e., noDRAM). Our analysis shows
that the NVM-optimized storage engines improve the DBMS’s throughput by a factor of .× while
reducing the number of writes to NVM in half.

The remainder of this chapter is organized as follows. In Section . we describe our DBMS
testbed and its storage engines that we developed for this study. We then present in Section .
our optimizations for these engines that leverage NVM’s unique properties. We then present our
experimental evaluation in Section ..

. DBMS Testbed
We developed a lightweight DBMS, called N-Store, to evaluate different storage architecture

designs for OLTP workloads. We did not use an existing DBMS as that would require signiٽcant
changes to incorporate the storage engines into a single system. Although some DBMSs support
a pluggable storage engine back-end (e.g., MySQL, MongoDB), modifying them to support NVM
would still require signiٽcant changes. We also did notwant to taint ourmeasurements with features
that are not relevant to our evaluation.

The DBMS’s internal coordinator receives incoming transaction requests from the application
and then invokes the target stored procedure. As a transaction executes in the system, it invokes
queries to read and write tuples from the database. These requests are passed through a query ex-
ecutor that invokes the necessary operations on the DBMS’s active storage engine.

A detailed description of the NVM hardware emulator is presented in Appendix A.


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The DBMS uses pthreads to allow multiple transactions to run concurrently in separate worker
threads. It executes as a single process with the number of worker threads equal to the number of
cores, where each thread is mapped to a different core. Since we do not want the DBMS’s concur-
rency control scheme to interferewith our evaluation, we partition the database anduse a lightweight
locking scheme where transactions are executed serially at each partition based on timestamp or-
dering [].

Using a DBMS that supports a pluggable back-end allows us to compare the performance char-
acteristics of different storage and recovery methods on a single platform. We implemented three
storage engines that use different approaches for supporting durable updates to a database: () in-
place updates engine, () copy-on-write updates engine, and () log-structured updates engine. Each
engine also supports both primary and secondary indexes.

Wenowdescribe these engines in detail. For each engine, we rstٽ discuss how they apply changes
made by transactions to the database and then how they ensure durability after a crash. All of these
engines are based on the architectures found in state-of-the-art DBMSs. That is, they use memory
obtained using the hardware emulator’s allocator interface as volatile memory and do not exploit
NVM’s persistence. Later in Section ., we present our improved variants of these engines that are
optimized for NVM.

.. In-Place Updates Engine (InP)
The rstٽ engine uses the most common storage engine strategy in DBMSs. With in-place up-

dates, there is only a single version of each tuple at all times. When a transaction updates a eldٽ
for an existing tuple, the system writes the new value directly on top of the original one. This is the
most efficient method of applying changes since the engine does not make a copy of the tuple rstٽ
before updating it and only the updated eldsٽ are modiٽed. The design of this engine is based on
VoltDB [], which is a memory-oriented DBMS that does not contain legacy disk-oriented DBMS
components like a buffer pool. The InP engine uses the STX B+tree library for all of its indexes [].

Storage: Figure .a illustrates the architecture of the InP engine. The storage area for tables is
split into separate pools for xed-sizedٽ blocks and variable-length blocks. Each block consists of a
set of slots. The InP engine stores the table’s tuples in xed-sizeٽ slots. This ensures that the tuples
are byte-aligned and the engine can easily compute their offsets. Any eldٽ in a table that is larger
than 8 bytes is stored separately in a variable-length slot. The 8-byte location of that slot is stored in
that eld’sٽ location in the tuple.

The tables’ tuples are unsorted within these blocks. For each table, the DBMS maintains a list
of unoccupied tuple slots. When a transaction deletes a tuple, the deleted tuple’s slot is added to
this pool. When a transaction inserts a tuple into a table, the engine rstٽ checks the table’s pool
for an available slot. If the pool is empty, then the engine allocates a new xed-sizeٽ block using the
allocator interface. The engine also uses the allocator interface to maintain the indexes and stores
them in memory.

Recovery: Since the changes made by transactions committed after the last checkpoint are not
written to “durable” storage, the InP enginemaintains a durablewrite-ahead log (WAL) in the -lesysٽ
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Figure .: Storage Engine Architectures – Architectural layout of the three traditional storage en-
gines supported in theDBMS testbed. The engine components accessed using the allocator interface
and those accessed using the lesystemٽ interface are bifurcated by the dashed line.

tem to assist in recovery from crashes and power failures. WAL records the transactions’ changes
before they are applied to DBMS []. As transactions execute queries that modify the database,
the engine appends a new entry to the WAL for those changes. Each entry contains the transaction
identiٽer, the table modiٽed, the tuple identiٽer, and the before/after tuple images depending on
the operation.

The most well-known recovery protocol for in-place updates is ARIES []. With ARIES, the
engine periodically takes checkpoints that are stored on the lesystemٽ to bound recovery latency
and reduce the storage space consumed by the log. In our implementation, we compress (gzip)
the checkpoints on the lesystemٽ to reduce their storage footprint on NVM. During recovery, the
engine rstٽ loads the last checkpoint. It then replays the log to ensure that the changes made by
transactions committed since the checkpoint are present in the database. Modiٽcations made by
uncommitted transactions at the time of failure are not propagated to the database. The InP engine
uses a variant of ARIES that is adapted for main memory DBMSs with a byte-addressable storage
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engine []. As we do not store physical changes to indexes in this log, all of the tables’ indexes are
rebuilt during recovery because they may have been corrupted.

.. Copy-on-Write Updates Engine (CoW)
The second storage engine performs copy-on-write updates where instead of modifying the orig-

inal tuple, it creates a copy of the tuple and then modiٽes that copy. As the CoW engine never
overwrites committed data, it does not need to record changes in a WAL for recovery. The CoW
engine instead uses different lookup directories for accessing the versions of tuples in the database.
With this approach, known as shadow paging in IBM’s System R [], the DBMS maintains two
lookup directories at all times: () the current directory, and () the dirty directory. The current
directory points to the most recent versions of the tuples and only contains the effects of committed
transactions. The dirty directory points to the versions of tuples being modiٽed by active transac-
tions. To ensure that the transactions are isolated from the effects of uncommitted transactions, the
engine maintains a master record that always points to the current directory. Figure .b presents
the architecture of the CoW engine. After applying the changes to the copy of the tuple, the engine
updates the dirty directory to point to the new version of the tuple. When the transaction com-
mits, the engine updates the master record atomically to point to the dirty directory. The engine
maintains an internal page cache to keep the hot pages in memory.

System R implements shadow paging by copying the current directory to create the new dirty
directory after every commit operation. But, creating the dirty directory in this manner incurs high
I/O overhead. The CoW engine uses LMDB’s copy-on-write B+trees [, , ] to implement
shadow paging efficiently. Figure .b illustrates an update operation on a CoW B+tree. When
the engine modiٽes the leaf node 4 in the current directory, it only needs to make a copy of the
internal nodes lying along the path from that leaf node up to the root of the current version. The
current and dirty directories of the copy-on-write B+tree share the rest of the tree. This signiٽcantly
reduces the I/O overhead of creating the dirty directory as only a fraction of the B+tree is copied. To
further reduce the overhead of shadow paging, the CoW engine uses a group commit mechanism
that batches the changes made by a group of transactions before committing the dirty directory.

Storage: The CoW engine stores the directories on the .lesystemٽ The tuples in each table are
stored in aHDD/SSD-optimized format where all the tuple’s eldsٽ are inlined. This avoids expensive
random accesses that are required when some eldsٽ are not inlined. Each database is stored in a
separate ,leٽ and the master record for the database is located at a xedٽ offset within the .leٽ It
supports secondary indexes as a mapping of secondary keys to primary keys.

The downside of the CoW engine is that it creates a new copy of tuple even if a transaction
only modiٽes a subset of the tuple’s .eldsٽ The engine also needs to keep track of references to
tuples from different versions of the copy-on-write B+tree so that it can reclaim the storage space
consumed by old unreferenced tuple versions []. As we show in Section .., this engine has
high write ampliٽcation (i.e., the amount of data written to storage is much higher compared to
the amount of data written by the application). This increases wear on the NVM device thereby
reducing its lifetime.



 CHAPTER . STORAGE MANAGEMENT

Recovery: If the DBMS crashes before the master record is updated, then the changes present
in the dirty directory are not visible after restart. Hence, there is no recovery process for the CoW
engine. When the DBMS comes back on-line, the master record points to the current directory that
is guaranteed to be consistent. The dirty directory is garbage collected asynchronously since it only
contains the changes of uncommitted transactions.

.. Log-structured Updates Engine (Log)
Lastly, the third storage engine uses a log-structured update policy. This approach originated

from log-structured lesystemsٽ [], and then it was adapted to DBMSs as log-structured merge
(LSM) trees [] for write-intensive workloads. The LSM tree consists of a collection of runs of
data. Each run contains an ordered set of entries that record the changes performed on tuples.
Runs reside either in volatile memory (i.e., MemTable) or on durable storage (i.e., SSTables) with
their storage layout optimized for the underlying storage device. The LSM tree reduces write am-
pliٽcation by batching the updates in MemTable and periodically cascading the changes to durable
storage []. The design for our Log engine is based on Google’s LevelDB [], which implements
the log-structured update policy using LSM trees.

Storage: Figure .c depicts the architecture of the Log engine. The Log engine uses a leveled
LSM tree [], where each level in the tree contains the changes for a single run. The data starts
from the MemTable stored in the topmost level and propagates down to SSTables stored in lower
parts of the tree over time. The size of the run stored in a given level is k times larger than that of the
run stored in its parent, where k is the growth factor of the tree. The Log engine allows us to control
the size of the MemTable and the growth factor of the tree. It rstٽ stores the tuple modiٽcations in a
memory-optimized format using the allocator interface in the MemTable. The MemTable contains
indexes to handle point and range queries efficiently. When the size of the MemTable exceeds a
threshold, the engine ushesپ it to the lesystemٽ as an immutable SSTable stored in a separate .leٽ
The Log engine also constructs a Bloom lterٽ [] for each SSTable to quickly determine at runtime
whether it contains entries associated with a tuple to avoid unnecessary index lookups.

The contents of the MemTable are lost after system restart. Hence, to ensure durability, the Log
engine maintains a WAL in the .lesystemٽ The engine rstٽ records the changes in the log and then
applies the changes to the MemTable. The log entry contains the transaction identiٽer, the table
modiٽed, the tuple identiٽer, and the before/after images of the tuple depending on the type of
operation. To reduce the I/O overhead, the engine batches log entries for a group of transactions
and ushesپ them together.

The log-structured update approach performs well for write-intensive workloads as it reduces
random writes to durable storage. The downside of the Log engine is that it incurs high read am-
pliٽcation (i.e., the number of reads required to fetch the data is much higher than that actually
needed by the application). To retrieve a tuple, the Log engine rstٽ needs to lookup the indexes of
all the runs of the LSM tree that contain entries associated with the desired tuple []. To reduce this
read ampliٽcation, the Log engine performs a periodic compaction process that merges a subset of
SSTables. First, the entries associated with a tuple in different SSTables are merged into one entry
in a new SSTable. Tombstone entries are used to identify purged tuples. Then, the engine builds
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indexes for the new SSTable.

Recovery: During recovery, the Log engine rebuilds the MemTable using the WAL, as the
changes contained in it were not written onto durable storage. It rstٽ replays the log to ensure that
the changes made by committed transactions are present. It then removes any changes performed
by uncommitted transactions, thereby bringing the MemTable to a consistent state.

. NVM-Aware Engines
All of the engines described above are derived from existing DBMS architectures that are pred-

icated on a two-tier storage hierarchy comprised of volatile DRAM and a non-volatile SSD/HDD.
These devices have distinct hardware constraints and performance properties. The traditional en-
gines were designed to account for and reduce the impact of these differences. For example, they
maintain two layouts of tuples depending on the storage device. Tuples stored in memory can con-
tain non-inlined eldsٽ because DRAM is byte-addressable and handles random accesses efficiently.
In contrast, eldsٽ in tuples stored on durable storage are inlined to avoid random accesses because
they are more expensive. To amortize the overhead for accessing durable storage, these engines
batch writes and ushپ them in a deferred manner.

Many of these techniques, however, are unnecessary in a system with a NVM-only storage hi-
erarchy [, , ]. We adapt the storage and recovery mechanisms of these traditional engines
to exploit NVM’s characteristics. We refer to these optimized storage engines as the NVM-aware
engines. As we show in our evaluation in Section ., these engines deliver higher throughput than
their traditional counterparts while still ensuring durability. They reduce write ampliٽcation using
NVM’s persistence thereby expanding the lifetime of the NVM device. These engines only use the
emulator’s allocator interface with NVM-optimized data structures [, ].

Table . presents an overview of the steps performed by the NVM-aware storage engines, while
executing the primitive database operations. We note that the engine performs these operations
within the context of a transaction. For instance, if the transaction aborts while executing an oper-
ation, it must undo the effects of earlier operations performed by the transaction.

.. In-Place Updates Engine (NVM-InP)
One of the main problems with the InP engine described in Section .. is that it has high rate

of data duplication. When a transaction inserts a tuple, the engine records the tuple’s contents in the
WAL and then again in the table storage area. The InP engine’s logging infrastructure also assumes
that the system’s durable storage device has orders of magnitude higher write latency compared to
DRAM. It batches multiple log records and ushesپ them periodically to the WAL using sequential
writes. This approach, however, increases the mean response latency as transactions need to wait
for the group commit operation.

Given this, we designed the NVM-InP engine to avoid these issues. Now when a transaction
inserts a tuple, rather than copying the tuple to the WAL, the NVM-InP engine only records a
non-volatile pointer to the tuple in the WAL. This is sufficient because both the pointer and the
tuple referred to by the pointer are stored on NVM. Thus, the engine can use the pointer to access
the tuple after the system restarts without needing to re-apply changes in the WAL. It also stores
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Figure .: NVM-Aware Engines – Architectural layout of the NVM-optimized storage engines.

indexes as non-volatile B+trees that can be accessed immediately when the system restarts without
rebuilding.

Storage: The architecture of theNVM-InP engine is shown in Figure .a and Table . presents
an overview of the steps to perform different operations. The engine stores tuples and non-inlined
eldsٽ using xed-sizeٽ and variable-length slots, respectively. To reclaim the storage space of tuples
and non-inlined eldsٽ inserted by uncommitted transactions after the system restarts, the NVM-
InP engine maintains durability state in each slot’s header. A slot can be in one of three states -
unallocated, allocated but not persisted, or persisted. After the system restarts, slots that are allo-
cated but not persisted transition back to the unallocated state.

The NVM-InP engine stores the WAL as a non-volatile linked list. It appends new entries to
the list using an atomic write. Each entry contains the transaction identiٽer, the table modiٽed,
the tuple identiٽer, and pointers to the operation’s changes. The changes include tuple pointers for
insert operation and eldٽ pointers for update operations on non-inlined .eldsٽ The engine persists
this entry before updating the slot’s state as persisted. If it does not ensure this ordering, then the
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engine cannot reclaim the storage space consumed by uncommitted transactions after the system
restarts, thereby causing non-volatile memory leaks. After all of the transaction’s changes are safely
persisted, the engine truncates the log.

The engine supports primary and secondary indexes using non-volatile B+trees that itmaintains
using the allocator interface. Wemodiٽed the STX B+tree library so that all operations that alter the
index’s internal structure are atomic [, ]. For instance, when adding an entry to a B+tree node,
instead of inserting the key in a sorted order, it appends the entry to a list of entries in the node. This
modiٽcation is necessary because if the entry crosses cache line boundaries, the cache line write-
backs required to persist the entry need not happen atomically. Our changes to the library ensure
that the engine can safely access the index immediately after the system restarts as it is guaranteed
to be in a consistent state.

Recovery: The effects of committed transactions are durable after the system restarts because
the NVM-InP engine immediately persists the changes made by a transaction when it commits.
So, the engine does not need to replay the log during recovery. But the changes of uncommitted
transactions may be present in the database because the memory controller can evict cache lines
containing those changes to NVM at any time []. TheNVM-InP engine therefore needs to undo
those transactions using the WAL.

To undo an insert operation, the engine releases the tuple’s storage space using the pointer
recorded in the WAL entry and then removes entries associated with the tuple in the indexes. In
case of an update operation, the engine restores the tuple’s state using the before image. If the after
image contains non-inlined tuple ,eldsٽ then the engine frees up the memory occupied by those
.eldsٽ For a delete operation, it only needs to update the indexes to point to the original tuple. To
handle transaction rollbacks and DBMS recovery correctly, the NVM-InP engine releases storage
space occupied by tuples or non-inlined eldsٽ only after it is certain that they are no longer required.
As this recovery protocol does not include a redo process, theNVM-InP engine has a short recovery
latency that only depends on the number of uncommitted transactions.

.. Copy-on-Write Updates Engine (NVM-CoW)
The original CoW engine stores tuples in self-containing blocks without pointers in the copy-

on-write B+tree on the .lesystemٽ The problemwith this engine is that the overhead of propagating
modiٽcations to the dirty directory is high; even if a transaction only modiٽes one tuple, the engine
needs to copy the entire block to the .lesystemٽ When a transaction commits, theCoW engine uses
the lesystemٽ interface to ushپ the dirty blocks and updates the master record (stored at a xedٽ
location in the (leٽ to point to the root of the dirty directory []. These writes are expensive as they
need to switch the privilege level and go through the kernel’s VFS path.

The NVM-CoW engine employs three optimizations to reduce these overheads. First, it uses
a non-volatile copy-on-write B+tree that it maintains using the allocator interface. Second, the
NVM-CoW engine directly persists the tuple copies and only records non-volatile tuple pointers in
the dirty directory. Lastly, it uses the lightweight durability mechanism of the allocator interface to
persist changes in the copy-on-write B+tree.
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NVM-InP Engine NVM-CoW Engine NVM-Log Engine

INSERT • Sync tuple with NVM.
• Record tuple pointer inWAL.
• Sync log entry with NVM.
• Mark tuple state as persisted.
• Add tuple entry in indexes.

• Sync tuple with NVM.
• Store tuple pointer in dirty
dir.
• Update tuple state as per-
sisted.
• Add tuple entry in secondary
indexes.

• Sync tuple with NVM.
• Record tuple pointer inWAL.
• Sync log entry with NVM.
• Mark tuple state as persisted.
• Add tuple entry inMemTable.

UPDATE • Record tuple changes in
WAL.
• Sync log entry with NVM.
• Perform modiٽcations on
the tuple.
• Sync tuple changes with
NVM.

• Make a copy of the tuple.
• Apply changes on the copy.
• Sync tuple with NVM.
• Store tuple pointer in dirty
dir.
• Update tuple state as per-
sisted.
• Add tuple entry in secondary
indexes.

• Record tuple changes in
WAL.
• Sync log entry with NVM.
• Perform modiٽcations on
the tuple.
• Sync tuple changes with
NVM.

DELETE • Record tuple pointer inWAL.
• Sync log entry with NVM.
• Discard entry from table and
indexes.
• Reclaim space at the end of
transaction.

• Remove tuple pointer from
dirty dir.
• Discard entry from sec-
ondary indexes.
• Recover tuple space immedi-
ately.

• Record tuple pointer inWAL.
• Sync log entry with NVM.
• Mark tuple tombstone in
MemTable.
• Reclaim space during com-
paction.

SELECT • Find tuple pointer using in-
dex/table.
• Retrieve tuple contents.

• Locate tuple pointer in appro-
priate dir.
• Fetch tuple contents from dir.

• Find tuple entries in relevant
LSM runs.
• Rebuild tuple by coalescing
entries.

Table .: Operations Performed by NVM-Aware Engines – An overview of the steps performed
by the NVM-aware storage engines, while executing primitive database operations. The syncing
mechanism is implemented using CLFLUSH and SFENCE instructions on the hardware emulator.

Storage: Figure .b depicts the architecture of the NVM-CoW engine. The storage area for tu-
ples is spread across separate pools for xed-sizedٽ and variable-length data. The engine maintains
the durability state of each slot in both pools similar to the NVM-InP engine. The NVM-CoW en-
gine stores the current and dirty directory of the non-volatile copy-on-write B+tree using the alloca-
tor interface. We modiٽed the B+tree from LMDB [] to handle modiٽcations at nerٽ granularity
to exploit NVM’s byte addressability. The engine maintains the master record using the allocator
interface to support efficient updates. When the system restarts, the engine can safely access the
current directory using the master record because that directory is guaranteed to be in a consistent
state. This is because the data structure is append-only and the data stored in the current directory
is never overwritten.

The execution steps for this engine are shown in Table .. The salient feature of this engine’s
design is that it avoids the transformation and copying costs incurred by the CoW engine. When
a transaction updates a tuple, the engine rstٽ makes a copy and then applies the changes to that
copy. It then records only the non-volatile tuple pointer in the dirty directory. The engine also
batches transactions to amortize the cost of persisting the current directory. To commit a batch of
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transactions, it rstٽ persists the changes performed by uncommitted transactions. It then persists
the contents of the dirty directory. Finally, it updates the master record using an atomic durable
write to point to that directory. The engine orders all of these writes using memory barriers to
ensure that only committed transactions are visible after the system restarts.

Recovery: As the NVM-CoW engine never overwrites committed data, it does not have a re-
covery process. When the system restarts, it rstٽ accesses the master record to locate the current
directory. After that, it can start handling transactions. The storage space consumed by the dirty
directory at the time of failure is asynchronously reclaimed by the NVM-aware allocator.

.. Log-structured Updates Engine (NVM-Log)
The Log engine batches all writes in the MemTable to reduce random accesses to durable stor-

age [, ]. The beneٽts of this approach, however, are not as evident for a NVM-only storage
hierarchy because the performance gap between sequential and random accesses is smaller. The
original log-structured engine that we described in Section .. incurs signiٽcant overhead from
periodically ushingپ MemTable to the lesystemٽ and compacting SSTables to bound read ampliٽ-
cation. Similar to the NVM-InP engine, the NVM-Log engine records all the changes performed
by transactions on a WAL stored on NVM.

OurNVM-Log engine avoids data duplication in the MemTable and theWAL as it only records
non-volatile pointers to tuple modiٽcations in the WAL. Instead of ushingپ MemTable out to the
lesystemٽ as a SSTable, it only marks the MemTable as immutable and starts a new MemTable.
This immutable MemTable is physically stored in the same way on NVM as the mutable MemTable.
The only difference is that the engine does not propagate writes to the immutable MemTables. We
also modiٽed the compaction process to merge a set of these MemTables to generate a new larger
MemTable. The NVM-Log engine uses a NVM-aware recovery protocol that has lower recovery
latency than its traditional counterpart.

Storage: As shown in Figure .c, the NVM-Log engine uses an LSM tree to store the database.
Each level of the tree contains a sorted run of data. Similar to the Log engine, this engine rstٽ
stores all the changes performed by transactions in the MemTable which is the topmost level of
the LSM tree. The changes include tuple contents for insert operation, updated eldsٽ for update
operation and tombstone markers for delete operation. When the size of the MemTable exceeds a
threshold, theNVM-Log engine marks it as immutable and starts a newMemTable. Wemodify the
periodic compaction process the engine performs for bounding read ampliٽcation to merge a set of
immutable MemTables and create a new MemTable. The engine constructs a Bloom lterٽ [] for
each immutable MemTable to minimize unnecessary index lookups.

Similar to the Log engine, the NVM-Log engine maintains a WAL. The purpose of the WAL is
not to rebuild the MemTable, but rather to undo the effects of uncommitted transactions from the
MemTable. An overview of the operations performed by theNVM-Log engine is shown in Table ..
Like the NVM-InP engine, this new engine also stores the WAL as a non-volatile linked list of
entries. When a transaction inserts a tuple, the engine rstٽ ushesپ the tuple to NVM and records
the non-volatile tuple pointer in a WAL entry. It then persists the log entry and marks the tuple
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as persisted. Finally, it adds an entry in the MemTable indexes. After the transaction commits, the
engine truncates the relevant log entry because the changes recorded in MemTable are durable. Its
logging overhead is lower than the Log engine as it records less data and maintains the WAL using
the allocator interface. The engine uses non-volatile B+trees [, ], described in Section .., as
MemTable indexes. Hence, it does not need to rebuild its indexes upon restarting.

Recovery: When the transaction commits, all the changes performed by the transaction are
persisted in the in-memory component. During recovery, theNVM-Log engine only needs to undo
the effects of uncommitted transactions on the MemTable. Its recovery latency is therefore lower
than the Log engine as it no longer needs to rebuild the MemTable.

. Experimental Evaluation
In this section, we present our analysis of the six different storage engine implementations. Our

DBMS testbed allows us to evaluate the throughput, the number of reads/writes to the NVM de-
vice, the storage footprint, and the time that it takes to recover the database after restarting. We
also use the perf toolkit to measure additional, lower-level hardware metrics of the system for each
experiment [].

The experiments were all performed on the NVM hardware emulator described in Appendix A.
The engines access NVM using the allocator and lesystemٽ interfaces of the emulator. We use the
Intelmemory latency checker [] to validate the emulator’s latency and bandwidth settings. We set
up the DBMS to use eight partitions in all of the experiments. We conٽgure the node size of the STX
B+tree and the CoW B+tree implementations to be  B and  KB respectively. All transactions
execute with the same serializable isolation level and durability guarantees.

.. Benchmarks
We use the YCSB and TPC-C benchmarks for our evaluation. A detailed description of these

benchmarks is provided in Appendix B.The tables in each database are partitioned in such way that
there are only single-partition transactions []. The database for the YCSB benchmark contains
 million tuples (∼ GB). For each workload mixture and skew setting pair, we pre-generate a xedٽ
workload of  million transactions that is divided evenly among the DBMS’s partitions. Using a
xedٽ workload that is the same across all the engines allows us to compare their storage footprints
and read/write ampliٽcation. We conٽgure the TPC-C workload to contain eight warehouses and
, items. We map each warehouse to a single partition. The initial storage footprint of the
database is approximately  GB.

.. Runtime Performance
We begin with an analysis of the impact of NVM’s latency on the performance of the storage en-

gines. To obtain insights that are applicable for various NVM technologies, we run the benchmarks
under three latency conٽgurations on the emulator: () default DRAM latency conٽguration (
ns), () a low NVM latency conٽguration that is × higher than DRAM latency ( ns), and () a
high NVM latency conٽguration that is × higher than DRAM latency ( ns). We execute all



.. EXPERIMENTAL EVALUATION 

InP CoW Log NVM-InP NVM-CoW NVM-Log

Low Skew High Skew
0

400000

800000

1200000

1600000

2000000

Th
ro

ug
hp

ut
(t

xn
/s

ec
) 2.6M 3.3M2.6M 3.3M2.0M

(a) Read-only Workload
Low Skew High Skew

0

400000

800000

1200000

1600000

2000000

Th
ro

ug
hp

ut
(t

xn
/s

ec
) 2.3M2.3M 2.8M

(b) Read-heavy Workload

Low Skew High Skew
0

400000

800000

1200000

1600000

2000000

Th
ro

ug
hp

ut
(t

xn
/s

ec
)

(c) Balanced Workload
Low Skew High Skew

0

400000

800000

1200000

1600000

2000000

Th
ro

ug
hp

ut
(t

xn
/s

ec
)

(d) Write-heavy Workload

Figure .: YCSB Performance (DRAM Latency) – The throughput of the engines for the YCSB
benchmark without any latency slowdown.

workloads three times on each engine and report the average throughput.

YCSB: Figures . to . present the throughput observed with the YCSB benchmark while vary-
ing theworkloadmixture and skew settings under different latency conٽgurations. We rstٽ consider
the read-only workload results shown in Figures .a, .a and .a. These results provide an upper
bound on performance since transactions do not modify the database and the engines therefore do
not need to ushپ changes from CPU caches to NVM during execution.

The most notable observation is that the NVM-InP engine is not faster than the InP engine for
both skew settings. This is because both engines perform reads using the allocator interface. The
CoW engine’s throughput is lower than the in-place updates engine because for every transaction,
it fetches the master record and then looks-up the tuple in the current directory. As theNVM-CoW
engine accesses the master record and the non-volatile copy-on-write B+tree efficiently using the
allocator interface, it is .–.× faster than theCoW engine. The Log engine is the slowest among all
the engines because it coalesces entries spread across different LSM tree components to reconstruct
tuples. The NVM-Log engine accesses the immutable MemTables using the allocator interface and
delivers .× higher throughput compared to its traditional counterpart. We see that increasing the
workload skew improves the performance of all the engines due to caching beneٽts. The beneٽts
are most evident for the InP andNVM-InP engines; they achieve .× higher throughput compared
to the low skew setting. The performance gains due to skew are minimal in case of the Log and
NVM-Log engines due to tuple coalescing costs.

We also observe that the performance gap between the two types of engines decreases in the
read-only workload when we increase the NVM latency. In the high latency conٽguration, the
NVM-CoW and theNVM-Log engines are .× and .× faster than their traditional counterparts.
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Figure .: YCSBPerformance (LowLatency) –The throughput of the engines for the YCSB bench-
mark under the low NVM latency conٽguration (×).

This is because the beneٽts of accessing data structures using the allocator interface are masked by
slower NVM loads. The engines’ throughput decreases sub-linearly with respect to the increased
NVM latency. For example, with × higher latency, the throughput of the engines only drop by –
.×. TheNVM-aware engines aremore sensitive to the increase in latency as they do not incur tuple
transformation and copying costs that dampen the effect of slower NVM accesses in the traditional
engines.

For the read-heavy workload, the results shown in Figures .b, .b and .b indicate that the
throughput decreases for all the engines compared to the read-only workload because they must
ushپ transactions’ changes toNVM.Unlike beforewhere the two engines had the sameperformance,
in this workload, we observe that the NVM-InP engine is .× faster than the InP engine due to
lower logging overhead. The performance of the CoW engine drops compared to its performance
on the read-only workload because of the overhead of persisting the current directory. The drop is
less prominent in the high skew workload because the updates are now concentrated over a few hot
tuples and therefore the number of copy-on-write B+tree nodes that are copied when creating the
dirty directory is smaller.

The beneٽts of our optimizations are more prominent for the balanced and write-heavy work-
loads. For the NVM-InP and the NVM-Log engines, we attribute this to lower logging overhead.
In case of the NVM-CoW engine, this is because it does not have to copy and transform tuples
from the lesystemٽ whenever it modiٽes them. This allows this engine to achieve .–.× higher
throughput than theCoW engine. The performance gap between the Log and theCoW engines de-
creases because the former incurs lower tuple coalescing costs in these workloads. The Log engine is
therefore .–.× faster than the CoW engine. It still lags behind the InP engine, however, because
batching updates in the MemTable are not as beneٽcial in the NVM-only storage hierarchy. With
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Figure .: YCSBPerformance (HighLatency) –The throughput of the engines for theYCSBbench-
mark under the high NVM latency conٽguration (×).

increased latency, the throughput of all the engines decreases less on these write-intensive work-
loads compared to the workloads that contain more reads. The throughput does not drop linearly
with increasing NVM latency. With an × increase in latency, the throughput of the engines only
drops by .–.×. We attribute this to the effects of caching and memory-level parallelism in the
emulator.

TPC-C: Figure . shows the engines’ throughput while executing TPC-C under different la-
tency conٽgurations. Among all the engines, the NVM-InP engine performs the best. The NVM-
aware engines are .–.× faster than the traditional engines. The NVM-CoW engine exhibits the
highest speedup of .× over the CoW engine. We attribute this to the write-intensive nature of
the TPC-C benchmark. Under the high NVM latency conٽguration, the NVM-aware engines de-
liver .–.× higher throughput than their traditional counterparts. These trends closely follow the
results for the write-intensive workload mixture in the YCSB benchmark. The beneٽts of our opti-
mizations, however, are not as signiٽcant as previously observed with the YCSB benchmark. This
is because the TPC-C transactions’ contain more complex program logic and execute more queries
per transaction.

.. Reads &Writes
We next measure the number of times that the storage engines access the NVM device while

executing the benchmarks. This is important because the number of write cycles per bit is limited
in different NVM technologies as shown in Table .. We compute these results using hardware per-
formance counters on the emulator with the perf framework []. These counters track the number
of loads (i.e. reads) from and stores (i.e. writes) to the NVM device during execution. In each trial,
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Figure .: TPC-C Throughput – The performance of the engines for TPC-C benchmark for all
three NVM latency settings.

the engines’ access measurements are collected after loading the initial database.

YCSB:The results for NVM reads andwrites while executing the YCSB benchmark are shown in
Figures . and ., respectively. In the read-onlyworkload, we observe that theLog engine performs
themost load operations due to tuple coalescing. TheNVM-aware engines perform up to 53% fewer
loads due to better cache locality as they do not perform any tuple deserialization operations. When
we increase the workload skew, there is a signiٽcant drop in the NVM loads performed by all the
engines. We attribute this to caching of hot tuples in the CPU caches.

In thewrite-intensiveworkloads, we observe that theCoW engine nowperforms themostNVM
stores. This is because it needs to copy several pages while creating the dirty directory. This engine
also performs the largest number of load operations. The copyingmechanism itself requires reading
data off NVM. Further, the I/O overhead of maintaining this directory reduces the number of hot
tuples that can reside in the CPU caches.

On the write-heavy workload, the NVM-aware engines perform –% fewer stores compared
to their traditional counterparts. We attribute this to their lightweight durability mechanisms and
smaller storage footprints that enable them to make better use of hardware caches. Even with in-
creased workload skew, the NVM-aware engines perform –% fewer NVM writes. We note that
the NVM accesses performed by the storage engines correlate inversely with the throughput deliv-
ered by these engines as shown in Section ...

TPC-C: Figure . presents the NVM accesses performed while executing the TPC-C bench-
mark. NVM-aware engines perform –% fewer writes compared to the traditional engines. We
see that the access patterns are similar to that observed with the write-intensive workload mixture
in the YCSB benchmark. The Log engine performs more writes in this benchmark compared to the
YCSB benchmark because it has more indexes. This means that updating a tuple requires updating
several indexes as well.

.. Recovery
In this experiment, we evaluate the recovery latency of the storage engines. For each bench-

mark, we rstٽ execute a xedٽ number of transactions and then force a hard shutdown of the DBMS
(SIGKILL). We then measure the amount of time for the system to restore the database to a consis-
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Figure .: YCSB Reads – The number of load operations executed by the engines while running
the YCSB workload.

tent state. That is, a state where the effects of all committed transactions are durable, and the effects
of uncommitted transactions are removed. The number of transactions that need to be recovered
by the DBMS depends on the frequency of checkpointing for the InP engine and on the frequency
of ushingپ the MemTable for the Log engine. The CoW and NVM-CoW engines do not perform
any recovery mechanism after the OS or DBMS restarts because they never overwrite committed
data. They have to perform garbage collection to clean up the previous dirty directory. This is done
asynchronously and does not have a signiٽcant impact on the throughput of the DBMS.

YCSB: The results in Figure .a show the recovery measurements for the YCSB benchmark.
We do not show the CoW and NVM-CoW engines as they never need to recover. We observe
that the latency of the InP and Log engines grows linearly with the number of transactions that
need to be recovered. This is because these engines rstٽ redo the effects of committed transactions
before undoing the effects of uncommitted transactions. In contrast, theNVM-InP andNVM-Log
engines’ recovery time is independent of the number of transactions executed. These engines only
need to undo the effects of transactions that are active at the time of failure and not the ones since
the last checkpoint or .ushپ So the NVM-aware engines have a short recovery that is always less
than a second.

TPC-C:The results for the TPC-C benchmark are shown in Figure .b. The recovery latency
of theNVM-InP andNVM-Log engines is slightly higher than that in the YCSB benchmark because
the TPC-C transactions perform more operations. However, the latency is still independent of the
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Figure .: YCSBWrites –The number of store operations executed by the engines while running
the YCSB workload.

number of transactions executed unlike the traditional engines because the NVM-aware engines
ensure that the effects of committed transactions are persisted immediately.

.. Execution Time Breakdown
We next analyze the time that the engines spend in their internal components during execution.

Weonly examineYCSBwith low skew and lowNVM latency conٽguration, which allows us to better
understand the beneٽts and limitations of our implementations. We use event-based sampling with
the perf framework [] to track the cycles executed within the engine’s components. We start this
proٽling after loading the initial database.

The engine’s cycles are classiٽed into four categories: () storage management operations with
the allocator and lesystemٽ interfaces, () recoverymechanisms like logging, () index accesses and
maintenance, and () other miscellaneous components. This last category is different for each en-
gine; it includes the time spent in synchronizing the engine’s components and performing engine-
speciٽc tasks, such as compaction in case of the Log and NVM-Log engines. As our testbed uses a
lightweight concurrency control mechanism, these results do not contain any overhead from lock-
ing or latching [].

The most notable result for this experiment, as shown in Figure ., is that on the write-heavy
workload, the NVM-aware engines only spend –% of their time on recovery-related tasks com-
pared to the traditional engines that spend as much as % of their time on them. We attribute this
to the lower logging overhead in the case of theNVM-InP andNVM-Log engines, and the reduced
cost of committing the dirty directory in theNVM-CoW engine. We observe that the proportion of
the time that the engines spend on recovery mechanisms increases as the workload becomes write-
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Figure .: TPC-C Reads & Writes – The number of load and store operations executed by the
engines while running the TPC-C benchmark.
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Figure .: Recovery Latency – The amount of time that the engines take to restore the database
to a consistent state after a restart.

intensive. This explains why the beneٽts of our optimizations are more prominent for the balanced
and write-heavy workloads.

These results highlight the beneٽts of optimizing the memory allocator to leverage NVM’s char-
acteristics. This is because the NVM-aware engines spend most of their time performing storage
management operations since their recovery mechanisms are so efficient. Interestingly, the engines
performing copy-on-write updates spend a higher proportion of time on recovery-related tasks com-
pared to other engines, particularly on the read-heavy workload. This highlights the cost of creating
and maintaining the dirty directory for large databases, even using an efficient CoW B+tree. An-
other observation from Figure . is that the Log andNVM-Log engines spend a higher fraction of
their time accessing and maintaining indexes. This is because they performmultiple index lookups
on the LSM tree to reconstruct tuples. We observe that the NVM-Log engine spends less time per-
forming the compaction process compared to the Log engine. This is due to the reduced overhead
of maintaining the MemTables using the allocator interface.
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(d) Write-heavy Workload

Figure .: Execution Time Breakdown – The time that the engines spend in their internal com-
ponents when running the YCSB benchmark.
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Figure .: Storage Footprint – The amount of storage occupied in NVM by the internal compo-
nents of the engines.

.. Storage Footprint
In this experiment, we compare the engines’ usage of NVM storage at runtime. The storage

footprint of an engine is the amount of space that it uses for storing tables, logs, indexes, and other
internal data structures. This metric is important because we expect that the rstٽ NVM products
will initially have a higher cost than current storage technologies []. For this experiment, we
periodically collect statistics maintained by our allocator and the lesystemٽ meta-data during the
workload execution. This is done after loading the initial database for each benchmark. We then
report the peak storage footprint of each engine. For all of the engines, we allow their background
processes (e.g., group commit, checkpointing, garbage collection, compaction) to execute while we
collect these measurements.

YCSB:We use the balanced workload mixture and low skew setting for this experiment. The
initial size of the database is  GB. The results shown in Figure .a indicate that the CoW engine
has the largest storage footprint. Since this workload contains transactions that modify the database
and tuples are accessed more uniformly, this engine incurs high overhead from continually creating
new dirty directories and copying tuples. The InP and Log engines rely on logging to improve their
recovery latency at the expense of a larger storage footprint. The InP engine checkpoints have a high
compression ratio and therefore consume less space.

The NVM-aware engines have smaller storage footprints compared to the traditional engines.
This is because the NVM-InP and NVM-Log engines only record non-volatile pointers to tuples
and non-inlined eldsٽ in the WAL. As such, they consume –% less storage space than their
traditional counterparts. For the CoW engine, its large storage footprint is due to duplicated data
in its internal cache. In contrast, the NVM-CoW engine accesses the non-volatile copy-on-write
B+tree directly using the allocator interface, and only records non-volatile tuple pointers in this
tree and not entire tuples. This allows it to use % less storage space.
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Insert Update Delete

InP
Memory : T
Log : T
Table : T

Memory : F + V
Log :  × ( F + V )
Table : F + V

Memory : є
Log : T
Table : є

CoW
Memory : B + T ∥ T
Log : 
Table : B ∥ T

Memory : B + F + V ∥ F + V
Log : 
Table : B ∥ F + V

Memory : B + є ∥ є
Log : 
Table : B ∥ є

Log
Memory : T
Log : T
Table : θ × T

Memory : F + V
Log :  * ( F + V )
Table : θ × ( F + V )

Memory : є
Log : T
Table : є

NVM-InP
Memory : T
Log : p
Table : p

Memory : F + V + p
Log : F + p
Table : 

Memory : є
Log : p
Table : є

NVM-CoW
Memory : T
Log : 
Table : B + p ∥ p

Memory : T + F + V
Log : 
Table : B + p ∥ p

Memory : є
Log : 
Table : B + є ∥ є

NVM-Log
Memory : T
Log : p
Table : θ × T

Memory : F + V + p
Log : F + p
Table : θ × ( F + p )

Memory : є
Log : p
Table : є

Table .: Analytical Cost Model – Cost model for estimating the amount of data written to NVM,
while performing insert, update, and delete operations, by each engine.

TPC-C: The graph in Figure .b shows the storage footprint of the engines while executing
TPC-C. For this benchmark, the initial size of the database is  GB, and it grows to . GB. Trans-
actions inserting new tuples increase the size of the internal data structures in the CoW and Log
engines (i.e., the copy-on-write B+trees and the SSTables stored in the .(lesystemٽ By avoiding
unnecessary data duplication using NVM’s persistence property, the NVM-aware engines have –
% smaller storage footprints. The space savings are more signiٽcant in this benchmark because
the workload is write-intensive with longer running transactions. Thus, the logs in the InP and the
Log engines growmore quickly compared to the small undo logs in their NVM-aware counterparts.

.. Analytical Cost Model
We next present a cost model to estimate the amount of data written to NVM per operation,

by the traditional and NVM-optimized storage engines. This model highlights the strengths and
weaknesses of these engines.

Webegin the analysis by stating the assumptionswe use to simplify themodel. First, the database
operations are presumed to be always successful. The amount of data written to NVM while per-
forming an aborted operation will depend on the stage at which the operation fails. We therefore
restrict our analysis to only successful operations. Second, the engines handle xed-lengthٽ and
variable-length tuple eldsٽ differently. The xed-lengthٽ eldsٽ are stored in-line, while the variable-
length eldsٽ are stored separately. To illustrate this difference, we assume that the update operation
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alters one xed-lengthٽ eldٽ and one variable-length .eldٽ Note that the tuple itself can contain any
number of xed-lengthٽ and variable-length eldsٽ depending on the database schema.

Let us now describe some notation. We denote the size of the tuple by T . This depends on the
speciٽc table on which the engine performs the database operation. Let the size of the xed-lengthٽ
eldٽ and the variable-length eldٽ altered by the update operation be F and V , respectively. These
parameters depend on the table columns that are modiٽed by the engine. The size of a pointer is
represented by p. The NVM-optimized engines use non-volatile pointers to tuples and variable-
length tuple eldsٽ to reduce data duplication. We use θ to denote the write-ampliٽcation factor of
the engines performing log-structured updates. θ could be attributed to the periodic compaction
mechanism that these engines perform to bound read-ampliٽcation and depends on the type of
LSM tree. Let B represent the size of a node in the CoW B+tree used by the CoW and NVM-CoW
engines. We indicate small xed-lengthٽ writes to NVM, such as those used to maintain the status
of tuple slots, by є.

Given this notation, we present the costmodel in Table .. The data written toNVM is classiٽed
into three categories: () memory, () log, and () table storage. We now describe some notable
entries in the table. While performing an insert operation, the InP engine writes three physical
copies of a tuple. In contrast, theNVM-InP engine only records the tuple pointer in the log and table
data structures onNVM. In the case of theCoW andNVM-CoW engines, there are two possibilities
depending on whether a copy of the relevant B+tree node is absent or present in the dirty directory.
For the latter, the engines do not need to make a copy of the node before applying the desired
transformation. We distinguish these two cases in the relevant table entries using vertical bars. Note
that these engines have no logging overhead. The performance gap between the traditional and the
NVM-optimized engines, particularly for write-intensive workloads, directly follows from the cost
model presented in the table.

.. Impact of B+Tree Node Size
We examine the sensitivity of our experimental results to size of the B+tree nodes in this sec-

tion. The engines performing in-place and log-structured updates use the STX B+tree [] for
maintaining indexes, while the engines performing copy-on-write updates use the append-only
B+tree [, , ] for storing the directories. In all our experiments, we use the default node
size for both the STX B+tree ( B) and copy-on-write B+tree ( KB) implementations. For this
analysis, we vary the B+tree node size and examine the impact on the engine’s throughput, while
executing different YCSB workloads under low NVM latency (×) and low workload skew settings.
We restrict our analysis to the NVM-aware engines as they are representative of other engines.

The graphs, shown in Figure ., indicate that the impact of B+tree node size is more signiٽcant
for the CoW B+tree than the STX B+tree. In case of the CoW B+tree, we observe that increasing
the node size improves the engine’s performance on read-heavy workloads. This can be attributed
to smaller tree depth, which in turn reduces the amount of indirection in the data structure. It also
reduces the amount of metadata that needs to be ushedپ to NVM to ensure recoverability. How-
ever, the engine’s performance on write-heavy workloads drops as the B+tree nodes get larger. This
is because of the copying overhead when performing updates in the dirty directory of the CoW
B+tree. We found that the engines performing copy-on-write updates perform well on both types
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(c) NVM-Log engine (STX B+tree)

Figure .: B+Tree Node Size –The impact of B+tree node size on the performance of the NVM-
aware engines. The engines run theYCSBworkloads under lowNVMlatency (×) and lowworkload
skew settings.

of workloads when the node size is  KB. With the STX B+tree, our experiments suggest that the
optimal node size is  B. This setting provides a nice balance between cache misses, instructions
executed, TLB misses, and space utilization []. Hence, in all of our experiments in Section ., we
conٽgured the B+trees used by all the engines to their optimal performance settings.

.. NVM Instruction Set Extensions
In this experiment, we analyse the impact of newly proposed NVM-related instruction set ex-

tensions [] on the performance of the engines. As we describe in Appendix A., we currently
implement the sync primitive using the SFENCE and CLFLUSH instructions. We believe that these
new extensions, such as the PCOMMIT and CLWB instructions [], can be used to ensure the cor-
rectness and improve the performance of this primitive in future processors because they are more
efficient and provide better control for how a DBMS interacts with NVM.

The PCOMMIT instruction guarantees the durability of stores to persistent memory. When the
data is written back from the CPU caches, it can still reside in the volatile buffers on the memory
controller. After the PCOMMIT instruction is executed, the store must become persistent. The CLWB
instructionwrites back a target cache line toNVMsimilar to the CLFLUSH instruction. It is, however,
different in two ways: () it is a weakly-ordered instruction and can thus perform better than the
strongly-ordered CLFLUSH instruction, and () it can retain a copy of the line in the cache hierarchy
in exclusive state, thereby reducing the possibility of cache misses during subsequent accesses. In
contrast, the CLFLUSH instruction always invalidates the cache line, which means that data has to
be retrieved again from NVM.
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Figure .: NVM Instruction Set Extensions – The impact of sync primitive latency on the per-
formance of the NVM-aware engines. The engines run the YCSB workloads under low NVM la-
tency (×) and low skew settings. Performance obtained using the current primitive, built using the
SFENCE and CLFLUSH instructions, is shown on the left side of each graph to serve as a baseline.
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To understand the performance impact of the sync primitive comprising of PCOMMIT and CLWB
instructions, we emulate its latency using RDTSC and PAUSE instructions. We note that our software-
based latency emulation does not capture all the complex interactions in real processors. However,
it still allows us to perform a usefulwhat-if analysis before these instruction set extensions are avail-
able. We vary the latency of the sync primitive from – ns and compare it with the currently
used sync primitive. Since the traditional engines use PMFS [], which is loaded in as a kernel
module, they require more changes for this experiment. We therefore restrict our analysis to the
NVM-aware engines. We execute different YCSB workloads under low NVM latency (×) and low
workload skew settings.

The results in Figure . show that the engines are sensitive to the performance of the sync
primitive. Performance measurements of the engines while using the current sync primitive are
shown on the left side of each graph to serve as a baseline. We observe that the throughput of all
the engines drops signiٽcantly with the increasing sync primitive latency. This is expected as these
engines make extensive use of this primitive in their non-volatile data structures. The impact is
therefore more pronounced on write-intensive workloads.

We note that theNVM-CoW engine is slightly less sensitive to latency of the sync primitive than
the NVM-InP and NVM-Log engines. We attribute this to the fact that this engine primarily uses
data duplication to ensure recoverability and only uses the sync primitive to ensure the consistency
of the CoW B+tree. In case of the NVM-Log engine, its performance while executing the write-
heavy workload is interesting. Its throughput becomes less than the throughput on the balanced
workload only when the latency of the sync primitive is above  ns. This is because the engine
needs to reconstruct tuples from entries spread across different LSM tree components.

We conclude that the trade-offs that we identiٽed in these NVM-aware engines in the main
body of the chapter still hold at higher sync primitive latencies. Overall, we believe that these new
instructions will be required to ensure recoverability and improve the performance of future NVM-
aware DBMSs.

.. Discussion
Our analysis shows that the NVM access latency has the most impact on the runtime perfor-

mance of the engines, more so than the amount of skew or the number of modiٽcations to the
database in the workload. This difference due to latency is more pronounced with the NVM-aware
variants; their absolute throughput is better than the traditional engines, but longer latencies cause
their performance to dropmore signiٽcantly. This behavior is because heavyweight durabilitymech-
anisms no longer bottleneck them.

The NVM-aware engines also perform fewer store operations, which will help extend NVM de-
vice lifetimes. We attribute this to the reduction in redundant data that the engines store when a
transaction modiٽes the database. Using the allocator interface with non-volatile pointers for inter-
nal data structures also allows them to have a smaller storage footprint. This in turn avoids polluting
the CPU’s caches with unnecessary copying and transformation operations. It also improves the re-
covery times of the engines that use a WAL since they no longer record redo information.

Overall, we ndٽ that the NVM-InP engine performs the best across a broad set of workload
mixtures and skew settings for all NVM latency conٽgurations. The NVM-CoW engine did not
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perform as well for write-intensive workloads, but may be a better tٽ for DBMSs that support non-
blocking read-only transactions. For theNVM-Log engine, many of its design assumptions are not
copacetic for a single-tier storage hierarchy. The engine is essentially performing in-place updates
like the NVM-InP engine but with the additional overhead of maintaining its legacy components.

. Summary
This chapter presented the fundamentals of storage and recovery methods in OLTP DBMSs

running on a NVM-only storage hierarchy. We implemented three storage engines in a modular
DBMS testbed with different architectures: () in-place updates, () copy-on-write updates, and ()
log-structured updates. We then developed optimized variants of each of these engines that better
make use of NVM’s characteristics.

Our experimental analysis with two different OLTP workloads showed that our NVM-aware
engines outperform the traditional engines by up to .× while reducing the number of writes to
the storage device by more than half on write-intensive workloads. We found that the NVM access
latency has the most impact on the runtime performance of the engines, more so than the workload
skew or the number of modiٽcations to the database in the workload. Our evaluation showed that
the NVM-aware in-place updates engine achieved the best throughput among all the engines with
the least amount of wear on the NVM device.

In this chapter, we focused on a NVM-only storage hierarchy. It is possible today to replace
DRAM with NV-DIMM [], and run an NVM-only DBMS unmodiٽed on this storage system.
Further, some NVM technologies, such as STT-RAM [], are expected to deliver lower read and
write latencies than DRAM. NVM-only DBMSs would be a good tٽ for these technologies.

However, for slower NVM technologies, such as PCM [, , ] and RRAM [, ], a two-
tier storage system with DRAM and NVM is another viable alternative. We will present a logging
and recovery protocol designed for such a system in the next chapter.
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Logging and Recovery

ADBMSmust guarantee the integrity of a database against application, operating system, and device
failures []. It ensures the durability of updates made by a transaction by writing them out to
durable storage, such as SSD, before returning an acknowledgment to the application. Such storage
devices, however, aremuch slower thanDRAM, especially for randomwrites, and only support bulk
data transfers as blocks.

During transaction processing, if the DBMS were to overwrite the contents of the database be-
fore committing the transaction, then it must perform random writes to the database at multiple lo-
cations on disk. DBMSs try tominimize randomwrites to disk by ushingپ the transaction’s changes
to a separate log on disk with only sequential writes on the critical path of the transaction. This
method is referred to as write-ahead logging (WAL).

NVMupends the design assumptions underlying theWAL protocol. Although the performance
advantages of NVM are obvious, it is still not clear how to make full use of it in a DBMS running on
a hybrid storage hierarchy with both DRAM and NVM. In Chapter , we show that optimizing the
storage methods for NVM improves both the DBMS performance and the lifetime of the storage
device. These techniques, however, cannot be employed in a hybrid storage hierarchy, as they target
a NVM-only system.

Another line of research focuses on using NVM only for storing the log and managing the
database still on disk []. This is a more cost-effective solution, as the cost of NVM devices are
expected to be higher than that of disk. But this approach only leverages the low-latency sequential
writes of NVM, and does not exploit its ability to efficiently support randomwrites and ne-grainedٽ
data access. Given this, we contend that it is better to employ logging and recovery algorithms that
are designed for NVM.

We designed such a protocol that we call write-behind logging (WBL). WBL not only improves
the runtime performance of the DBMS, but it also enables it to recovery nearly instantaneously
from failures. Theway thatWBL achieves this is by trackingwhat parts of the database have changed
rather than how it was changed. Using this loggingmethod, theDBMS can directly ushپ the changes
made by transactions to the database instead of recording them in the log. By ordering writes to
NVM correctly, the DBMS can guarantee that all transactions are durable and atomic. This allows
the DBMS to write fewer data per transaction, thereby improving a NVM device’s lifetime.


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To evaluate our approach, we implemented it in the Peloton [] in-memory DBMS and com-
pared it against WAL using three storage technologies: NVM, SSD, and HDD. These experiments
show thatWBLwithNVMimproves theDBMS’s throughput by .×while also reducing the database
recovery time and the overall system’s storage footprint. Our results also show that WBL only
achieves this when the DBMS uses NVM; the DBMS actually performs worse thanWALwhenWBL
is deployed on the slower, block-oriented storage devices (i.e., SSD, HDD). This is expected since
our protocol is explicitly designed for fast, byte-addressable NVM.

The remainder of this chapter is organized as follows. We begin in Section . with an overview
of the recovery principles of a DBMS. We then discuss logging and recovery implementations in
modern DBMSs. We start with the ubiquitous WAL protocol in Section ., followed by our new
WBL method in Section .. In Section ., we discuss how this logging protocol can be used in
replicated environments. We present our experimental evaluation in Section ..

. Recovery Principles
A DBMS guarantees the integrity of a database by ensuring () that all of the changes made by

committed transactions are durable and () that none of the changes made by aborted transactions
or transactions that were running at the point of a failure are visible after recovering from the failure.
These are referred to as durability and atomicity constraints, respectively [, ].

There are three types of failures that a DBMS must protect against: () transaction failure, ()
system failure, and () media failure. The rstٽ happens when a transaction is aborted either by the
DBMS due to a conپict with another transaction or because the application chose to do so. System
failures occur due to bugs in the DBMS/OS or hardware failures. Finally, in the case of a data loss
or corruption on durable storage, the DBMS must recover the database from an archival version.

Almost every DBMS adopts the steal and no-force policies for managing the data stored in the
volatile buffer pool and the database on durable storage []. The former policy allows a DBMS to
ushپ the changes of uncommitted transactions at any time. With the latter, theDBMS is not required
to ensure that the changes made by a transaction are propagated to the database when it commits.
Instead, the DBMS records a transaction’s changes to a log on durable storage before sending an
acknowledgment to the application. Further, it ushesپ the modiٽcations made by uncommitted
transactions to the log before propagating them to the database.

During recovery, the DBMS uses the log to ensure the atomicity and durability properties. The
recovery algorithm reverses the updates made by failed transactions using their undo information
recorded in the log. In case of a system failure, the DBMS rstٽ ensures the durability of updates
made by committed transactions by reapplying their redo information in the log on the database.
Afterward, the DBMS uses the log’s undo information to remove the effects of transactions that
were aborted or active at the time of the failure. DBMSs can handle media failures by storing the
database, the log, and the archival versions of the database (i.e., checkpoints) on multiple durable
storage devices.

To appreciate why WBL is better than WAL when using NVM, we now discuss how WAL is
implemented in both disk-oriented and in-memory DBMSs.
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Figure .: Tuple Version Meta-data – The additional data that the DBMS stores to track tuple
versions in an MVCC protocol.

. Write-Ahead Logging
Themost well-known recovery method based onWAL is the ARIES protocol developed by IBM

in the s []. ARIES is a physiological logging protocol where the DBMS combines a physi-
cal redo process with a logical undo process []. During normal operations, the DBMS records
transactions’ modiٽcations in a durable log that it uses to restore the database after a crash.

In this section, we provide an overview of ARIES-styleWAL.We begin with discussing the orig-
inal protocol for a disk-oriented DBMS and then describe optimizations for in-memory DBMSs.
Our discussion is focused on DBMSs that use the multi-version concurrency control (MVCC) pro-
tocol for scheduling transactions [, ]. MVCC is the most widely used concurrency control
scheme in DBMSs developed in the last decade, including Hekaton [], MemSQL, and HyPer. The
DBMS records the versioning meta-data alongside the tuple data, and uses it determine whether a
tuple version is visible to a transaction. When a transaction starts, the DBMS assigns it a unique
transaction identiܦer from a monotonically increasing global counter. When a transaction com-
mits, the DBMS assigns it a unique commit timestamp by incrementing the timestamp of the last
committed transaction. Each tuple contains the following meta-data:
● TxnId: A placeholder for the identiٽer of the transaction that currently holds a latch on the
tuple.
● BeginCTS&EndCTS:The commit timestamps fromwhich the tuple becomes visible and after
which the tuple ceases to be visible, respectively.
● PreV: Reference to the previous version (if any) of the tuple.
Figure . shows an example of this versioning meta-data. A tuple is visible to a transaction if

and only if its last visible commit timestamp falls within the BeginCTS and EndCTS eldsٽ of the
tuple. The DBMS uses the previous version eldٽ to traverse the version chain and access the earlier
versions, if any, of that tuple. In Figure ., the rstٽ two tuples are inserted by the transaction with
commit timestamp 1001. The transaction with commit timestamp 1002 updates the tuple with
ID 101 and marks it as deleted. The newer version is stored with ID 103. Note that the PreV eldٽ
of the third tuple refers to the older version of tuple. At this point in time, the transaction with
identiٽer 305 holds a latch on the tuple with ID 103. See [, ] for a more detailed description of
in-memory MVCC.

We now begin with an overview of the runtime operation of the DBMS during transaction pro-
cessing and its commit protocol. Table . lists the steps in aWAL-based DBMS to execute database
operations, process transaction commits, and take checkpoints. Later, in Section ., we present our
WBL protocol for NVM systems.
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Figure .: Structure ofWAL Record – Structure of the log record constructed by the DBMS while
using the WAL protocol.

.. Runtime Operation
For each modiٽcation that a transaction makes to the database, the DBMS creates a log record

that corresponds to that change. As shown in Figure ., a log record contains a unique log sequence
number (LSN), the operation associated with the log record (i.e., INSERT, UPDATE, or DELETE), the
transaction identiٽer, and the table modiٽed. For INSERT and UPDATE operations, the log record
contains the location of the inserted tuple or the newer version. Each record also contains the after-
images (i.e., new values) of the tuplesmodiٽed, as shown in Table .. In case of UPDATE and DELETE
operations, it contains the location of the older version or the deleted tuple, respectively. This is
known as the before-images (i.e., old values) of the modiٽed tuples and is used to ensure failure
atomicity.

A disk-oriented DBMS maintains two meta-data tables at runtime that it uses for recovery. The
rstٽ is the dirty page table (DPT) that contains the modiٽed pages that are in DRAM but have not
been propagated to durable storage. Each of these pages has an entry in the DPT that marks the
log record’s LSN of the oldest transaction that modiٽed it. This allows the DBMS to identify the log
records to replay during recovery to restore the page. The second table is the active transaction table
(ATT) that tracks the status of the running transactions. This table records the LSN of the latest
log record of all active transactions. The DBMS uses this information to undo their changes during
recovery.

To bound the amount of work to recover a database after a restart, the DBMS periodically takes
checkpoints at runtime. ARIES uses fuzzy checkpointing where the checkpoint can contain the ef-
fects of both committed and uncommitted transactions []. Consequently, the DBMS must write
out the DPT and ATT as a part of the checkpoint so that it can restore committed transactions
and undo uncommitted transactions during recovery. After all the log records associated with a
transaction are safely persisted in a checkpoint, the DBMS can remove those records from the log.

With an in-memory DBMS, transactions access tuples through pointers without indirection
through a buffer pool []. The ARIES protocol can, therefore, be simpliٽed and optimized for this
architecture. Foremost is that a MVCC DBMS does not need to perform fuzzy checkpointing [].
Instead, it constructs transactionally-consistent checkpoints that only contain the changes of com-
mitted transactions by skipping the modiٽcations made by transactions that began after the check-
point operation started. Hence, a MVCC DBMS neither stores the before-images of tuples in the
log nor tracks dirty data (i.e., DPT) at runtime. Its recovery component, however, maintains an
ATT that tracks the LSN of the latest log record written by each active transaction.

.. Commit Protocol
We now describe how aWAL-based DBMS processes and commits transactions. When a trans-

action begins, the DBMS creates an entry in the ATT and sets it status as active. For each modiٽca-
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Figure .: WAL Recovery Protocol –The phases of the recovery protocol.

tion that the transaction makes to the database, the DBMS constructs the corresponding log record
and appends it to the log buffer. It then updates the LSN associated with the transaction in the ATT.

The DBMS ushesپ all the log records associated with a transaction to durable storage (using the
fsync command) before committing the transaction. This is known as synchronous logging. Finally,
the DBMSmarks the status of the transaction in the ATT as committed. The ordering of writes from
the DBMS to durable storage while employingWAL is presented in Figure .. The changes are rstٽ
applied to the table heap and the indexes residing in volatile storage. At the time of commit, WAL
requires that the DBMS ushپ all the modiٽcations to the durable log. Then, at some later point, the
DBMS writes the changes to the database in its next checkpoint.

As transactions tend to generate multiple log records that are each small in size, most DBMSs
use group commit to minimize the I/O overhead []. It batches the log records for a group of
transactions in a buffer and then ushesپ them together with a single write to durable storage. This
improves the transactional throughput and amortizes the synchronization overhead across multiple
transactions.

.. Recovery Protocol
The traditional WAL recovery algorithm (see Figure .) comprises of three phases: () analysis,

() redo, and () undo. In the analysis phase, the DBMS processes the log starting from the latest
checkpoint to identify the transactions that were active at the time of failure and the modiٽcations
associated with those transactions. In the subsequent redo phase, the DBMS processes the log for-
ward from the earliest log record that needs to be redone. Some of these log records could be from
transactions that were active at the time of failure as identiٽed by the analysis phase. During the -ٽ
nal undo phase, the DBMS rolls back uncommitted transactions (i.e., transactions that were active at
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Figure .: WAL Example – Contents of the WAL during recovery.

the time of failure) using the information recorded in the log. This recovery algorithm is simpliٽed
for the MVCC DBMS. During the redo phase, the DBMS skips replaying the log records associated
with uncommitted transactions. This obviates the need for an undo phase.

Figure . shows the contents of the log after a system failure. The records contain the after-
images of the tuplesmodiٽed by the transactions. At the time of system failure, only transactions 80
and 81 are uncommitted. During recovery, the DBMS rstٽ loads the latest checkpoint that contains
an empty ATT. It then analyzes the log to identify which transactions must be redone and which
are uncommitted. During the redo phase, it reapplies the changes made by transactions committed
since the latest checkpoint. It skips the records associated with the uncommitted transactions 80
and 81. After recovery, the DBMS can start executing new transactions.

Correctness: For active transactions, the DBMS maintains the before-images of the tuples they
modiٽed. This is sufficient to reverse the changes of any transaction that aborts. TheDBMS ensures
that the log records associated with a transaction are forced to durable storage before it is commit-
ted. To handle system failures during recovery, the DBMS allows for repeated undo operations.
This is feasible because it maintains the undo information as before-images and not in the form of
compensation log records [, ].

Although WAL supports efficient transaction processing when memory is volatile and durable
storage cannot support fast random writes, it is inefficient for NVM storage []. Consider a trans-
action that inserts a tuple into a table. The DBMS rstٽ records the tuple’s contents in the log, and
it later propagates the change to the database. With NVM, the logging algorithm can avoid this
unnecessary data duplication. We now describe the design of such an algorithm geared towards a
DBMS running on a hybrid storage hierarchy comprising of DRAM and NVM.
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Runtime Operation Commit Processing Checkpointing

WAL • Execute the operation.
• Write changes to table
heap on DRAM.
• Construct a log record
based on operation (con-
tains after-image of tuple).
• Append log record to log
entry buffer.

• Collect log entries from
log entry buffers.
• Sync the collected entries
on durable storage.
• Mark all the transactions
as committed.
• Inform workers about
group commit.

• Construct checkpoint
containing after-images of
visible tuples.
• Write out transactionally
consistent checkpoint to
durable storage.
• Truncate unnecessary log
records.

WBL • Execute the operation.
• Write changes to table
heap on DRAM.
• Add an entry to the DTT
for that modiٽcation (does
not contain after-image of
tuple).

• Determine dirty tuples
using the DTT.
• Compute cp and cd for
this group commit.
• Sync dirty blocks to
durable storage.
• Sync a log entry contain-
ing cp and cd .
• Inform workers about
group commit.

• Construct a checkpoint
containing only the active
commit identiٽer gaps (no
after-images).
• Write out transactionally
consistent checkpoint to
durable storage.
• Truncate unnecessary log
records.

Table .: Operations Performed by DBMS: – An overview of the steps performed by the DBMS
during its runtime operation, commit processing, and checkpointing.

. Write-Behind Logging

Write-behind logging (WBL) leverages fast, byte-addressableNVMto reduce the amount of data
that the DBMS records in the log when a transaction modiٽes the database. The reason why NVM
enables a better logging protocol than WAL is three-fold. Foremost, the write throughput of NVM
is more than an order of magnitude higher than that of an SSD or HDD. Second, the gap between
sequential and random write throughput of NVM is smaller than that of older storage technologies.
Finally, individual bytes in NVM can be accessed by the processor, and hence there is no need to
organize tuples into pages or go through the I/O subsystem.

WBL reduces data duplication by ushingپ changes to the database in NVMduring regular trans-
action processing. For example, when a transaction inserts a tuple into a table, the DBMS records
the tuple’s contents in the database before it writes any associated meta-data in the log. Thus, the
log is always (slightly) behind the contents of the database, but the DBMS can still restore it to the
correct and consistent state after a restart.

We begin this section with an overview of the runtime operations performed by a WBL-based
DBMS.We then present its commit protocol and recovery algorithm. Table . provides a summary
of the steps during runtime, recovery, and checkpointing. Although our description of WBL is for
MVCC DBMSs, we also discuss how to adapt the protocol for a single-version system.
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Figure .: Structure ofWBL Record – Structure of the log record constructed by the DBMS while
using the WBL protocol.

.. Runtime Operation
WBLdiffers fromWAL inmanyways. Foremost is that theDBMSdoes not construct log records

that contain tuple modiٽcations at runtime. This is because the changes made by transactions are
guaranteed to be already present on durable storage before they commit. As transactions update
the database, the DBMS inserts entries into a dirty tuple table (DTT) to track their changes. Each
entry in the DTT contains the transaction’s identiٽer, the table modiٽed, and additional meta-data
based on the operation associated with the change. For INSERT and DELETE, the entry only contains
the location of the inserted or deleted tuple, respectively. Since UPDATEs are executed as a DELETE
followed by an INSERT in MVCC, the entry contains the location of the new and old version of
the tuple. DTT entries never contain the after-images of tuples and are removed when their corre-
sponding transaction commits. As in the case of WAL, the DBMS uses this information to ensure
failure atomicity. But unlike in disk-oriented WAL, the DTT is never written to NVM. The DBMS
only maintains the DTT in memory while using WBL.

.. Commit Protocol
Relaxing the ordering of writes to durable storage complicates WBL’s commit and recovery pro-

tocols. When the DBMS restarts after a failure, it needs to locate the modiٽcations made by trans-
actions that were active at the time of failure so that it can undo them. But these changes can reach
durable storage even before the DBMS records the associated meta-data in the log. This is because
the DBMS is unable to prevent the CPU from evicting data from its volatile caches to NVM. Con-
sequently, the recovery algorithm must scan the entire database to identify the dirty modiٽcations,
which is prohibitively expensive and increases the recovery time.

The DBMS avoids this problem by recording meta-data about the clean and dirty modiٽcations
that have been made to the database by tracking two commit timestamps in the log. First, it records
the timestamp of the latest committed transaction all of whose changes and updates of prior trans-
actions are safely persisted on durable storage (cp). Second, it records the commit timestamp (cd ,
where cp < cd) that the DBMS promises to not assign to any transaction before the subsequent group
commit .nishesٽ This ensures that any dirty modiٽcations that were ushedپ to durable storage will
have only been made by transactions whose commit timestamp is earlier than cd .

While recovering from a failure, the DBMS considers all the transactions with commit times-
tamps earlier than cp as committed, and ignores the changes of the transactions whose commit
timestamp is later than cp and earlier than cd . In other words, if a tuple’s begin timestamp falls
within the (cp, cd) pair, then the DBMS’s transaction manager ensures that it is not visible to any
transaction that is executed after recovery.

When committing a group of transactions, as shown in Table ., the DBMS examines the DTT
entries to determine the dirty modiٽcations. For each change recorded in the DTT, the DBMS
persists the change to the table heap using the device’s sync primitive (see Appendix A.). It then
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Figure .: WBL Commit Protocol – The ordering of writes from the DBMS to durable storage
while employing the WBL protocol.

constructs a log entry containing cp and cd to record that any transaction with commit timestamps
earlier than cp has committed, and to indicate that it will not issue a commit timestamp later than
cd for any of the subsequent transactions before the next group commit. It appends this commit
record (see Figure .) to the log. The DBMS ushesپ the modiٽcations of all the transactions with
commit timestamps less than cp before recording cp in the log. Otherwise, it cannot guarantee that
those transactions have been committed upon restart.

For long-running transactions that span a group commit window, the DBMS also records their
commit timestamps in the log. Without this information, the DBMS cannot increment cp before
the transaction commits. During recovery, it uses this information to identify the changes made by
uncommitted transactions. WithWBL, the DBMS writes out the changes to locations spread across
the durable storage device. For example, if a transaction updates tuples stored in two tables, then the
DBMSmust ushپ the updates to two locations in the durable storage device. This design works well
for NVM as it supports fast random writes. But it is not a good choice for slower devices that incur
expensive seeks to handle random writes. To abort a transaction, the DBMS uses the information
recorded in the DTT to determine the changes made by the transaction. It then discards those
changes and reclaims their table heap storage.

The diagram in Figure . shows WBL’s ordering of writes from the DBMS to durable storage.
The DBMS rstٽ applies the changes on the table heap residing in volatile storage. But unlike WAL,
when a transaction commits, the DBMS ushesپ all of its modiٽcations to the durable table heap and
indexes. Subsequently, the DBMS appends a record containing cp and cd to the log.

.. Recovery Protocol
Before describingWBL’s recovery algorithm, we rstٽ introduce the notion of a commit timestamp

gap. A commit timestamp gap refers to the range of timestamps deٽned by the pair (cp, cd). The
DBMS must ignore the effects of transactions that fall within such a gap while determining the
tuple visibility. This is equivalent to undoing the effects of any transaction that was active at the
time of failure. The set of commit timestamp gaps that the DBMS needs to track increases on every
system failure. To limit the amount of work performed while determining the visibility of tuples,
the DBMS’s garbage collector thread periodically scans the database to undo the dirtymodiٽcations
associated with the currently present gaps. Once all the modiٽcations in a gap have been removed
by the garbage collector, theDBMS stops checking for the gap in tuple visibility checks and no longer
records it in the log.
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Figure .: WBL Recovery Protocol –The phases of the recovery protocol.

The example in Figure . depicts a scenario where successive failures result in multiple commit
timestamp gaps. At the end of the rstٽ group commit operation, there are no such gaps and the
current commit timestamp is 101. The DBMS promises to not issue a commit timestamp higher
than 199 in the time interval before the second commit. When the DBMS restarts after a system
failure, it adds (101, 199) to its set of gaps. The garbage collector then starts cleaning up the effects
of transactions that fall within this gap. Before it completes the scan, there is another system failure.
The system then also adds (301, 399) to its gap set. Finally, when the garbage collector nishesٽ
cleaning up the effects of transactions that fall within these two gaps, it empties the set of gaps that
the DBMS must check while determining the visibility of tuples.

With WBL, the DBMS does not need to periodically construct WAL-style physical checkpoints
to speed up recovery. This is because each WBL log record contains all the information needed for
recovery: the list of commit timestamp gaps and the commit timestamps of long running transac-
tions that span across a group commit operation. TheDBMS only needs to retrieve this information
during the analysis phase of the recovery process. It can safely remove all the log records located
before the most recent log record. This ensures that the log’s size is always bounded.

As shown in Figure ., the WBL recovery protocol only contains an analysis phase. During
this phase, the DBMS scans the log backward until the most recent log record to determine the
currently existing commit timestamp gaps and timestamps of long-running transactions. There is
no need for a redo phase because all themodiٽcations of committed transactions are already present
in the database. WBL also does not require an WAL-style undo phase. Instead, the DBMS uses the
information in the log to ignore the effects of uncommitted transactions.

Figure . shows the contents of the log after a system failure. This example is based on the
same the workload used in Figure .. We note that transactions 2 and 80 span across a group
commit operation. At the time of system failure, only transactions 80 and 81 are uncommitted.
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Figure .: WBL Example – Contents of the WBL during recovery.

During recovery, the DBMS loads the latest log record to determine the currently existing commit
timestamp gaps and timestamps of long-running transactions. After this brief analysis phase, it can
immediately start handling transactions again.

Correctness: When a transaction modiٽes the database, the DBMS only writes those changes
to DRAM. Then when that transaction commits, the DBMS persists its changes to the table heap
on durable storage. This prevents the system from losing the effects of any committed transaction,
thereby ensuring the durability property. It ensures atomicity by tracking the uncommitted transac-
tions using commit timestamp gaps. WBL allows repeated undo operations as it maintains logical
undo information about uncommitted transactions.

Single-Versioned System: In a single-versioned DBMSwithWBL, the systemmakes a copy of a
tuple’s before-image before updating it and propagating the new version to the database. This is nec-
essary to support transaction rollbacks and to avoid torn writes. TheDBMS stores the before-images
in the table heap on durable storage. The DBMS’s recovery process then only consists of an analy-
sis phase; a redo phase is not needed because the modiٽcations for all committed transactions are
already present in the database. The DBMS, however, must roll back the changes made by uncom-
mitted transactions using the before-images. As this undo process is done on demand, the DBMS
starts handling transactions immediately after the analysis phase. Similar to the multi-versioned
case, the DBMS uses the commit timestamps to determine the visibility of tuples and identify the
effects of uncommitted transactions.

. Replication
With both the WAL and WBL protocols described above, the DBMS can recover from system

and transaction failures. These protocols, however, are not able to handle media failures or cor-
rupted data. This is because they rely on the integrity of durable data structures (e.g., the log) during
recovery. These failures are instead overcome through replication, wherein the DBMS propagates
changes made by transactions to multiple servers. When the primary server incurs a media fail-
ure, replication ensures that there is no data loss since the secondary servers can be conٽgured to
maintain a transactionally consistent copy of the database.

But replicating a database using WBL DBMS is different than in a WAL DBMS. With WAL, the
DBMS sends the same log records that it stores on its durable storage device over the network. The
secondary server then applies them to their local copy of the database. But since WBL’s log records
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Figure .: Replication –The steps taken by the DBMS during replication.

only contain timestamps and not the actual data (e.g., after-images), the DBMS has to perform extra
steps to make WBL compatible with a replication protocol.

We now describe the different replication schemes for a primary-secondary conٽguration. We
later present how a DBMS transforms WBL log records to work with these schemes.

.. Replication Schemes
There are two schemes for replicating a database in a primary-secondary conٽguration that

each provide different consistency guarantees: () synchronous, and () asynchronous. Figure .
presents the steps executed by the DBMS during replication. With synchronous replication, the pri-
mary server sends log records and waits for acknowledgments from the secondary servers that they
have ushedپ the changes to durable storage (steps Ê,Ë,Ì,Í are on the transaction’s critical path).
In asynchronous replication, the primary server does not wait for acknowledgments from any of the
secondary servers (steps Ê,Ë).

.. Record Format
The primary server in a WBL-based system cannot simply send its log records to the secondary

servers because they do not contain the after-images of the modiٽed tuples. Thus, to support repli-
cation, the DBMS must construct additional WAL records that contain the physical modiٽcations
to the database and send them to the secondary servers. As we show in Section .., this additional
step adds minimal computational overhead since replication is bound by network communication
costs.

We now describe the failover procedure in the secondary server when the primary server goes
down. By design, the DBMS only transfers the changes associated with the committed transactions
to the secondary servers. Consequently, there is no need for an undo process on the secondary
servers on a failover. After a failover, the secondary server can immediately start handling transac-
tions on a transactionally consistent database. But if the DBMS uses asynchronous replication, then
the effects of recently committed transactions might not be present in the secondary server.

. Experimental Evaluation
We now present our analysis of the logging protocols. We implemented bothWAL andWBL in

Peloton, an in-memory HTAP DBMS that supports NVM []. We compare the DBMS’s runtime
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performance, recovery times, and storage footprint for two OLTP workloads. We then analyze the
effect of using WBL in a replicated system. Next, we compare WBL against an instant recovery
protocol based on WAL [, ]. Finally, we examine the impact of storage latency, group commit
latency, and new CPU instructions for NVM on the system’s performance.

We performed these experiments on the hardware emulator described in Appendix A.. We con-
guredٽ the NVM latency to be × that of DRAM and validated these settings using Intel’s memory
latency checker []. The emulator also includes two additional storage devices:
● HDD: Seagate Barracuda ( TB,  RPM, SATA .)
● SSD: Intel DC S ( GB, SATA .)
We modiٽed Peloton to use the emulator’s allocator and lesystemٽ interfaces to store its logs,

checkpoints, and table heap on NVM (see Appendix A.). When employingWAL, the DBMSmain-
tains the log and the checkpoints on the ,lesystemٽ and uses fsync to ensure durability. When it
adopts WBL, the DBMS uses the allocator for managing the durable table heap and indexes. In-
ternally, it stores indexes in persistent B+trees [, ]. It relies on the allocator’s sync primitive to
ensure database durability. All the transactions execute with the same snapshot isolation level and
durability guarantees. To evaluate replication, we use a second emulator with the same hardware
that is connected via  Gb Ethernet with  µs latency.

.. Benchmarks
We use the YCSB and TPC-C benchmarks for our evaluation. Appendix B presents a detailed

description of these benchmarks. For the YCSB benchmark, we use a database with  million tuples
(∼ GB). We conٽgure the TPC-C workload to contain eight warehouses and , items. We
map each warehouse to a single partition. The initial storage footprint of the TPC-C database is
approximately  GB.

.. Runtime Performance
Webeginwith an analysis of the recovery protocols’ impact on theDBMS’s runtimeperformance.

To obtain insights that are applicable for different storage technologies, we run the YCSB andTPC-C
benchmarks in Peloton while using either theWAL orWBL. For each conٽguration, we scale up the
number of worker threads that the DBMS uses to process transactions. The clients issue requests in
a closed loop. We execute all the workloads three times under each setting and report the average
throughput and latency. To provide a fair comparison, we disable checkpointing in the WAL-based
conٽgurations, since it is up to the administrator to conٽgure the checkpointing frequency. We note
that throughput drops by –% in WAL when the system takes a checkpoint.

YCSB:We rstٽ consider the read-heavy workload results shown in Figure .a. These results
provide an approximate upper bound on the DBMS’s performance because the % of the trans-
actions do not modify the database and therefore the system does not have to construct many log
records. The most notable observation from this experiment is that while the DBMS’s throughput
with the SSD-WAL conٽguration is .× higher than that with the SSD-WBL conٽguration, its per-
formance with the NVM-WBL conٽguration is comparable to that obtained with the NVM-WAL
conٽguration. This is because NVM supports fast random writes unlike HDD.
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Figure .: YCSBThroughput – The throughput of the DBMS for the YCSB benchmark with dif-
ferent logging protocols and durable storage devices.

The NVM-based conٽgurations deliver .–.× higher throughput over the SSD-based conٽg-
urations. This is because of the ability of NVM to support faster reads than SSD. The gap between
the performance of the NVM-WBL and the NVM-WAL conٽgurations is not prominent on this
workload as most transactions only perform reads. The throughput of all the conٽgurations in-
creases with the number of worker threads as the increased concurrency helps amortize the logging
overhead. While the WAL-based DBMS runs well for all the storage devices on a read-intensive
workload, the WBL-based DBMS delivers lower performance while running on the HDD and SSD
due to their slower random writes.

The beneٽts ofWBL aremore prominent for the balanced and write-heavy workloads presented
in Figures .b and .c. We observe that the NVM-WBL conٽguration delivers .–.× higher
throughput than theNVM-WAL conٽguration because of its lower logging overhead. That is, under
WBL the DBMS does not construct as many log records as it does withWAL and therefore it writes
less data to durable storage. The performance gap between the NVM-based and SSD-based conٽgu-
rations also increases onwrite-intensive workloads. With the read-heavy workload, theNVM-WBL
conٽguration delivers only .× higher throughput than the SSD-WBL conٽguration. But on the
balanced and write-heavy workloads, NVM-WBL provides .–.× higher throughput.

The transactions’ average response time is presented in Figure .. As expected, theHDD-based
conٽgurations incur the highest latency across all workloads, especially for WBL. For example, on
the write-heavy workload, the average latency of the HDD-WBL conٽguration is .× higher than
the HDD-WAL conٽguration. This is because the random seek time of HDDs constrains the DBMS
performance. The SSD-based conٽgurations have up to two orders of magnitude lower transaction
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Figure .: YCSB Latency – The latency of the DBMS for the YCSB benchmark with different
logging protocols and durable storage devices.
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Figure .: TPC-CThroughput – The measured throughput for the TPC-C benchmark with dif-
ferent logging protocols and durable storage devices.

latency compared to HDD conٽgurations because of their better write performance. On the write-
heavy workload shown in Figure .c, the transaction latency of the NVM-WBL conٽguration is
% and % lower than that observed with NVM-WAL and SSD-WAL respectively. We attribute
this to WAL’s higher overhead and higher write latency of SSD.

TPC-C: Figures . and . show the throughput and latency of the DBMS while executing
TPC-C with varying number of worker threads. Like with YCSB, the DBMS achieves the highest
throughput and the lowest latency using the NVM-WBL conٽguration. The NVM-WAL and SSD-
WAL conٽgurations provide .× and .× lower throughput compared to NVM-WBL.We attribute
this to a large number of writes performed per transaction in TPC-C. We observe that the perfor-
mance obtained across all conٽgurations on the TPC-C benchmark is lower than that on the YCSB
benchmark. This is because the transactions in TPC-C contain more complex program logic and
execute more queries per transaction.
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Figure .: TPC-C Latency – The latency of the DBMS for the TPC-C benchmark with different
logging protocols and durable storage devices.
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Figure .: Recovery Time – The time taken by the DBMS to restore the database to a consistent
state after a restart with different logging protocols.

.. Recovery Time

We evaluate the recovery time of the DBMS using the different logging protocols and storage
devices. For each benchmark, we rstٽ execute a xedٽ number of transactions and then force a hard
shutdown of the DBMS (SIGKILL). We then measure the amount of time for the system to restore
the database to a consistent state. That is, a state where the effects of all committed transactions are
durable and the effects of uncommitted transactions are removed. Recall from Section . that the
number of transactions that the DBMS processes after restart in WAL depends on the frequency of
checkpointing. With WBL, the DBMS performs garbage collection to clean up the dirty effects of
uncommitted transactions at the time of failure. This garbage collection step is done asynchronously
and does not have a signiٽcant impact on the throughput of the DBMS.

YCSB:The results in Figure .a present the recovery measurements for the YCSB benchmark.
The recovery times of the WAL-based conٽgurations grow linearly in proportion to the number of
transactions that the DBMS recovers. This is because the DBMS needs to replay the log to restore
the effects of committed transactions. In contrast, with WBL, we observe that the recovery time is
independent of the number of transactions executed. The system only reverses the effects of trans-
actions that were active at the time of failure as the changes made by all the transactions committed
after the last checkpoint are already persisted. The WBL-based conٽgurations, therefore, have a
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Figure .: Storage Footprint – The storage space occupied by the internal components of the
DBMS while using different recovery protocols.

short recovery.

TPC-C:The results for the TPC-C benchmark in Figure .b show that the recovery time of the
WAL-based conٽgurations is higher than that in the YCSB benchmark. This is because the TPC-C
transactions performmore operations, and consequently require a longer redo phase. The recovery
time of the WBL-based conٽgurations, however, is still independent of the number of transactions
executed unlike their WAL counterparts because they ensure that the effects of committed transac-
tions are persisted immediately on durable storage.

.. Storage Footprint
We compare the storage utilization of theDBMS using either theWAL andWBL protocols while

running on NVM. This metric is important because we expect that the rstٽ NVM products will
initially be more expensive than current technologies [], and thus using less storage means a
lower procurement cost.

We measure Peloton’s storage footprint as the amount of space that it uses in either DRAM or
NVM to store tables, logs, indexes, and checkpoints. We periodically collect statistics from the
DBMS’s storage manager and the lesystemmeta-dataٽ during the workload execution. We perform
these measurements after loading the initial database and report the peak storage footprint of the
DBMS for each trial. For all of the conٽgurations, we allow the DBMS’s background processes (e.g.,
group commit, checkpointing, garbage collection) to execute while we collect these measurements.

YCSB:We use the balanced workload mixture for this experiment with an initial database size
of  GB. The results in Figure .a show that the WAL-based conٽguration has a larger storage
footprint than WBL. This is because WAL constructs log records that contain the physical changes
associated with the modiٽed tuples. In contrast, as described in Section .., WBL’s log records
do not contain this information. Another important difference is that while theWAL-based DBMS
periodically constructs transactionally-consistent checkpoints of the database, WBL only requires
the DBMS to write log records that contain the list of currently existing commit identiٽer gaps.
As such, its logical checkpoints have a smaller storage footprint than WAL’s physical checkpoints.
Unlike WAL, WBL persists the indexes on durable storage to avoid rebuilding it during recovery.
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Figure .: Replication – The throughput of the DBMS for the YCSB benchmark with different
replication schemes and logging protocols.

TheWBL-based DBMS consume % less storage space on NVM than its WAL counterpart.

TPC-C: The graph in Figure .b shows the storage footprint of the engines while executing
TPC-C. For this benchmark, the initial size of the database is  GB and it grows to . GB. Trans-
actions inserting new orders increase the size of the table heap, log, and checkpoints in the WAL-
based conٽguration. By reducing unnecessary data duplication using NVM’s persistence property,
the NVM-WBL conٽguration has a % smaller storage footprint on NVM. The space savings are
more signiٽcant in this benchmark because the workload is write-intensive with longer running
transactions. Thus, the log in the WAL-based conٽguration grows more quickly compared to the
smaller undo log in WBL.

.. Replication
We now examine the impact of replication on the runtime performance of the DBMS while

running the YCSB benchmark and using the NVM-based conٽgurations. The results shown in
Figure . indicate that the synchronous replication scheme reduces the throughput. On the read-
heavy workload, the throughput drops by .× with both NVM-WAL and NVM-WBL conٽgura-
tions. This shows that the overhead of constructingWAL-style log records when usingWBL is lower
than the overhead of sending the log records over the network. Under the asynchronous replication
scheme, the DBMS’s throughput drops by less than .× across all the workloads. TheDBMS should,
therefore, be conٽgured to use this replication scheme when the user can afford to lose the effects
of some recently committed transactions on a media failure.

The impact of replication is more prominent in the write-heavy workload shown in Figure .c.
We observe that throughput of the DBMS drops by .×when it performs synchronous replication.
This is because the round-trip latency between the primary and secondary server ( µs) is higher
than the durable write latency (. µs) of NVM. The networking cost is, thus, the primary perfor-
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Figure .: Impact of NVM Latency – The throughput for the YCSB benchmark with different
logging protocols and NVM latency settings.

mance bottleneck in replication. We conclude that a faster replication standard, such as the NVMe
over Fabrics [], is required for efficient transaction processing in a replicated environment con-
taining NVM []. With this technology, the additional latency between a local and remote NVM
device is expected to be less than a fewmicroseconds. As every write to NVMmust be replicated in
most datacenter usage models, we expect WBL to outperformWAL in this replicated environment
because it executes fewer NVM writes. We plan to investigate this in future work.

.. Impact of NVM Latency
In this experiment, we analyze how the latency of the NVM affects the runtime performance of

theWBL andWAL protocols in the DBMS.We ran YCSB under three latency conٽgurations for the
emulator: () default DRAM latency ( ns), () a low latency that is × slower thanDRAM( ns),
and () a high latency that is × slower than DRAM ( ns). We use the emulator’s throttling
mechanism to reduce the NVM bandwidth to be × lower (. GB/s) than DRAM.

The key observation from the results in Figure . is that the NVM-WAL conٽguration is more
sensitive to NVM latency compared to NVM-WBL. On the write-heavy workload shown in Fig-
ure .c, with a × increase in NVM latency, the throughput of NVM-WAL drops by .×, whereas
NVM-WBL only drops by .×. This is because the DBMS performs fewer stores to NVMwithWBL.
We observe that NVM latency has a higher impact on the performance for write-intensive work-
loads. On the read-heavy workload shown in Figure .a, the throughput of the DBMS only drops
by .–.×with a × increase in latency. We attribute this to the effects of caching andmemory-level
parallelism.

.. NVM Instruction Set Extensions
Wenextmeasure the impact of proposedNVM-related instruction set extensions on theDBMS’s

performance with the NVM-WBL conٽguration []. We examine the impact of using the CLWB
instruction for ushingپ the cache-lines instead of the CLFLUSH instruction. The CLWB instruction
reduces the possibility of compulsory cache misses during subsequent data accesses.
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Figure .: NVM Instruction Set Extensions (CLFLUSH vs. CLWB) –The throughput of the DBMS
for the YCSB benchmark under the NVM-based conٽgurations with different ushپ instructions.

Figure . presents the throughput of the DBMS with the NVM-WBL conٽguration while us-
ing either the CLWB or CLFLUSH instructions in its sync primitive. The throughput obtained with
the NVM-WAL conٽguration, that does not use the sync primitive, is provided for comparison.
We observe that the throughput under the NVM-WBL conٽguration exceeds that obtained with
NVM-WAL when the DBMS uses the CLWB instruction. We attribute this to the effects of caching.
The impact of the CLWB instruction is more prominent on the write-intensive workloads, where the
WBL-based DBMS delivers .× higher throughput when using the CLWB instruction instead of the
CLFLUSH instruction. Thus, an efficient cache ushingپ primitive is critical for a high-performance
NVM-aware DBMS.

.. Instant Recovery Protocol
We now compare WBL against an instant recovery protocol based on WAL [, ]. This pro-

tocol uses on-demand single-tuple redo and single-transaction undo mechanisms to support al-
most instantaneous recovery from system failures. While processing transactions, the DBMS re-
constructs the desired version of the tuple on demand using the information in the write-ahead log.
The DBMS can, therefore, start handling new transactions almost immediately after a system fail-
ure. The downside is that the DBMS performance is lower than that observed after the traditional
ARIES-style recovery while the recovery is not yet complete.

Unlike the WAL-based instant recovery protocol, WBL relies on NVM’s ability to support fast
random writes. It does not contain a redo process. To better understand the impact of the instant-
recovery protocol on the performance of the DBMS, we implemented it in our DBMS. We run the
read-heavy YCSB workload on the DBMS, while varying the fraction of the tuples in the table that
must be reconstructed from 0.001 to 0.1. With more frequent checkpointing, a smaller fraction of
tuples would need to be reconstructed. We conٽgure the length of a tuple’s log record chain to follow
a uniform distribution over the following ranges: (, ) and (, ).

The results shown in Figures .a and .b indicate that the performance drops with longer
log record chains, especially when a larger fraction of tuples need to be reconstructed. When the
maximum length of a long record chain is limited to  records, the throughput drops by .× when
the DBMS needs to reconstruct % of the tuples in comparison to the throughput observed after
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Figure .: Instant Recovery Protocol – The throughput of the DBMS for YCSB with the instant
logging protocol on different storage devices.
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Figure .: Group Commit Latency – Impact of the group commit latency setting on the through-
put of the DBMS for the write-heavy YCSB workload with different logging protocols and durable
storage devices.

recovery. In contrast, when the length is limited to  records, the throughput drops by ×. After
the recovery process is complete, the performance of the DBMS converges to that observed after the
traditional recovery. We conclude that the instant recovery protocol works well when the DBMS
runs on a slower durable storage device. However, on a fast NVM device, WBL allows the DBMS to
deliver high performance immediately after recovery. Unlike WAL, as we showed in Section ..,
it improves device utilization by reducing data duplication.

.. Impact of Group Commit Latency

In this experiment, we analyze how the group commit latency affects the runtime performance
of theWBL andWAL protocols in the DBMS. As the DBMS sends the results back to the client only
after completing the group commit operation, this parameter affects the latency of the transaction.
We run thewrite-heavy YCSBworkload under different group commit latency settings ranging from
10 through 10000 µs.

The most notable observation from the results in Figure . is that different group commit
latency settings work well for different durable storage devices. Setting the group commit latency to
, , and  µs works well for the NVM, SSD, and HDD respectively. We observe that there
is a two orders of magnitude gap between the optimal group commit latency settings for NVM
and HDD. The impact of this parameter is more pronounced in the case of NVM compared to the
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slower durable storage devices. When the group commit latency of the DBMS running on NVM is
increased from  to  µs, the throughput drops by ×.

. Summary
This chapter presented the write-behind logging protocol for emerging NVM technologies. We

examined the impact of this redesign on the transactional throughput, latency, availability, and
storage footprint of the DBMS. Our evaluation of recovery algorithm in Peloton showed that across
different OLTP workloads it reduces the system’s recovery time by × and shrinks the storage
footprint by .×.

In this chapter, we focused on a two-tier storage system comprising of volatile DRAM and a
durable storage device that is either NVM, SSD, or HDD. A DBMS operating a three-tier storage
hierarchy can also employWBL. In this case, the DBMS stores the less frequently accessed tuples in
the database on SSD. It manages the log and more frequently accessed tuples on NVM. As the bulk
of the data is stored on SSD, the DBMS only requires a NVM device with smaller storage capacity,
thus shrinking the overall storage system cost. We explore the fundamentals of buffer management
in such a three-tier storage hierarchy in the next chapter.



Chapter 

Buffer Management

The design of the buffer manager in traditional DBMSs is inپuenced by the difference in the per-
formance characteristics of DRAM and SSD. The canonical data migration policy employed by the
buffer manager is predicated on the assumptions that the DBMS can only operate on data residing
on DRAM, and that SSD is orders of magnitude slower than DRAM [, ]. But NVM upends
these design assumptions.

This chapter explores the changes required in the buffer manager of the DBMS to leverage the
unique properties of NVM in systems that still include DRAM and SSD. We describe a set of data
migration optimizations enabled by NVM.The key idea is that since the DBMS can directly operate
onNVM-resident data, it can adopt a lazy datamigration policy for copying data over toDRAM.We
illustrate that these optimizations have to be tailored depending on the characteristics of the storage
hierarchy and the workload. We then make the case for a continuous adaptation mechanism in the
buffer manager, called adaptive data migration, that achieves a near-optimal data migration policy
for an arbitrary workload and storage hierarchy without requiring any manual tuning. We nallyٽ
present a storage system recommender for identifying the optimal storage hierarchy for a workload
given a cost budget.

There have been prior efforts on buffer management in a three-tier storage system including
NVM [, ]. Renen et al. present a buffer manager that eagerly migrates data from SSD to
DRAM. When a page is evicted from DRAM, the buffer manager considers admitting it into the
NVM buffer. The fundamental idea is to only admit recently referenced pages. The buffer manager
maintains an admission queue to keep track of pages considered for admission and only admits
pages that were recently denied admission. Kwon et al. present the architecture of a three-tier
le-systemٽ that transparently migrates data among different levels in the storage system []. This
le-systemٽ is optimized for a speciٽc NVM technology that is × slower than DRAM. So it does not
cache NVM-resident data on DRAM. For the same reason, it bypasses DRAM while performing
synchronous write operations.

In this chapter, we introduce a taxonomy of data migration policies that subsumes the speciٽc
schemes adopted by prior systems. We derive insights that are applicable for a broader range of
three-tier storage systems and NVM technologies. In particular, we explore how the optimal data
migration policy depends on workload and storage system characteristics.


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The remainder of this chapter is organized as follows. We begin in Section . with an overview
of buffermanagement principles. We present theNVM-related data owoptimizationپ in Section ..
We then describe the adaptive data migration technique in Section .. Section . presents the de-
sign of the storage system recommender. Section . describes the trace-driven buffermanager used
in our analysis. We present our experimental evaluation in Section . and conclude in Section ..

. Buffer Management Principles
The buffer manager in a DBMS is responsible for bringing pages from durable storage to main

memory as and when they are needed []. The buffer manager partitions the available memory
into a set of xed-sizeٽ slots, which is collectively termed as a buffer pool. The higher-level compo-
nents of the DBMS, such as the query execution engine, need not concern themselves with whether
a page is in the buffer pool or not. The execution engine only needs to request the buffer manager
to retrieve a page using the page’s logical identiٽer. If the page is not already present in the buffer
pool, the buffer manager transparently retrieves the page from non-volatile storage. After updating
a page, the execution engine must inform the buffer manager that it has modiٽed the page so that it
propagates the changes to the copy of the page on storage. When the page is no longer needed, the
execution engine must request the buffer manager to release it.

The buffer manager maintains some meta-data about each page in the buffer pool. This meta-
data includes the number of active referencesmade to the page and whether the page has been mod-
iٽed since it was brought into the buffer pool from storage. When a page is requested, the buffer
manager rstٽ checks if it is present in the buffer pool. If the page is already present in memory, then
it increments the number of active references to the page and returns the address of the slot contain-
ing the page. If the page is not present, then the buffermanager chooses a slot for replacement based
on the buffer replacement policy (e.g., least recently used) []. If the page selected for replacement
contains any modiٽcations, then the buffer pool overwrites the corresponding page on non-volatile
storage. It nallyٽ reads in the requested page from storage into the replacement slot and returns the
slot’s address.

Prior research has shown that there is signiٽcant overhead associated with buffer management
in a DBMS. When all the data tsٽ in main memory, the cost of maintaining a buffer pool is nearly
one-third of all theCPUcycles used by theDBMS []. This is because the buffermanagermust keep
track of meta-data about pages in the pool to enforce the buffer replacement policy and synchronize
concurrent accesses fromdifferent threads to the pool. The overhead associatedwithmanaging disk-
resident data has given rise to a class of new in-memory DBMSs that manage the entire database in
main memory and do not contain a buffer pool [, , ].

In-memoryDBMSs provide better throughput and lower latency than disk-basedDBMSs due to
thismainmemory orientation []. The fundamental limitation of in-memoryDBMSs, however, is
that they can deliver this improved performance only when the database is smaller than the amount
of physical memory (DRAM) available in the system. If the dataset grows larger than the memory
capacity, then the operating system will start to page virtual memory, and main memory accesses
will cause page faults []. The execution of transactions is stalled until the pages are retrieved
from non-volatile storage. The performance of an in-memory DBMS drops by up to % when the
dataset exceeds the memory capacity, even if the working set tsٽ in memory [].
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Figure .: Storage Hierarchy Architectures – Candidate storage hierarchy organizations: () Tra-
ditional storage hierarchy with DRAM and SSD, () Storage hierarchy consisting of only NVM and
no DRAM, and () Storage hierarchy consisting of both NVM and DRAM.

Several techniques have been proposed to improve the performance of in-memoryDBMSswhile
operating on larger-than-memory databases [, , , , , , , , , , , ]. These
techniques exploit the skewed access patterns observed in modern database applications. In these
workloads, certain data tuples are hot and are accessed more frequently than other cold tuples. It is
advantageous to cache the hot data in memory since it is likely to be modiٽed during this period.
But then once the age of particular tuple crosses some threshold, the buffer manager can migrate
the cold tuple out to cheaper secondary storage. With this data migration technique, the DBMS
can still deliver high performance for transactions that operate on hot in-memory tuples while still
being able to access the cold data if needed at a later point in time. But when and where the buffer
manager migrates data between the different tiers in a storage system is highly dependent on the
properties of the underlying storage technologies.

. NVM-Aware Buffer Management
In a disk-centric DBMS, the buffer manager caches data residing on SSD in the buffer pool lo-

cated on DRAM, as illustrated in Figure .a. Since DRAM accesses are × faster than SSD opera-
tions, DBMSs manage a large buffer pool on DRAM. It is, however, difficult to deploy high-capacity
DRAM systems due to three factors. First, it drives up the total cost of the system since DRAM is
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×more expensive than SSDs. Second, increasing DRAM capacity raises the total system power
consumption. Lefurgy et al. report that as much as % of the total system energy is consumed
by DRAM in commercial servers []. Lastly, DRAM scaling faces signiٽcant challenges due to
limitations in scaling techniques used in earlier generations for transistors and capacitors [].

NVM overcomes these limitations of DRAM by providing higher memory capacity, while still
being competitive with respect to performance, cost, and power. Figure .b presents a candidate
storage hierarchy where NVM replaces DRAM.This architecture delivers performance comparable
to that of a DRAM-SSD hierarchy when NVM latency is less than × that of DRAM. Otherwise, the
replacement of DRAM with slower NVM technologies reduces the performance of the DBMS.

Figure .c presents the architecture of a hybrid storage hierarchy with both DRAM and NVM.
Such a conٽguration can simultaneously reduce the overall cost of the system while still not sacri-
cingٽ performance. The NVM buffer caches a signiٽcant fraction of the working set during system
execution, thereby reducing SSD accesses. The DRAM buffer serves as a cache on top of NVM
and only stores the hottest pages in the database. A DRAM buffer with only % the capacity of the
underlying NVM device bridges most of the latency gap between DRAM and NVM.

.. New Data Migration Paths
NVM introduces new data migration paths in the storage hierarchy. Consequently, the buffer

manager has more options for moving data between the different tiers in the storage hierarchy.
Leveraging these datamigration paths to reduce datamovement improves theDBMS’s performance.
The buffer manager also reduces the number of writes to NVM using these paths to extend the life-
time of devices with limited write-endurance [].

Although the processor can access data stored on DRAM and NVM at cache-line granularity,
we refrain from exploiting this property in our buffer manager [, ]. We contend that the block
abstraction will continue to be employed in these tiers for two reasons. First, encryption, compres-
sion, and data validation algorithms are block-oriented. Second, maintaining the same granularity
across all tiers of the hierarchy simpliٽes buffermanagement and eliminates the overhead associated
with maintaining ne-grainedٽ meta-data.

Figure . presents the data owپ paths in the NVM-awaremulti-tier buffermanager. The default
read path comprises of three steps: moving data from SSD to NVM (Ê), then to DRAM (Ë), and
lastly to the processor cache (Ì). Similarly, the default write path consists of three steps: moving
data from processor cache to DRAM (Í), then to NVM (Î), and nallyٽ to SSD (Ï).

In the rest of this section, we describe how the buffer manager leverages other data owپ paths
shown in Figure . to minimize the impact of NVM on the DBMS’s performance and extend the
lifetime of the NVM device by reducing write operations.

.. Bypass DRAM during Reads
Unlike existing storage technologies, such as SSDs, the processor can directly access data on

NVM via read operations. This data owپ path is labelled as Ï in Figure .. To access a block on
SSD, in a disk-centric DBMS, the DBMS must copy it over to DRAM (Ò), before it can operate on
the copied data. With NVM, the buffer manager can leverage the new data owپ path (Ï) to lazily
migrate data from NVM to DRAM while serving read operations.
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Figure .: Data Flow Paths – The different data owپ paths in a multi-tier storage hierarchy con-
sisting of DRAM, NVM, and SSD.

Let Dr represent the number of references to a block on durable storage before the buffer man-
ager copies the block over to DRAM. With existing storage technologies, Dr = . We refer to this
data migration policy as eager migration. With NVM, the buffer manager can employ a wider range
of lazy migration policies with higher values of Dr. Such policies reduce upward data migration be-
tween NVM and DRAM during read operations. They are beneٽcial when the capacity of DRAM
is smaller than that of NVM. A lazy migration strategy ensures that colder data (i.e., data that has
not been frequently referred) on NVM do not evict hotter data in DRAM.

The optimal value ofDr depends on the application’s workload. If the working set tsٽ within the
DRAM buffer, then the buffer manager employs a more eager migration policy (Dr ≤ ). A lazier
policy would delay the data migration to DRAM, thereby increasing the impact of NVM latency on
performance. If the working set does not tٽ in DRAM, but tsٽ in the NVM buffer, then the buffer
manager employs a lazy migration policy with higher Dr. This strategy ensures that only the hot
data is stored in DRAM.

In addition to considering the size of the working set, the buffermanager picksDr depending on
the ratio between the capacities of the DRAM and NVM buffers. In a storage hierarchy where the
ratio approaches one, the buffer manager adopts a more eager policy to leverage the space available
inDRAM.Higher values ofDr workwell when the ratio approaches zero. In this case, lazymigration
ensures that the DRAM buffer is used to only store the hot data.

With the eager migration policy, the buffer manager always brings the block to DRAM while
serving the read operation. Consequently, if the application then updates the same block, the writes
are performed on DRAM. In contrast, a lazy migration policy increases the number of writes on
NVM. This is because it is more likely that the block being updated is residing on NVM when the
buffer manager adopts such a policy. This is not a problem for DBMS applications with skewed
access patterns [, ]. Such applications tend to modify hot data that is cached in DRAM even
when the buffer manager employs a lazy migration policy.
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.. Bypass DRAM during Writes
The buffer manager does not have complete autonomy over when to ushپ data to storage [,

]. It must coordinate with the log manager to ensure that all of the changes made by committed
transactions are durable, and that none of the changes made by aborted or active transactions are
visible after the DBMS recovers from the failure. These constraints are referred to as the atomicity
and durability properties.

If a transaction modiٽes a block and commits, and the buffer manager has not written the up-
dated block to storage, then a system crash will leave the block in its old invalid state. This violates
the durability property. On the other hand, if the buffer manager decides to write a modiٽed block
belonging to an active transaction, it violates the atomicity property. To prevent such scenarios, the
buffer manager must refrain from making completely autonomous replacement decisions.

Since the contents of the DRAM buffer are lost after a system failure, the log manager records
information needed to recover from a failure on durable storage. Before updating a page, the DBMS
writes its old contents to the log (i.e., the before image of the page). Similarly, when a page is about
to be evicted from the buffer pool, its current contents are recorded in the log (i.e., the after image
of the page). When recovering from a failure, the DBMS uses the information in the log to restore
the database to a transactionally consistent state. To bound the amount of storage space taken up
by the log records on NVM, the DBMS periodically takes checkpoints at runtime.

Ensuring the persistence of blocks containing log and checkpoint records is critical for the re-
coverability of the DBMS.The DBMS’s performance is affected by the I/O overhead associated with
existing secondary storage technologies, such as SSDs. As transactions tend to generate multiple
log records that are each small in size, most DBMSs use the group commit optimization to reduce
the I/O overhead []. The DBMS rstٽ batches the log records for a group of transactions in the
DRAM buffer (Í) and then ushesپ them together with a single write to SSD (Ï).This improves the
operational throughput and amortizes the I/O overhead across multiple transactions.

With NVM, the buffer manager provides synchronous persistencewith lower overhead by taking
advantage of the ability to directly persist data on NVM during write operations [, ]. This data
owپ path is labelled as Ñ in Figure .. The write operation bypasses DRAM since the data must
be eventually persisted, and this data owپ optimization shrinks the overall latency of the operation,
especially on NVM devices whose write latencies are comparable to that of DRAM. In addition to
reducing the synchronous persistence overhead by eliminating the redundant write to DRAM, it
also avoids potential eviction of other hot data blocks from the DRAM buffer.

.. Bypass NVMDuring Reads
We next present how the buffer manager reduces the number of writes to NVM using an alter-

nate data owپ path during read operations. The default read path consists of moving the data from
SSD to NVM (Ê) and eventually migrating it to DRAM (Ë). This optimization makes use of the
direct data owپ path from SSD to DRAM, which is labelled as Ò in Figure ..

When the buffer manager observes that a requested page is not present in either the DRAM
or NVM buffers, it copies the data on SSD directly to DRAM, thus bypassing NVM during read
operations. If the data read into the DRAM buffer is not subsequently modiٽed, and is selected
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for replacement, then the buffer manager discards it. If the page is modiٽed and later selected for
eviction from DRAM, the buffer manager copies it to NVM (Î).

In case of a modiٽed page, bypassing NVM during read operations eliminates the rstٽ write to
NVM. The buffer manager installs a copy of the page on NVM only after it has been evicted from
DRAM. If instead, the page were installed on NVM during the read operation, then it is written
twice: once at fetch time and again when the page is evicted from DRAM. For a page that is only
read and not modiٽed, this lazy data migration policy eliminates an unnecessary write to NVM
when the page is fetched from SSD.

.. Bypass NVMDuring Writes
To reduce the number of writes to NVM, the buffer manager skips migrating data to NVM

while serving write operations by using an alternate data owپ path. The default write path consists
of moving the data from DRAM to NVM (Î) and then eventually migrating it to SSD (Ï). Instead
of using the default path, this technique makes use of the data owپ path from DRAM to SSD (Ó).

Bypassing NVM during writes ensures that only pages frequently swapped out of DRAM are
stored on NVM []. If the buffer manager employs an eager migration policy while copying data
into DRAM, then this optimization prevents infrequently accessed pages residing in the DRAM
buffer from polluting the NVM buffer. However, with a lazy migration policy, adopting this tech-
nique results in hot pages being loaded more slowly into the NVM buffer.

LetNw represent the average number of references to a block on DRAM before the buffer man-
ager copies the block over to NVM. With the default write path, Nw = . The buffer manager can
support a wider range of data migration policies with NVMwhile serving write operations. Higher
values ofNw reduce data migration from DRAM to NVM during write operations. Such a policy is
beneٽcial when the capacity of DRAM is comparable to that of NVM. In such a storage hierarchy, a
lazy migration strategy ensures that colder data on DRAM does not evict warmer data in the NVM
buffer. This optimization reduces the number of writes to NVM since only warmer pages identiٽed
by the buffer manager are stored in the NVM buffer.

. Adaptive Data Migration
The buffer manager’s data migration policy consists of the frequencies with which it should by-

pass DRAM and NVM while serving read and write operations (Sections .. to ..). All of the
above data owپ optimizations are moot unless the buffer manager effectively adapts the data mi-
gration policy based on the characteristics of the workload and the storage hierarchy. The crux of
our approach is to track the target metrics on recent query workload at runtime, and then periodi-
cally adapt the policy in the background. Over time, this process automatically optimizes the policy
for the application’s workload and the storage hierarchy, and amortizes the adaptation cost across
multiple queries. We now describe the information that the buffer manager collects to guide this
process.

The buffer manager keeps track of two target metrics while executing the workload. These in-
clude the operational throughput (T) of the buffer manager and the number of write operations
(W) performed on NVM.The goal is to determine the optimal conٽguration of the data migration
policies that maximizes the throughput and minimizes writes to NVM.The cost function associated



.. STORAGE HIERARCHY SELECTION 

with a candidate data migration policy conٽguration consists of two weighted components associ-
ated with these target metrics:

Cost(T ,W) = λ1 ∗ T − λ2 ∗W

To adapt the buffermanager’s datamigration policy, we employ an iterative searchmethod called
simulated annealing (SA) []. This technique searches for a policy conٽguration that maximizes
the cost function presented. An attractive feature of SA is that it avoids getting caught at local
optima, which are conٽgurations that are better than any other nearby conٽgurations, but are not
the globally optimal conٽguration []. It is a probabilistic hill climbing algorithm that migrates
through a set of local optima in search of the global extremum.

SA consists of two stochastic processes for generating candidate policy conٽgurations and for
accepting a new conٽguration. Algorithm  presents the algorithm for tuning the data migration
policy using SA. At each time step, SA randomly selects a new conٽguration (C′) close to the cur-
rent one (C). It then evaluates the cost of that conٽguration (E′). Lastly, it decides to accept the
conٽguration C′ or stay with C based on whether the cost of C′ is lower or higher than that of the
current conٽguration. If C′ is better than C, then it immediately transitions to C′. Otherwise, it
randomly accepts the new conٽguration with higher cost (C′) based on the Boltzmann acceptance
probability factor.

SA is theoretically guaranteed to reach the global optima with high probability. The control
parameter T determines the magnitude of the perturbations of the energy function E. SA grad-
ually decreases T over time. During the initial steps of SA, at high temperatures, the probability
of uphill moves in the energy function (∆E > ) is large. Despite temporarily increasing the en-
ergy, such non-beneٽcial downhill steps (∆E < ) allows for a more extensive search for the global
optimal conٽguration. Over time, SA reduces the temperature. This gradual cooling mechanism
corresponds to slowly decreasing the probability of accepting worse conٽgurations as it explores the
conٽguration state space.

. Storage Hierarchy Selection
We have so far focused on identifying an optimal data migration policy conٽguration for a par-

ticular workload given a storage hierarchy. The tuning algorithm presented in Section . assumes
that we have already provisioned a multi-tier storage hierarchy that is a good tٽ for the workload. It
is unclear, however, how to select such a hierarchy for a particular workload given a cost or perfor-
mance constraint.

In this section, we formulate an analytical model of a hierarchical storage system to improve the
intuition behind provisioning a multi-tier storage hierarchy. We then identify the limitations of the
model and present a recommender system that addresses them.

.. Hierarchical Storage SystemModel
We canmodel the multi-tier storage system as a linear hierarchy with n levels, L1, L2,. . ., Ln. The

performance of a particular level Li in the hierarchy is determined by two factors: the average access
time ti and the device capacity Ci []. We assume that a copy of all blocks in level i exists in every
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Algorithm  Data Migration Policy Tuning Algorithm
Require: temperature reduction parameter α,
threshold for number of accepted transitions γ,
initial data policy conٽguration C0,
initial temperature T0,
nalٽ temperature Tmin
function UPDATE-CONFIGURATION(α, γ,C0, T0, Tmin)

# Initialization
current conٽguration C = C0
energy E = cost(C)
temperature T = T0
# Iterative Search
while T > Tmin do

while number of accepted transitions < γ do
new conٽguration C′ = neighbor(C)
energy E′ = cost(C′)
energy delta ∆E = E′ -E
Boltzmann acceptance probability P = e

−∆E
T

if ∆E <  or with acceptance probability P then
# Accept new policy conܦguration
C = C′

end if
end while
# Reduce temperature
T = T * α

end while
end function

level greater than i (i.e., in all lower levels in the hierarchy). The maximum information that can be
stored in the system is equal to the capacity of the lowest level Cn, since copies of all blocks stored
in the higher levels of the system must be present in Ln.

We can characterize the performance impact of the device capacity at a particular level by the
probability of ndingٽ the requested data block in that level. This is termed as the hit ratio H. H is a
monotonically increasing function with respect to device capacity C. Let the cost per storage unit
(e.g., per GB) of the device technology used at a particular level be given by the cost function P(ti).
It decreases monotonically with respect to the access time ti of the device technology.

Since a copy of all data blocks at level i exists in every level greater than i, the probability of a
hit in level Li and misses in the higher levels, is given by:

hi = H(Ci) −H(Ci−1)

Here, hi represents the relative number of successful data accesses at level i in the storage hier-
archy. The effective average access time per block request, is then given by:

T =
n

∑
i=1

hi(
i

∑
j=1

t j)
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To maximize the operational throughput of the DBMS, we need to minimize T subject to stor-
age system cost constraints. Given a storage system cost budget B, the goal is to select the device
technology ti and determine the device capacity Ci for each level in the storage hierarchy. We for-
mulate this problem as follows:

Minimize:
T =

n

∑
i=1
(1 −H(Ci−1))ti .

Subject to the storage system cost constraint:
n

∑
i=1

P(ti)Ci ≤ B

.. Storage Hierarchy Recommender System
H is a function of the workload locality and does not have a closed-form expression []. Con-

sequently, instead of deriving an explicit solution to this optimization problem, the recommender
system resorts to measuring the actual throughput on a particular workload to identify the optimal
storage hierarchy. The goal of the recommender system is to identify a multi-tier storage hierarchy
consisting of DRAM, NVM, and/or SSD that maximizes a user-deٽned objective function given a
cost constraint. It searches across candidate storage hierarchies that meet the user-speciٽed budget.

We represent the set of candidate DRAM devices by {D0,D1,D2, . . . ,Dp}, the set of candidate
NVM devices by {N0,N1,N2, . . . ,Nq}, and the set of candidate SSD devices by {S0, S1, S2, . . . , Sr}.
These devices have varying capacities and costs. We are provided with a cost function P that re-
turns the cost of a particular device. For instance, P(Di) returns the cost of the DRAM device with
capacity Di .

We can prune the set of candidate storage hierarchies by only considering devices whose ca-
pacities are powers of two. With this restriction, the size of set of candidate storage hierarchies is
relatively small (p, q, and r < ). The recommender system does a pure grid search over the entire
set []. During a particular trial on a grid, we only consider device triples {Di ,N j , Sk} that meet
the user-speciٽed budget B, as given by:

P(Di) + P(N j) + P(Sk) ≤ B

The system then measures the operational throughput on the storage hierarchy corresponding
to the device triple {Di ,N j , Sk}. We conٽgure D0 = 0 to model storage hierarchies containing only
NVM and SSD devices (i.e., those that do not have DRAM). Similarly, we set N0 = 0 and S0 = 0
to model storage hierarchies without NVM and SSD, respectively. We note that the entire database
must tٽ in the lowest level of storage hierarchy. Since the cost of NVM is more than × lower than
that of SSD, the latter device will likely continue to occupy the lowest level.

. Trace-Driven Buffer Manager
We developed a trace-driven buffer manager to evaluate different storage hierarchy designs and

data migration policies. We gather traces from a real DBMS by running OLTP, OLAP, and HTAP
workloads. The trace contains information about individual buffer pool operations.
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At the beginning of the trace period, we take a snapshot of the DBMS’s meta-data regarding the
blocks stored in memory and on storage. This snapshot does not contain any user data. The buffer
manager only simulates the movement of user data blocks and not their actual contents. This allows
us to effectively run simulations of buffer management operations on large databases.

During simulation, the trace requests are handed off to the buffermanager’s worker threads. The
buffer manager runs on top of a multi-tier storage hierarchy consisting of DRAM, NVM, and/or
SSD. For instance, in case of a three-tier DRAM-NVM-SSD storage hierarchy, it maintains two
buffer pools on DRAM and NVM. While processing the trace requests, the buffer manager issues
read and write operations to the appropriate devices in the storage hierarchy depending on the data
migration policy.

We use the hardware emulator developed by Intel Labs to emulate NVM [, ]. The buffer
manager uses the lesystemٽ interface exported by the emulator. This allows the buffer manager to
use the POSIX lesystemٽ interface to read/write data to lesٽ stored onNVM.This interface is imple-
mented by the persistent memory ,lesystemܦ a special lesystemٽ optimized for NVM. Typically, in a
block-oriented ,lesystemٽ leٽ I/O requires two copies; one involving the block device and another
involving the user buffer. The emulator’s optimized ,lesystemٽ however, requires only one copy
between the leٽ and the user buffers.

. Experimental Evaluation
We now present an analysis of the proposed buffer management policies for a multi-tier storage

hierarchy comprising of NVM. To perform a fair comparison, we implemented all the policies in
the same trace-driven buffer manager. We illustrate that:
● NVM improves throughput by reducing accesses to canonical storage devices due to its higher
capacity-cost ratio compared to DRAM.
● The selection of a multi-tier storage hierarchy for a given workload depends on the working
set size, the frequency of persistent writes, the system cost budget, and the performance and
cost characteristics of NVM.
● Tuning the buffer management policy for the workload and the storage hierarchy shrinks the
number of writes to NVM and improves throughput.

.. Experimental Setup
We perform our experiments on the NVM hardware emulator described in Appendix A. By

default, we set the capacity of the DRAM and NVM buffers to be  GB and  GB, respectively.
Unless otherwise stated, we conٽgured the NVM latency to be × that of DRAM and validated
these settings using Intel’s memory latency checker. The emulator’s storage hierarchy also includes
two additional devices:
● HDD: Seagate Barracuda ( TB,  RPM, SATA .)
● SSD: Intel DC S ( GB, SATA .)

Workloads: We use the TPC-C, Voter, CH-benCHmark, and AuctionMark workloads from the
OLTP-Bench testbed in our evaluation [, ]. Appendix B presents a detailed description of these
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Benchmark Footprint

TPC-C  GB
CH-benCHmark  GB

Voter  GB
AuctionMark  GB

Table .: Trace Footprints – Footprints of the traces associated with different benchmarks.
benchmarks. These workloads differ in their workload skews and frequencies of persistent writes.

Trace Collection: We ran the benchmarks on an instrumented Postgres DBMS (v.) []. All
the transactions execute with the same serializable isolation level and durability guarantees. To col-
lect the traces, we ran each benchmark for three hours including a -minute warm-up period. At
the end of the warm-up period, we take a snapshot of the DBMS’s meta-data regarding the location
of blocks in volatile memory and on durable storage. We then start recording the buffer pool refer-
ences in the trace. During simulation, the buffer manager rstٽ loads the snapshot before executing
the operations recorded in the trace.

The amount of data referenced at least once in a trace is termed as its footprint. An important
issue in using trace-driven simulations to study storage hierarchy design is that the traces must have
a sufficiently large footprint for the storage conٽgurations of interest []. Table . presents the
footprints of the traces associated with different benchmarks. For all experiments, we used half of
the trace to warm-up the simulator. We collect system statistics only after the buffer pools have been
warmed up.

.. Workload Skew Characterization

We begin with a characterization of the workload skew present in the different workloads. Fig-
ure . shows the cumulative distribution function (CDF) of the number of buffer pool accesses per
block in the workload traces.

For the TPC-C benchmark shown in Figure .a, % of buffer pool references are made to %
of the blocks and % of the blocks only account for .% of the accesses. This illustrates that this
workload is not highly skewed and has a large working set. Similarly, the CH-benCHmark also
exhibits low skew as depicted in Figure .d. % and % of the blocks account for % and % of
the buffer pool references, respectively.

Figure .b shows that the Voter benchmark exhibits the lowest degree of skew among all work-
loads since % of the referenced blocks account for only % of buffer pool references. This is be-
cause the workload mostly consists of short-lived transactions that generate many writes to the log.
In contrast, AuctionMark exhibits the highest degree of skew among all workloads. .% of the
blocks account for % of the buffer pool references and % of the buffer pool accesses are made to
% of the blocks. We attribute this to the temporally skewed item access patterns in AuctionMark.
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Figure .: Workload Skew Characterization – CDF of the number of times a block is referenced
in the traces associated with different workloads. Due to the inherent skew present in certain work-
loads, most of the buffer pool accesses are made to a small fraction of blocks.

.. Impact of NVM on Runtime Performance

In this section, we compare the buffer manager’s throughput on similarly priced NVM-SSD and
DRAM-SSD storage hierarchies to examine the impact of NVM on runtime performance. We do
not consider a DRAM-NVM-SSD hierarchy in this experiment to isolate the utility of NVM. We
conٽgured the cost budget to be . The cost of NVM is derived from the current price of Intel’s
D XPoint-based Optane SSD P []. Given this budget, the capacity of the NVM and DRAM
devices are  GB and  GB, respectively. Note that the latter device’s capacity is × higher than
that of the former due to NVM’s higher capacity-cost ratio. To obtain insights that are applicable
for a broader range of NVM technologies, we quantify the impact of NVM on different latency
conٽgurations. We ran the experiment under three NVM latency conٽgurations for the emulator
ranging from –× DRAM latency (– ns).

The results shown in Figure . illustrate that the NVM-SSD hierarchy outperforms its DRAM-
based counterpart on most workloads and latency conٽgurations. On the TPC-C benchmark, we
observe that with the × latency conٽguration, the NVM-based hierarchy outperforms the DRAM-
SSD hierarchy by .×. This is because NVM reduces the number of SSD accesses by × due to
its larger capacity over DRAM. The reduction in time spent on disk operations negates the perfor-
mance impact of slower NVMoperations. With the × latency conٽgurations, the performance gap
drops to .×. This illustrates the impact of NVM’s higher latency relative to DRAM. Both storage
hierarchies deliver similar throughput on the × latency conٽguration. In this setting, slower NVM
operations nullify the beneٽts of its higher capacity.

The impact ofNVM ismore pronounced on theVoter benchmark. This benchmark saturates the
DBMS with many short-lived transactions that each update a small number of tuples. The buffer
manager frequently ushesپ dirty blocks to durable storage while executing this workload. NVM
improves runtime performance by efficiently absorbing these writes. As shown in Figure .b, the
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Figure .: Performance Impact of NVM – Comparison of the buffer manager’s throughput on
similarly priced NVM-SSD and DRAM-SSD storage hierarchies under different NVM latency con-
.gurationsٽ

performance gap between the two storage hierarchies varies from × to .× on the × and ×
latency conٽgurations, respectively.

On the AuctionMark workload shown in Figure .c, the NVM-SSD hierarchy outperforms its
DRAM-based counterpart by .× with the × latency conٽguration. However, the trend reverses
on the × latency conٽguration, where the latter hierarchy delivers .× higher throughput than the
former. We attribute this to the workload’s smaller working set that tsٽ in the DRAM buffer.

The results for the CH-benCHmark workload, shown in Figure .d, illustrate that the NVM-
based hierarchy delivers .× higher throughput compared to its DRAM-based counterpart on the
× latency conٽguration. We attribute this to the larger working set associated with this workload.
Even on the × latency conٽguration, the former storage hierarchy delivers % higher throughput
than the latter. This demonstrates the performance impact of NVM on HTAP workloads.

Performance Impact of NVM with Slower Storage: We next compare the buffer manager’s
throughput on similarly priced NVM- and DRAM-based hierarchies that use a HDD instead of
a SSD for secondary storage. The results in Figure . show that the utility of NVM is higher when
operating on top of HDD relative to a SSD.

On the TPC-C benchmark, as shown in Figure .a, NVM-HDD outperforms its DRAM-based
counterpart by × on a × latency conٽguration. This is larger than the .× performance gap
between the NVM-SSD and DRAM-SSD hierarchies on the same conٽguration. This shows that
the utility of the NVM buffer is higher on top of HDD due to the latter’s higher latency compared to
SSD. Even on the × latency conٽguration, NVM-HDD hierarchy delivers .× higher throughput
than DRAM-HDD. This is because the working set does not tٽ in the DRAM buffer. However, it
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Figure .: Performance Impact of NVM with Slower Storage – Comparison of the buffer man-
ager’s throughput on similarly priced NVM-HDD and DRAM-HDD storage hierarchies under dif-
ferent NVM latency conٽgurations.

tsٽ in the NVM buffer. NVM absorbs the bulk of the buffer pool references, thereby shrinking the
impact of HDD on runtime performance.

The beneٽts of NVM are more prominent on the Voter benchmark shown in Figure .b. The
NVM-based hierarchy outperforms its HDD-based counterpart by × on the × latency conٽgu-
ration. On this workload, the NVM buffer reduces HDD writes by × in comparison to the DRAM
buffer. With the × conٽguration, the performance gap marginally drops to ×. Slower HDD
operations dampen the performance impact of NVM latency on this workload.

NVM-HDD outperforms its DRAM-based counterpart across all latency conٽgurations on the
AuctionMark workload, as shown in Figure .c. The performance gap between the NVM-SSD
and NVM-HDD hierarchies (.×) is smaller than that between the DRAM-SSD and DRAM-HDD
hierarchies (×).

These results illustrate that NVM shrinks the performance impact of slower HDD operations by
reducing capacity cache misses. This implies that the rstٽ place to spend money when designing a
multi-tier storage hierarchy is on the cheaper tier (NVM) rather than the faster one (DRAM).

.. Storage Hierarchy Recommendation
We next focus on the storage hierarchy recommendation problem presented in Section .. In

this experiment, we compare the performance/price numbers of multi-tier storage hierarchies. If the
cost of a storage hierarchy is  C and the throughput it delivers is T operations per second, then
the performance/price number is given by TC . This represents the number of operations executed
per second per dollar. Given a system cost budget and a target workload, the recommender system
identiٽes the storage hierarchy with the highest performance/price number.
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Each storage system consists of at most three devices: DRAM, NVM, and SSD. We vary the
capacity of the DRAM and NVM devices from  MB through  GB, and from  GB through
 GB, respectively. We conٽgured the capacity of the SSD device to be  TB. We examine the
runtime performance of the buffermanager on both two- and three-tier storage hierarchies: DRAM-
SSD, NVM-SSD, and DRAM-NVM-SSD. We conٽgured the NVM latency to be × that of DRAM.

Storage System Cost: Figure .a presents the cost of candidate storage hierarchies. The cost
of the DRAM-SSD hierarchy increases from  to  when we vary the capacity of the DRAM
device from  MB through  GB. The cost of the NVM-SSD hierarchy raises from  to 
when we vary the capacity of the NVM device from  GB through  GB.

Storage Hierarchy Recommendation: The performance/price numbers of candidate storage
hierarchies across differentworkloads is presented in Figure .. The recommender systemperforms
a grid search to identify the storage hierarchywith the highest performance/price number on a target
workload given a cost budget.

For the TPC-C benchmark, as shown in Figure .b, the storage system that delivers the highest
performance/price number consists of  GB DRAM and  GB NVM on top of SSD. Expanding
the capacity of the DRAM buffer to  GB improves performance by %. But, this also raises the
storage system cost by %. Similarly, reducing the capacity of the DRAM buffer to MB shrinks
performance and cost by % and %, respectively. The recommended storage hierarchy outper-
forms its NVM-SSD counterpart by %. This is because the DRAM buffer reduces the time spent
on NVM read operations by %.

The optimal storage system for the Voter workload consists of  GB DRAM and  GB NVM,
as shown in Figure .c. While executing this workload, the buffer manager frequently ushesپ dirty
blocks to durable storage. In the absence of NVM, the buffer manager spends more time ushingپ
data to SSD. So the performance/price number on a similarly priced  GB DRAM-SSD system is
× lower than its NVM-based counterpart.

On the AuctionMark workload, as shown in Figure .d, a NVM-SSD system consisting of
 GB NVM delivers the highest performance/price number. It delivers .× higher throughput
compared to a similarly priced DRAM-SSD system with  GB DRAM.This illustrates the utility of
NVM’s higher capacity-cost ratio relative to DRAM. Adding a  GB DRAM buffer on top of NVM
does not improve performance on this workload. Instead, it reduces throughput by %. The I/O
overhead associated with data migration between DRAM and NVM overrides the utility of caching
data on DRAM.

For the CH-benCHmark workload, the results in Figure .e show that the maximal perfor-
mance/price number is delivered by a DRAM-NVM-SSD system with  GB DRAM and  GB
NVM. Adding a  GB DRAM buffer on top of NVM increases throughput by % on this workload.
This is because it reduces time spent on NVM operations by %, thereby justifying the data migra-
tion overhead.

Impact of NVM Latency: We look at the impact of NVM latency on the selection of storage
hierarchy. Figure .f presents the results for the TPC-C benchmark with the × latency conٽg-
uration. The storage system that delivers the highest performance/price number consists of  GB
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Figure .: Storage Hierarchy Recommendation – (a) The total cost of the DRAM, NVM, and
SSD devices used in a multi-tier storage system. (b-f)The performance/price numbers of candidate
storage hierarchies on different benchmarks. Given a system cost budget and a target workload, the
recommendation system performs a grid search to identify the storage hierarchy with the highest
performance/price number.

DRAM and  GB NVM on top of SSD.The capacity of the DRAM buffer has increased from  GB
with the × latency conٽguration. This shows that the utility of the DRAM buffer has increased due
to slower NVM operations.
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Figure .: Performance Impact of Bypassing DRAM – Comparison of the buffer manager’s
throughputwhen it adopts lazy and eager datamigration policies forDRAM.Wemeasure the perfor-
mance impact of these policies across different NVM latency conٽgurations and DRAMmigration
frequencies (D).

The results in Figure . illustrate how the selection of a multi-tier storage system for a given
workload depending on the working set size, the frequency of persistent writes, the system cost
budget, and the performance and cost characteristics of NVM.

.. Data Migration Policies
In this section, we look at the impact of data migration policies on runtime performance and

the number of writes performed on NVM. We begin by comparing the performance of the buffer
manager when it employs the lazy and eager policies presented in Section .. We consider a storage
hierarchy with  GB DRAM and  GB NVM buffers on top of SSD. We quantify the performance
impact of four data owپ optimizations: () bypassing DRAM (Dr,Dw), and () bypassing NVM (Nr,
Nw) while serving read and write operations. To derive insights that are applicable for a broader
range of NVM technologies, we do this analysis across three NVM latency conٽgurations ranging
from –× DRAM latency.

Performance Impact of Bypassing DRAM: Figure . illustrates the performance impact of
bypassing DRAM while serving reads and write operations. We vary the DRAM migration fre-
quencies (Dr, Dw) in lockstep from  through . We conٽgured the buffer manager to adopt an
eager policy for NVM (Nr,Nw = ). Since the DRAMmigration frequencies are updated in lockstep,
we denote them by D. With the baseline policy (D = ), the buffer manager eagerly moves data to
DRAM.The results in Figure . demonstrate that the lazy migration policies work well for DRAM
on most workloads.

For the TPC-C benchmark shown in Figure .a, the throughput observed whenD is  is %
higher than thatwith the eagermigration policy on the × latency conٽguration. The reasons for this
are twofold. First, the lazy policy reduces the data migration between NVM and DRAM. Second,
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Figure .: Performance Impact of BypassingNVM –Comparison of the buffermanager’s through-
put when it adopts lazy and eager data migration policies for NVM. We measure the performance
impact of these policies across different NVM latency conٽgurations and NVMmigration frequen-
cies (N ).

it ensures that only frequently referenced data are moved to DRAM. The performance gap drops
to % on the × latency conٽguration. This is because the lazy policy ampliٽes the performance
impact of slower NVM operations.

The beneٽts of lazy data migration are more prominent on the write-intensive Voter workload.
Bypassing DRAM while performing writes nearly doubles the throughput, as shown in Figure .b.
With the lazy policy, the buffer manager directly ushesپ dirty blocks to NVM instead of rstٽ writing
them on DRAM. Since DRAMwrite latencies are comparable to those of NVM, particularly on the
× latency conٽguration, bypassing DRAM during writes shrinks the overall write latency.

Unlike other workloads, eager policy works well for the AuctionMark workload, as depicted in
Figure .c. It outperforms the lazy policy (D = ) by % on the × latency conٽguration. This is
because the workload’s working set tsٽ in the DRAM buffer and shifts over time. But the lazy policy
delays the migration of hot data from NVM to DRAM, thereby reducing the utility of the DRAM
buffer. The performance gap shrinks to % with a lazier policy (D = ). The reduction in data
movement between DRAM and NVM dampens the impact of delayed migration of the working set.

Lastly, on theCH-benCHmarkworkload, the lazy policy delivers %higher throughput than its
eager counterpart, as shown in Figure .d. Unlike AuctionMark, the working set of this workload is
more stable. Even though the lazy policy results in delayedmigration, the buffermanager eventually
loads theworking set in theDRAMbuffer. This illustrates that the optimalmigration policy depends
on the workload characteristics.

Performance Impact of Bypassing NVM: Figure . illustrates the performance impact of by-
passing NVM while serving reads and write operations. In this experiment, we vary the NVM
migration frequencies (Nr, Nw) in lockstep from  through . We conٽgured the buffer man-
ager to adopt an eager policy for DRAM (Dr, Dw = ). Since the NVM migration frequencies are
updated in lockstep, we denote them byN . The results in Figure . show that eager migration (N
= ) works well for NVM on most workloads.

For the TPC-C benchmark shown in Figure .a, the throughput observed whenN is set to  is
% lower than that with the eager policy on the × latency conٽguration. This is because the time
spent on SSD operations increases by × due to bypassing NVM during writes. The performance
impact of lazy migration marginally drops to % on the × latency conٽguration. Slower NVM
operations dampen the effect of writes landing on SSD.
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Figure .: Impact of Bypassing NVM onWrites to NVM – Comparison of the number of writes
performed on NVM when the buffer manager adopts lazy and eager data migration policies for
NVM. We measure the impact of these policies across different NVMmigration frequencies (N ).
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Figure .: Impact of Storage Hierarchy – Comparison of the optimal data migration policy de-
cision for bypassing DRAM across different storage hierarchies, NVM latency conٽgurations, and
DRAMmigration frequencies.

Theperformance impact ofNVMbypass ismore prominent on theVoterworkload shown in Fig-
ure .b. The throughput drops by % whenN is set to  on the × latency conٽguration. These
results illustrate that while lazy migration policies work well for DRAM, eager policies are a better
tٽ for NVM.

Impact of NVM Bypass on Writes to NVM: Although lazy data migration negatively impacts
runtime performance, it reduces the number of writes performed on NVM. Figure . presents the
impact of NVM bypass on the number of NVMwrites. For the TPC-C benchmark, as shown in Fig-
ure .a, the buffer manager performs .× fewer writes to NVM with a lazy migration policy (N
= ) in comparison to eager migration. The impact of NVM bypass on the number of writes per-
formed on NVM is equally pronounced on the Voter workload as shown in Figure .b. Adopting
the lazy migration policy (N = ) reduces the number of NVM writes by .×.

These results illustrate that the optimal data migration policy must be chosen depending on the
runtime performance requirements and write endurance characteristics of NVM.

Impact of Storage Hierarchy: We next consider how the optimal data migration policy varies
across storage hierarchies. In this experiment, we consider two three-tier storage hierarchies with
 MB and  GB DRAM buffers. We conٽgured both systems to use a  GB NVM buffer on top
of SSD. The results for the TPC-C benchmark depicted in Figure . show that the utility of lazy
data migration varies across storage systems.
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On the rstٽ system, as shown in Figure .a, the throughput with lazy migration (D = )
is % higher than that with its eager counterpart. The performance gap between the policies on
this system is larger than that observed with a larger DRAM buffer ( GB) in Figure .a. This is
because the lazy policy increases the utility of the smaller DRAM buffer by not polluting it with
colder data. For this system, the optimal migration frequency remains unchanged even on slower
latency conٽgurations.

The results for the second system shown in Figure .b illustrate that the lazy policy delivers %
higher throughput on the × latency conٽguration. The utility of lazymigration is not as prominent
on this system since the capacity of the DRAM buffer is one-eighth of that of the NVM buffer. The
eager policy (D = ) outperforms its lazy counterpart on the × latency conٽguration. This is because
the latter policy ampliٽes the impact of slower NVM operations, particularly when the relative size
of the DRAM buffer compared to the NVM buffer is large.

We conclude that the optimal migration policy depends not only on the workload and device
characteristics, but also on the relative size of the DRAM buffer compared to the NVM buffer.

.. Buffer Management Policy Comparison
In this section, we compare our proposed data migration policy against that presented by van

Renen et al. []. We refer to the former and latter policies byA and B, respectively. We developed
A based on the insights presented in Section ... This policy consists of lazy migration for DRAM
(Dr = ,Dw = ) and NVM during reads (Nr = ), and eager migration for NVM during writes
(Nw = ). We conٽgured B following the guidelines in []. B consists of eager migration for
DRAM (Dr = , Dw = ), and lazy migration for NVM during reads (Nr = ∞) and writes (Nw =
). These policies differ in two ways. With the former policy, the buffer manager initially moves
data into NVM and lazily migrates it to DRAM. It frequently bypasses DRAM during writes and
directly persists data on NVM. With B, the buffer manager initially moves data into DRAM and
stores data evicted from DRAM on NVM. It bypasses NVM during writes in order to ensure that
only frequently referenced data is stored on NVM.

The results in Figure . illustrate thatA works well across different workloads. For the TPC-C
workload shown in Figure .a, it outperforms B by .×. The reasons for this are twofold. First,
with the latter policy, the buffer manager bypasses NVM during writes. Although this scheme re-
duces the number of writes to NVM by ×, it increases the time spent by the buffer manager on
SSD operations by .×. The former policy circumvents this problem by absorbing more writes on
NVM.The buffermanager often reclaims space in theNVMbuffer by discarding unmodiٽed blocks.
Second, bypassing DRAM during reads (Dr = ) reduces the data migration overhead between
NVM and DRAM and ensures that only frequently referenced blocks are stored on DRAM. The
performance gap between these policies shrink on the × NVM latency conٽguration since slower
NVM operations reduce the utility of lazy migration for DRAM.

The results in Figure .b illustrate the utility of eager migration to NVM during writes. A
outperformsB by .× on thisworkload. With the former policy, the buffermanager directly persists
data on NVM instead of rstٽ buffering it on DRAM. Since DRAMwrite latencies are comparable to
those ofNVM, particularly on the × latency conٽguration, bypassingDRAMduringwrites reduces
the overall write latency, thereby improving runtime performance.
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Figure .: Performance Impact of Buffer Management Policies – The impact of different buffer
management policies on runtime performance across different NVM latency conٽgurations.
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Figure .: Adaptive Data Migration – The impact of buffer management policy adaptation on
runtime performance across different workloads.

With policyB, NVM latency does not impact runtime performance. The throughput only drops
by % when we transition from a × latency conٽguration to a × conٽguration. This is because
lazy migration to NVM increases the time spent on SSD operations, thereby reducing the impact of
slower NVM operations.

.. Adaptive Data Migration
In the previous experiments, we examined the utility of a xedܦ data migration policy. But iden-

tifying the optimal data migration policy is challenging due to diversity of workloads and storage
hierarchies. Thus, we now examine the ability of buffer manager to automatically adapt the man-
agement policy at runtime. In this experiment, the buffer manager begins executing the workload
with an eager policy for both DRAM (D = ) and NVM (N = ). During execution, it adapts the pol-
icy using the simulated annealing (SA) algorithm presented in Section .. This technique searches
for the policy that maximizes the throughput given a target workload and storage hierarchy. We
use an operation sequence with M entries. We conٽgure the duration of a tuning step to be M
operations to ensure that the impact of policy changes are prominently visible to the SA algorithm.

The results in Figure . show that the buffer manager converges to a near-optimal policy for
different workloads without requiring any manual tuning. For the TPC-C and Voter workloads,
tuning the data migration policy increases throughput by % and %, respectively. The buffer
manager converges to a hybrid policy, with lazymigration for DRAMand eagermigration for NVM
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on both workloads. The throughput converges to a global optima over time. We attribute this to the
gradual cooling mechanism in SA that decreases the probability of accepting worse policies.

. Summary
This chapter explored the changes required in the buffer manager to leverage the unique prop-

erties of NVM in systems that still include DRAM and SSD. We introduced a taxonomy of data mi-
gration policies for DRAM and NVM. Our evaluation shows that a NVM-based storage hierarchy
outperforms a similarly priced DRAM-SSD system by up to ×. We demonstrate that our contin-
uous adaptation mechanism allows the DBMS to achieve a near-optimal data migration policy for
an arbitrary workload without requiring any manual tuning.

Thus far, this dissertation has focused on implications of NVM for storagemanagement, logging
and recovery algorithms, and buffer management. Lastly, we examine the implications of NVM for
index data structures in the next chapter.





Chapter 

Indexing

Multi-threaded concurrency is one of the keys to unlocking high performance in main-memory
databases. To achieve concurrency on modern CPUs, several systems – both research and com-
mercial – implement latch-free index structures to avoid bottlenecks inherent in latching (locking)
protocols. For instance, MemSQL uses latch-free skip-lists [], while Microsoft’s Hekaton main-
memory OLTP engine uses the Bw-tree [], a latch-free B+Tree.

The algorithms for latch-free index designs are often complex. They rely on atomic CPU hard-
ware primitives such as compare-and-swap (CAS) to atomically modify index state. These atomic
instructions are limited to a singleword, and non-trivial data structures – such as a latch-free B+Tree
– usually require multi-word updates, e.g., to handle operations like node splits and merges. These
operations have to be broken up into multiple steps, thereby exposing intermediate states to other
threads. As a result, the algorithms must handle subtle race conditions that may occur when in-
termediate states are exposed. In addition, some designs sacriٽce performance to achieve latch-
freedom. An example is the Bw-tree [] that uses a mapping table to map logical page identiٽers
to physical pointers. Nodes in the Bw-tree store logical pointers and must dereference the map-
ping table on each node access during traversal of the index. Such indirection leads to degraded
performance on modern CPUs.

Storing a latch-free index on NVM potentially enables both high performance and fast recovery.
But, it further complicates implementation of latch-free indexes. The added complexity is mainly
caused by the fact that CAS and other atomic hardware instructions do not persist their updates to
NVM automatically and atomically. An update onlymodiٽes the target word in the processor cache
and does not automatically update the target word in NVM. In case of a power failure, the volatile
cache content is lost and the data in NVM may be left in an inconsistent state. Hence, we need a
persistence protocol to ensure that an index recovers correctly after a system crash.

In this chapter, we propose the BzTree, a high-performance latch-free B+Tree design for main-
memory databases that has the following beneٽts.

Reduced Complexity: The BzTree implementation makes use of PMwCAS: a high-performance,
multi-word, compare-and-swap operation that also provides persistence guarantees when used on
NVM []. The PMwCAS operation is implemented in software and require no special hardware
support other than a CAS (or equivalent) instruction. It is itself latch-free and either atomically


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installs all new values or fails the operation without exposing intermediate state. Using PMwCAS
to build a latch-free index has two major advantages. First, the PMwCAS guarantees that all multi-
word updates are atomic, thus avoiding the need to handle complex race conditions that result from
exposing intermediate state during multi-word operations. Second, PMwCAS allows the BzTree to
avoid logical-to-physical indirection used, for example, in the Bw-tree []. TheBzTree stores direct
memory pointers in both index and leaf nodes.

High Performance: Using the YCSB workload on volatile RAM, we show that the BzTree out-
performs the Bw-tree. This demonstrates that the BzTree outperforms a state-of-the-art index de-
signed for DRAM-based systems. Given its portability, we also experimentally demonstrate that the
penalty for running the BzTree on NVM is low: on realistic workloads, the overhead of persistence
is % on average. We also show that use of PMwCAS exhibits negligible contention even for larger
multi-word operations. Even for highly skewed YCSB access patterns, the failure rate for updating
multiple words across multiple BzTree nodes is only .% on average.

SeamlessPortability toNVM:ThesameBzTree implementation can runonboth volatileDRAM
and on NVMwithout any code changes. PMwCAS guarantees that upon success of an update (in this
case to B+Tree nodes), the operation will be durable on NVM and persist across failures. Remark-
ably, recovery is handled entirely by the PMwCAS library without any BzTree speciٽc recovery code.

The rest of this chapter is organized as follows. In Section ., we present the necessary back-
ground on the PMwCAS primitive. Section . presents the BzTree node layout and single-node up-
dates, while Section . covers structure modiٽcations. Durability and recoverability on NVM are
covered in Section .. We present our experimental evaluation in Section . and conclude the
chapter in Section ..

. Persistent Multi-Word CAS
TheBzTree relies on an efficient andpersistentmulti-word compare-and-swapoperation, named

PMwCAS, to update state in a latch-free and persistent manner. The design is based on a volatile ver-
sion by Harris et al [], which we enhance to guarantee persistence on NVM (details in []).
The approach uses a descriptor to track metadata for the operation (details described later); these
descriptors are pooled and eventually reused. The API for the PMwCAS is:
● AllocateDescriptor(callback = default): Allocate a descriptor thatwill be used through-
out the PMwCAS operation. The user can provide a custom callback function for recyclingmem-
ory pointed to by the words in the PMwCAS operation.
● Descriptor::AddWord(address, expected, desired): Specify a word to be modiٽed.
The caller provides the address of the word, the expected value and the desired value.
● Descriptor::ReserveEntry(addr, expected, policy): Similar to AddWord except the
new value is left unspeciٽed; returns a pointer to the new_value eldٽ so it can be lledٽ in later.
Memory referenced by old_value/new_value will be recycled according to the speciٽed re-
cycling policy.
● Descriptor::RemoveWord(address): Remove the word previously speciٽed as part of the

PMwCAS.
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Figure .: PMwCAS Descriptor Table – Contents of the descriptor table used by threads to share
information about the PMwCAS operation.

● PMwCAS(descriptor): Execute the PMwCAS and return true if succeeded.
● Discard(descriptor): Cancel the PMwCAS (only valid before calling PMwCAS). No speciٽed
word will be modiٽed.

TheAPI is identical for both volatile and persistent MWCAS. Under the hood, PMwCAS provides all the
needed persistence guarantees, without additional actions by the application.

TousePMwCAS, the applicationٽrst allocates a descriptor and invokes theAddWordorReserveEntry
method once for each word to bemodiٽed. It can use RemoveWord to remove a previously speciٽed
word if needed. AddWord and ReserveEntry ensure that target addresses are unique and return
an error if they are not. Calling PMwCAS executes the operation, while Discard aborts it. A failed
PMwCAS will leave all target words unchanged. This behavior is guaranteed across a power failure
when operating on NVM.

.. Durability
When running on NVM, the PMwCAS provides durability guarantees through the use of instruc-

tions to selectively ushپ or write back a cache line, e.g., via the cache line write-back (CLWB) or cache
line ushپ (CLFLUSH without write-back) instructions on Intel processors []. These instructions
are carefully placed to ensure linearizable reads and writes and also guarantee correct recovery in
case of a crash or power failure. This is achieved by using a single dirty bit on all modiٽed words
that are observable by other threads during the PMwCAS. For example, each modiٽcation that in-
stalls a descriptor address (or target value) sets a dirty bit to signify that the value is volatile, and
that a reader must ushپ the value and unset the bit before proceeding. This protocol ensures that
any dependent writes are guaranteed that the value read will survive power failure.

.. Execution
Internally, PMwCAS makes use of a descriptor that stores all the information needed to complete

the operation. Figure . depicts an example descriptor for three target words. A descriptor contains,
for each target word, () the target word’s address, () the expected value to compare against, () the
new value, () the dirty bit, and () a memory recycling policy. The policy eldٽ indicates whether
the new and old values are pointers to memory objects and, if so, which objects are to be freed on
the successful completion (or failure) of the operation. The descriptor also contains a status word
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tracking the operation’s progress. The PMwCAS operation itself is latch-free; the descriptor contains
enough information for any thread to help complete (or roll back) the operation. The operation
consists of two phases.

Phase : This phase attempts to install a pointer to the descriptor in each target address using
a double-compare single-swap (RDCSS) operation []. RDCSS applies change to a target word only
if the values of two words (including the one being changed) match their speciٽed expected values.
That is, RDCSS requires an additional “expected” value to compare against (but not modify) com-
pared to a regular CAS. RDCSS is necessary to guard against subtle race conditions and maintain a
linearizable sequence of operations on the same word. Speciٽcally, we must guard against the in-
stallation of a descriptor for a completed PMwCAS (p1) that might inadvertently overwrite the result
of another PMwCAS (p2), where p2 should occur after p1 (details in []).

A descriptor pointer in a word indicates that a PMwCAS is underway. Any thread that encounters
a descriptor pointer helps complete the operation before proceeding with its own work, making
PMwCAS cooperative (typical for latch-free operations). We use one high order bit (in addition to
the dirty bit) in the target word to signify whether it is a descriptor or regular value. Descriptor
pointer installation proceeds in a target address order to avoid deadlocks between two competing
PMwCAS operations that might concurrently overlap.

Upon completing Phase , a thread persists the target words whose dirty bit is set. To ensure
correct recovery, this must be done before updating the descriptor’s status eldٽ and advancing
to Phase . We update status using CAS to either Succeeded or Failed (with the dirty bit set)
depending on whether Phase  succeeded. We then persist the status eldٽ and clear its dirty bit.
Persisting the status eldٽ “commits” the operation, ensuring its effects survive even across power
failures.

Phase : If Phase  succeeds, the PMwCAS is guaranteed to succeed, even if a failure occurs –
recovery will roll forward with the new values recorded in the descriptor. Phase  installs the nalٽ
values (with the dirty bit set) in the target words, replacing the pointers to the descriptor. Since
the nalٽ values are installed one by one, it is possible that a crash in the middle of Phase  leaves
some target eldsٽ with new values, while others point to the descriptor. Another thread might have
observed some of the newly installed values andmake dependent actions (e.g., performing a PMwCAS
of its own) based on the read. Rolling back in this case might cause data inconsistencies. Therefore,
it is crucial to persist status before entering Phase . The recovery routine (covered next) can then
rely on the status eldٽ of the descriptor to decide if it should roll forward or backward. If the
PMwCAS fails in Phase , Phase  becomes a rollback procedure by installing the old values (with the
dirty bit set) in all target words containing a descriptor pointer.

Recovery: Due to the two-phase execution of PMwCAS, a target address may contain a descriptor
pointer or normal value after a crash. Correct recovery requires that the descriptor be persisted
before entering Phase . The dirty bit in the status eldٽ is cleared because the caller has not started
to install descriptor pointers in the target ;eldsٽ any failure that might occur before this point does
not affect data consistency upon recovery.

The PMwCAS descriptors are pooled in a memory location known to recovery. Crash recovery
then proceeds by scanning the descriptor pool. If a descriptor’s status eldٽ signiٽes success, the
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operation is rolled forward by applying the target values in the descriptor; if the status signiٽes
failure it is rolled back by applying the old values. Uninitialized descriptors are simply ignored.
Therefore, recovery time is determined by the number of in-progress PMwCAS operations during the
crash; this is usually on the order of number of threads, meaning very fast recovery. In fact, in an
end-to-end recovery experiment for the BzTree, we measured an average recovery time of  µs
when running a write-intensive workload with  threads.

MemoryManagement: Latch-free data structure implementations require amechanism toman-
age memory lifetime and garbage collection; since there are no locks protecting memory dealloca-
tion, the system must ensure no thread can dereference a block of memory before it is freed. The
BzTree uses a high-performance epoch-based recycling scheme []. A thread joins the current
epoch before each operation it performs on the index to protect the memory it accesses from recla-
mation. It exits the epochwhen it nishesٽ its operation. When all the threads that joined an epoch E
have completed and exited, the garbage collector reclaims the memory occupied by the descriptors
deallocated in E . This ensures that no thread can possibly dereference a pointer after its memory is
reclaimed.

Since the PMwCAS is latch-free, descriptor memory lifetime is managed by the epoch-based re-
cycling scheme. This ensures that no thread can possibly dereference a descriptor pointer after its
memory is reclaimed and reused by another PMwCAS. If any of the -byte expected or target values
are pointers to largermemory objects, these objects can also bemanaged by the samememory recla-
mation scheme. Each word in the descriptor is marked with amemory recycling policy that denotes
whether and what memory to free on completion of the operation. For instance, if a PMwCAS suc-
ceeds, the user may want memory behind the expected (old) value to be freed once the descriptor
is deemed safe to recycle. Section . discusses the details of the interplay between PMwCAS and
memory reclamation.

. BzTree Architecture and Design
.. Architecture

The BzTree is a high-performance main-memory B+Tree. Internal nodes store search keys and
pointers to child nodes. Leaf nodes store keys and either record pointers or actual payload values.
Keys can be variable or xedٽ length. Our experiments assume leaf nodes store -byte record pointers
as payloads (common in main-memory databases []), though we also discuss how to handle full
variable-length payloads. The BzTree is a range access method that supports standard atomic key-
value operations (insert, read, update, delete, range scan). Typical of most access methods, it can
be deployed as a stand-alone key-value store, or embedded in a database engine to support ACID
transactions, where concurrency control takes place outside of the access method as is common in
most systems (e.g., within a lock manager) [, ].

PersistenceModes:We assume a systemmodel with a single-level store where NVM is attached
directly to the memory bus. The system may also contain DRAM which is used as working storage.
A salient feature of the BzTree is that its design works for both volatile and persistent environments.
In volatile mode, BzTree nodes are stored in volatile DRAM. Content is lost after a system failure.
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This mode is appropriate for use in existing main-memory system designs (e.g., Microsoft Heka-
ton []) that already contain recovery infrastructure to recover indexes. In durable mode, both
internal and leaf nodes are stored in NVM. The BzTree guarantees that all updates are persistent
and the index can recover quickly to a correct state after a failure. For disaster recovery (media
failure), the BzTree must rely on common solutions like database replication.

Metadata: Besides nodes, there are only two other -bit values used by the BzTree:
● Root pointer. This is a -bit pointer to the root node of the index. When running in persistence
mode, this value is persisted in a known location to ndٽ the index upon restart.
● Global index epoch. When running in persistence mode, the BzTree is associated with an index
epoch number. This value is drawn from a global counter (one per index) that is initially zero
for a new index and incremented only when the BzTree restarts after a crash. This value is per-
sisted in a known location, and is used for recovery purposes and to detect in-پight operations
(e.g., space allocations within nodes) during a crash. We elaborate on the use of this value in
Sections . and ..

.. Complexity and Performance
TheBzTree design addresses implementation complexities and performance drawbacks of state-

of-the-art latch-free range indexes.

ImplementationComplexities: State-of-the-art range index designs usually rely on atomic prim-
itives to update state. This is relatively straightforward for single-word updates. For example, the
Bw-tree [] updates a node using a single-word CAS to install a pointer to a delta record within
a mapping table. Likewise, designs like the MassTree [] use a CAS on a status word to arbitrate
node updates. The implementation becomes more complex when handling multi-location updates,
such as node splits and merges that grow (or shrink) an index. The Bw-tree breaks multi-node op-
erations into steps that can be installed with a single atomic CAS; similar approaches are taken by
other high-performance indexes to limit latching across nodes. These multi-step operations expose
intermediate state to threads that concurrently access the index. This means the implementation
must have special logic in place to allow a thread to (a) recognize when it is accessing an incomplete
index (e.g., seeing an in-progress split or node delete) and (b) take cooperative action to help com-
plete an in-progress operation. This logic leads to code “bloat” and subtle race conditions that are
difficult to debug [].

As we will see, the BzTree uses the PMwCAS primitive to update index state. We show that this
approach performs well even when updating multiple nodes atomically. The BzTree thus avoids the
subtle race conditions for more complex multi-node operations. In fact, using cyclomatic com-
plexity analysis, we show that the BzTree design is at least half as complex as the Bw-tree and
MassTree [], two state-of-the-art index designs.

Performance Considerations: Some latch-free designs such as the Bw-tree rely on indirection
through a mapping table to isolate updates (and node reorganizations) to a single location. Bw-tree
nodes store logical node pointers, which are indexes into themapping table storing the physical node

Cyclomatic complexity is a quantitative measure of the number of linearly independent paths through source code.
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Figure .: Node Layout – Node layout and details for the BzTree.

pointers. This approach comeswith a tradeoff. While it avoids propagation of pointer changes up the
index, e.g. to parent nodes, it requires an extra pointer dereference when accessing each node. This
effectively doubles the amount of pointer dereferences during index traversal, leading to reduced
performance, as we show in our experimental evaluation (Section .).

The BzTree does not rely on indirection to achieve latch-freedom. Interior index nodes store
direct pointers to child nodes to avoid costly extra pointer dereferences during traversal. As we
show later in Section ., this translates into higher performance when compared to the state-of-
the-art in latch-free index design.

. BzTree Nodes
In this section, we begin by describing the BzTree node organization and then discuss how the

BzTree supports latch-free reads and updates on these nodes. We then describe node consolidation:
an operation that reorganizes a node to reclaimdead space and speed up search. We defer discussion
of multi-node operations such as splits and merges until Section ..

.. Node Layout
The BzTree node representation follows a typical slotted-page layout, where xed-sizeٽ metadata

grows “downward” into the node, and variable-length storage (key and data) grow “upward.” Specif-
ically, a node consists of: () a xed-sizeٽ header, () an array of xed-sizeٽ record metadata entries,
() free space that buffers updates to the node, and () a record storage block that stores variable-
length keys and payloads. All xed-sizedmetadataٽ is packed into -bit aligned words so that it can
easily be updated in a latch-free manner using PMwCAS.

Header: The header is located at the beginning of a node and consists of three eldsٽ as depicted
in Figure .a: () a node size eldٽ ( bits) that stores the size of the entire node, () a status
word eldٽ ( bits) that stores metadata used for coordinating updates to a node (content discussed
later in this section), and () a sorted count eldٽ ( bits), representing the last index in the record
metadata array in sorted order; any entries beyond this point might be unsorted and represent new
records added to the node.
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RecordMetadata Array: Figure .b depicts an entry in the record metadata array that consists
of: () agپ bits ( bits) that are broken into PMwCAS control bits ( bits) used as internalmetadata
for the PMwCAS (e.g., to mark dirty words that require a (ushپ along with a visible agپ ( bit) used
to mark a record as visible, () an offset value ( bits) points to the full record entry in the key-
value storage block, () a key length eldٽ ( bits) stores the variable-length key size, and () a
total length eldٽ ( bits) stores the total length of the record block; subtracting key length
from this value provides the record payload size.

Free Space: Free space is used to absorbmodiٽcations to a node such as record inserts. This free
space sits between the xed-sizeٽ record metadata array and the record storage block. The record
metadata array grows “downward” into this space, while the data storage block grows “upward.”
However, internal index nodes do not contain free space; as we will discuss later, these nodes are
search-optimized and thus do not buffer updates, as doing so results in degraded binary search
performance.

Record Storage Block: Entries in this block consist of contiguous key-payload pairs. Keys are
variable-length byte strings. Payloads in internal BzTree nodes are xed-lengthٽ (-byte) child node
pointers. In this chapter, we assume payloads stored in leaf nodes are -byte record pointers (as is
common in main-memory databases []). However, the BzTree also supports storing full variable-
length payloads within leaf nodes. We discuss how to update both types of payloads later in this
section.

StatusWord:Thestatus word, depicted in Figure .c, is a -bit value that stores nodemetadata
that changes during an update. For leaf nodes, this word contains the following :eldsٽ () PMwCAS
control bits ( bits) used to atomically update the word, () a frozen agپ ( bit) that signals that
the node is immutable, () a record count eldٽ ( bits) that stores the total number of entries in
the record metadata array, () a block size eldٽ ( bits) storing the number of bytes occupied
by the record storage block at the end of the node, and () a delete size eldٽ ( bits) that stores
the amount of logically deleted space on the node, which is useful for deciding when to merge or
reorganize the node. Status words for internal nodes only contain the rstٽ two ;eldsٽ this is because
we do not perform singleton updates on internal nodes and thus do not need the other .eldsٽ We opt
to replace internal nodes wholesale (e.g., when adding or deleting a record) for search performance
reasons.

Internal and Leaf Node Differences: Besides status word format, internal and leaf nodes differ
in that internal nodes are immutable once created, while leaf nodes are not. Internal nodes only store
records in sorted order by key (for fast binary search) and do not contain free space. Leaf nodes, on
the other hand, contain free space to buffer inserts (and updates if the leaf nodes store full record
payloads). This means that leaf nodes consist of both sorted records (records present during node
creation) and unsorted records (records added to the page incrementally). We chose this approach
because the vast majority of updates in a B+Tree occur at the leaf level, thus it is important to have
leaf nodes quickly absorb record updates “in place”. On the other hand, internal index nodes are
read-mostly and change less frequently, thus can tolerate wholesale replacement, e.g., when adding a

PMwCAS relies on these bits to function property. A detailed description is available in [].
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new key as a result of a node split. In our experience, keeping internal index nodes search-optimized
leads to better performance than an alternative approach that organizes internal nodes with both
sorted and unsorted key space [].

.. Leaf Node Operations
This section describes the latch-free read and update operations onBzTree leaf nodes. Forwrites,

the basic idea is to employ the PMwCAS to manipulate the page and record metadata atomically in
a latch-free manner, for both reserving space (in the case of copying variable length data into the
page) and making the update “visible” to concurrent threads accessing the page. Readers access
pages uncontested; they are not blocked by writers. Table . summarizes the PMwCAS operations
associated with all the tree operations.

Inserts
New records are added to the free space available in the node. To insert a new record r, a thread

rstٽ reads the frozen bit. If it is set, this means the page is immutable and may no longer be part of
the index (e.g., due to a concurrent node delete). In this case, the thread must re-traverse the index
to ndٽ the new incarnation of the “live” leaf node. Otherwise, the thread reserves space for r in both
the record metadata array and record storage block. This is done by performing a -word PMwCAS
on the following :eldsٽ () the node’s statusword to atomically increment the record count eldٽ
by one and add the size of r to the block size value, and () the record metadata array entry to
ipپ the offset eld’sٽ high-order bit and set the rest of its bits equal to the global index epoch. If
this PMwCAS succeeds, the reservation is a success. The offset eldٽ is overridden during this phase
to remember the allocation’s index epoch. We refer to this value as the allocation epoch and use
it for recovery purposes (explained later). We steal the high-order bit to signal whether the value is
an allocation epoch (set) or actual record offset (unset).

The insert proceeds by copying the contents of r to the storage block and updating the eldsٽ in
the corresponding record metadata entry, initializing the visible agپ to  (invisible). Once the
copy completes, the thread ushesپ r (using CLWB or CLFLUSH) if the index must ensure persistence.
It then reads the status word value s to again check the frozen bit, aborting and retrying if the page
became frozen (e.g., due to a concurrent structure modiٽcation). Otherwise, the record is made
visible by performing a -word PMwCAS on () the -bit record metadata entry to set the visible
bit and also set the offset eldٽ to the actual record block offset (with its high-order bit unset) and
() the status word, setting it to s (the same value initially read) to detect conپict with a concurrent
thread trying to set the frozen bit. If the PMwCAS succeeds, the insert is a success. Otherwise, the
thread re-reads the status word (ensuring the frozen bit is unset) and retries the PMwCAS.

The BzTree must be able to detect concurrent inserts of the same key to enforce, for instance,
unique key constraints. We implement an optimistic protocol to detect concurrent key operations
as follows. When an insert operation rstٽ accesses a node, it searches the sorted key space for its
key and aborts if the key is present. Otherwise, it continues its search by scanning the unsorted key
space. If it sees any record with an unset visible agپ and an allocation epoch value equal to

Note that setting this eldٽ atomically along with the reservation is safe, since it will only succeed if the space allo-
cation succeeds.
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Tree Operation PMwCAS Size

N O
Insert [Allocation, Completion] , 
Delete 
Update [Record Pointer, Inlined Payload] , 
Node Consolidation 

SMO
Node Split [Preparation, Installation] , 
Node Merge [Preparation, Installation] , 

Table .: PMwCAS Summary Table – The size of the PMwCAS operations associated with different
node and structure modiٽcation operations.
the current global index epoch, this means it has encountered an in-progress insert that may be for
the same key. An entry with an unset visible agپ and an allocation epoch not equal to the
global index epochmeans it is either deleted or its allocation was in-progress during a crash from a
previous incarnation of the index and can be ignored (details in Section ..). Instead of waiting
for the in-progress insert to become visible, the thread sets an internal recheck agپ to remember to
re-scan the unsorted key space and continues with its insert. The recheck agپ is also set if the thread
loses a PMwCAS to reserve space for its insert since the concurrent reservation may be for the same
key. Prior to setting its own visibility bit, the thread re-scans the unsorted key space if the recheck
agپ is set and examines all prior entries before its own position. Upon encountering a duplicate key,
the thread zeroes out its entry in the record storage block and sets its offset value to zero; these
two actions signify a failed operation that will be ignored by subsequent searches. If the thread
encounters an in-progress operation during its scan, it must wait for the record to become visible,
since this represents an operation that serialized behind the insert thatmay contain a duplicate key.

Delete
To delete a record, a thread performs a -word PMwCAS on () a record’s metadata entry to unset

its visible bit and set its offset value to zero, signifying a deleted record and () the node status
word to increment the delete size eldٽ by the size of the target record. If the PMwCAS fails due to
a concurrent delete or conپict on the status word, the thread retries the delete. If the failure is due
to a concurrent operation that set the frozen bit on the node, the delete must re-traverse the index
to retry on a mutable leaf node. Incrementing delete size allows the BzTree to determine when
to delete or consolidate a node (Section .).

Update
There are two methods to update an existing record, depending on whether a leaf node stores

record pointers or full payloads.
● Record Pointers: If leaf nodes contain record pointers and the user wishes to update a record
in-place, the BzTree is passive and the update thread can traverse the pointer to access the
record memory directly. If the update requires swapping in a new record pointer, this can be
done in place within the record storage block. To do this, a thread reads both (a) the record
metadata entrym to ensure it is not deleted and (b) the status word s to ensure the node is not
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Figure .: Node Split – Node split in the BzTree.

frozen. It then performs a -word PMwCAS consisting of () the -bit pointer in the storage
block to install the new pointer, () the record’s metadata entry, setting it to m (the same value
as it read) to detect conپict with a competing delete trying to modify the word, and () the
status word, setting it to s (the same value it read) to detect conپict with a competing ipپ of
the frozen bit.
● Inline Payloads: If leaf nodes store full payloads, the update follows the same protocol as
an insert by () allocating space in the metadata array and record storage block and () writ-
ing a (key, update_payload) record into the record block that describes the update. The
update_payload can be either a full payload replacement or a “byte diff” describing only the
part(s) of the payload that have changed. Unlike inserts, we treat concurrent updates to the
same key as a natural race, supporting the “last writer wins” protocol. This means there is no
need to detect concurrent updates to the same key.

Upsert
TheBzTree supports the upsert operation common inmost key-value stores. If the record exists

in the leaf node, the thread performs an update to that record. If the record does not exist, the thread
performs an insert. In this case if the insert fails due to another concurrent insert, the operation can
retry to perform an update.

Reads
BzTree update operations do not block readers. A reader traverses the index to the target leaf

node. If the leaf node stores record pointers, a thread rstٽ performs a binary search on the sorted
key space. If it does not ndٽ its search key (either the key does not exist or was deleted in the sorted
space), it performs a sequential scan on the unsorted key space. If the key is found, it returns the
record to the user. If leaf nodes store full record payloads, the search rstٽ scans the unsorted key
space starting from the most recent entry, as recent update records will represent the latest payload
for a record. If the key is not found, the search continues to the sorted key space.

A read returns the most recent record it ndsٽ on the node that matches its search key. It ignores
all concurrent update activity on the node by disregarding both the frozen bit and any in-progress
record operations (unset visible bits). These concurrent operations are treated as natural races,
since (a) any record-level concurrency must be handled outside the BzTree and (b) the frozen bit
does not matter to reads, as it is used by operations attempting to reorganize the node to serialize
with updates.
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Range Scans

TheBzTree supports range scans as follows. Auser opens a scan iterator by specifying abegin_key
and an optional end_key (null if open-ended) deٽning the range they wish to scan. The scan then
proceeds one leaf node at a time until termination. It begins by entering an epoch to ensurememory
stability and uses the begin_key to ndٽ the initial leaf node. When entering a page, the iterator
constructs a response array that lists the valid records (i.e., visible and not deleted) on the node in
sorted order. In essence, the response array is a snapshot copy of the node’s valid records in its
record storage block. After copying the snapshot, the iterator exits its epoch so as to not hold back
memory garbage collection. It then services record-at-a-time get_next requests out of its snapshot.
Once it exhausts the response array, the iterator proceeds to the next leaf node by entering a new
epoch and traversing the tree using a “greater than” search on the largest key in the response array;
this value represents the high boundary key of the previous leaf node and will allow the traversal
to ndٽ the next leaf node position in the scan. This process repeats until the iterator can no longer
satisfy the user-provided range boundaries, or the user terminates the iterator.

.. Leaf Node Consolidation
Eventually a leaf node’s search performance and effective space utilization degrade due to side

effects of inserts or deletes. Search degrades due to (a) the need to sequentially scan the unsorted
key space (in the case of many inserts) and/or (b) a number of deletes adding to the “dead space”
within the sorted key space, thereby inپating the cost of binary search. The BzTree will occasionally
consolidate (reorganize) a leaf node to increase search performance and eliminate dead space. Con-
solidation is triggered when free space reaches a minimum threshold, or the amount of logically
deleted space on the node is greater than a conٽgurable threshold.

To perform consolidation of a nodeN , a thread rstٽ performs a single-word PMwCAS on theN ’s
status word to set its frozen .agپ This prevents any ongoing updates from completing and ensures
the consolidation process sees a consistent snapshot of N ’s records. The process then scans N to
locate pointers to all live records on the page – ignoring deleted and invisible records – and calculates
the space needed to allocate a fresh node (the size of all valid records plus free space). If this space
is beyond a conٽgurable max page size, the process invokes a node split (covered in Section .).
Otherwise, it allocates memory for a new node N ′ along with some free space to buffer new node
updates. It then initializes the header and copies over all live records fromN toN ′ in key-sequential
order. Now,N ′ contains all sorted records and is ready to replaceN .

Making N ′ visible in the index requires “swapping out” a pointer to N at its parent node P to
replace it with a pointer to N ′. To do this, the thread uses its path stack (a stack recording node
pointers during traversal) to ndٽ a pointer to P . If this pointer represents a frozen page, the thread
must re-traverse the index to ndٽ the valid parent. It then ndsٽ the record r inP that stores the child
pointer toN and performs an in-place update using a -word PMwCAS on () the -bit child pointer
in r to install the pointer to N ′ and () P ’s status word to detect a concurrent page freeze. If this
PMwCAS succeeds,N ′ is now live in the index andN can be garbage collected. However,N cannot
be immediately freed, since this process is latch-free and other threads may still have pointers to
N . The BzTree handles this case by using an epoch-based garbage collection approach to safely free
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memory.

Concurrency during Consolidation: Freezing a node prior to consolidation will cause any in-
progress updates on that node to fail, as they will detect the set frozen bit when attempting a PMwCAS
on the status word. The failed operations will then retry by re-traversing the tree to ndٽ a new
“live” leaf node. If they again land on a frozen node, this is a signal to help along to complete the
consolidation instead of “spinning” by continuously re-traversing the index hoping for a live node.
In this case, each thread will start its own consolidate process and attempt to install it at the parent.
This effectively makes threads race to install a consolidated node, though one will ultimately win.
Afterward, each thread resumes its original operation.

.. Internal Node Operations
Updates to existing records on internal nodes are performed in place following the protocol

discussed in the previous section for installing a new child pointer. To maintain search optimality
of internal nodes, record inserts and deletes (e.g., part of splitting or deleting a child node) create
a completely new version of an internal node. In other words, an insert or delete in an internal
node immediately triggers a consolidation. This process is identical to the leaf node consolidation
steps just discussed: a new node will be created (except with one record added or removed), and its
pointer will be installed at the parent.

. Structure Modiٽcations
We now describe the latch-free algorithms used in the BzTree for structure modiٽcation opera-

tions (SMOs). Like single-node updates, the basic idea for SMOs is to employ the PMwCAS to update
page state atomically and in a latch-free manner. This involves manipulating metadata like frozen
bits, as well as manipulating search pointers within index nodes to point to new page versions (e.g.,
split pages).

We begin with a presentation of the node split and node merge algorithms. We then discuss the
interplay between the algorithms when commingling structural changes and data changes. We also
explain why threads concurrently accessing the tree are guaranteed to not observe inconsistencies,
which simpliٽes both implementation and reasoning about correctness.

.. Prioritizing Structure Modiٽcations
Triggering SMOs in the BzTree relies on a simple deterministic policy. A split is triggered once

a node size passes a conٽgurable max_size threshold (e.g., KB). Likewise, a node delete/merge is
triggered once a node’s size falls below a conٽgurable min_size.

If an update thread encounters a node in need of an SMO, it temporarily suspends its operation
to perform the SMO before continuing its operation (we do not force readers to perform SMOs).
Given that SMOs are relatively heavyweight, prioritizing them over (lightweight) single-record op-
erations is important. Otherwise, in a latch-free race, single-record operations would always win
and effectively starve SMOs.
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.. Node Split
Node splits are broken into two phases () a preparation phase that allocates and initializes new

nodes with the SMO changes and () an installation phase that atomically installs the new nodes in
the index. We now describe the split details with the aid of Figure ..

Preparation: To split a nodeN , we rstٽ perform a PMwCAS on its status word to set the frozen
bit, as depicted in Figure .a. We then scan N to ndٽ all valid records and calculate a separator
key k that provides a balanced split. We then allocate and initialize three new nodes. () A new
version of N (call it N ′) that contains all valid records with keys less than or equal to k, () a new
sibling node O that contains all valid records with keys greater than k, and () a new version of
N ’s parent node P (call it P ′) that replaces the child pointer of N with a pointer to N ′ and adds a
new search record consisting of key k and a pointer to the new childO. All nodes are consolidated
(search-optimized) and store sorted records.

Installation: Installation of a split involves “swapping out” P to replace it with P ′, thereby mak-
ing the new split nodesN ′ andO visible in the index. Figure .b depicts this process. The installa-
tion is atomic and involves using a -word PMwCAS tomodify the following words () the status word
of P to set its frozen bit, failure to set the bit means it conپicts with another update to P , () the
-bit child pointer to P at its parent G (N ’s grandparent) to swap in the new pointer to P ′, and
() G’s status word to detect a concurrent page freeze. If the PMwCAS succeeds, the split is complete,
and the old nodes P and N are sent to the epoch-protected garbage collector. On failure, a thread
retries the split, and thememory for nodesN ′,P ′, andO can be deallocated immediately since they
were never seen by another thread.

.. Node Merge
The BzTree performs node merges in a latch-free manner similar to node splits. Before trigger-

ing a delete of a node N , we rstٽ ndٽ a sibling that will absorb N ’s existing records. We chose N ’s
left sibling L if () it shares a common parent P and () is small enough to absorb N ’s records
without subsequently triggering a split (defeating the purpose of a merge). Otherwise, we look at
N ’s right siblingR, verifying it has enough space to absorbN ’s records without a split. If neitherR
nor L satisfy the merge constraints, we allow N to be underfull until these constraints are met. In
the remainder of this section, we assumeN merges with its sibling L.

Preparation: To initiate the delete, we rstٽ perform a PMwCAS on the status word of both L and
N to set their frozen bit. We then allocate and initialize two new nodes: () a new version of the
left sibling L′ containing its own valid records and all ofN ′s valid records, and () a new version of
N and L’s parent P ′ that replaces the child pointer of Lwith a pointer to L′ and removes the search
record containing the separator key between L andN along with the child pointer toN .

Installation: Installation of the node delete and merge involves installing the new version of P ′
in the index that makes the merged child node L′ visible and removes N and L. This operation
is identical to that of node split that replaces the parent P with P ′ by both freezing P as well as
updating its parent G to install the new child pointer to P ′.

We chose to avoid merges that cross parent nodes to minimize the number of modiٽed nodes.
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.. Interplay Between Algorithms
The BzTree offloads the handling of ACID transactions to a higher software layer of the sys-

tem. This could, for instance, be a logical concurrency control component in a decoupled database
system []. The index itself is responsible for correctly serializing conپicting data and structural
changes. We now describe how BzTree ensures that threads do not observe the effects of in-progress
changes.

Co-operative PMwCAS: B+Tree implementations typically rely on latches for preventing threads
from observing changes performed by concurrent threads. The BzTree instead employs PMwCAS to
accomplish this. As described in Section ., we employ a latch-free PMwCAS library. The PMwCAS
operation is cooperative, in that any thread (reader orwriter) that encounters an in-progress PMwCAS
will rstٽ help along to complete the operation before continuing with its own. This policy effectively
serializes PMwCAS operations that might conپict. It also ensures the atomicity of operations within
the BzTree. Since all updates to the index are performed using PMwCAS, updates will either succeed
uncontested, or the PMwCAS help-along protocol will arbitrate conپict and abort some conپicting
operations.

Record Operations and Structure Modiٽcations: BzTree employs the status word to correctly
serialize conپicting data and structural changes that might conپict with each other. For instance,
an in-progress consolidate or SMO will rstٽ set the frozen bit within a node. This causes all in-
ightپ record-level operations to fail their PMwCAS due to conپict on the status word. These record
operations will then retry and either see (a) the frozen version of a node that requires maintenance,
for which it will attempt to complete or (b) a new (unfrozen) version of the node that is ready for
record updates.

Serializing Structure Modiٽcations: The BzTree uses a cooperative approach for serializing
conپicting SMOs. Consider a node deletion operation. To delete nodeN , the BzTree rstٽ checks if
its left sibling L is alive. If it observes that L is frozen, then it detects that another structural change
is in progress. In this case, the BzTree serializes the deletion ofN (if still needed) after that of L.

. BzTree Durability and Recovery
In this section, we illustrate how BzTree ensures recoverability of the tree across system failures

using PMwCAS. BzTree stores the tree either on DRAM when used in volatile mode, or on NVM
when used in durable mode. In volatile mode, the BzTree does not ushپ the state of the tree to
durable storage. However, when used in durable mode, it persists the tree on NVM to preserve it
across system failures. The BzTree does not need to employ a speciٽc recovery algorithm. It instead
relies on the recovery algorithms of a persistent memory allocator and the PMwCAS library to avoid
persistent memory leaks and ensure recoverability, respectively. We now describe these algorithms
in detail.

.. Persistent Memory Allocation
A classic volatile memory allocator with an allocate and free interface does not ensure cor-

rect recovery when used on NVM. If the allocator marks a memory chunk as being in use (due to
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allocate), and the application (e.g., BzTree) fails to install the allocated chunk on NVM before a
crash, then this causes a persistent memory leak. In this state, the memory chunk is “homeless” in
that it can neither be seen by the application nor by the memory allocator after a crash.

While creating a safe and correct persistentmemory allocator is outside the scope of this chapter,
there have beenmany proposals. We assume availability of a three-stage allocator [] that provides
the following states: () allocate, () activated, and () free. The application rstٽ requests
the allocation of a memory chunk. The allocator updates the chunk’s meta-data to indicate that it
has been allocated and returns it to the application. During recovery after a system failure, the
allocator reclaims all allocated memory chunks. To retain the ownership of the memory chunk
even after a failure, the applicationmust separately request that the allocator activate thememory
chunk. At this point in time, the application owns the memory chunk and is responsible for its
lifetime, including any cleanup after a failure.

The application must carefully interact with the allocator in the activation process, through an
interface (provided by the allocator) that is similar to posix_memalignwhich accepts a reference of
the target location for storing the address of the allocatedmemory. This design is employed bymany
existing NVM systems [, , , ]. The application owns the memory only after the allocator
has successfully persisted the address of the newly allocated memory in the provided reference.

.. Durability

There are two cases by which the BzTree handles durability of index data.

● Variable-length Data: Newly inserted records as well as new node memory (allocated as part
of a consolidate, split, or delete/merge) represents variable-length data in the BzTree. To ensure
durability, the BzTree ushesپ all variable-length data before it can be read by other threads. That
is, newly inserted record memory on a node is ushedپ before the atomic ipپ of its visible bit.
Likewise, new node memory is ushedپ before it is “linked into” the index using a PMwCAS. This
ush-before-visibleپ protocol ensures that variable-length data in the BzTree is durable when it
becomes readable to concurrent threads.
● Word-size Data: The durability of word-size modiٽcations is handled by the PMwCAS opera-
tion. As mentioned in Section ., the PMwCAS ensures durability of all words it modiٽes upon
acknowledging success. Thus, modiٽcations like changing the node status word and reserving
and updating a record’s metadata entry are guaranteed to be durable when modiٽed using the
PMwCAS. In addition, all modiٽcations performed by the PMwCAS are guaranteed to be durable
to concurrent readers.

The BzTree avoids inconsistencies arising from write-after-read dependencies. That is, it guar-
antees that a thread cannot read a volatile modiٽcation made by another thread. Otherwise, any
action taken after the read (such as a dependent write) might not survive across a crash and lead
to an inconsistent index. As mentioned above, the ush-before-visibleپ protocol ensures this prop-
erty for variable-length modiٽcations to the BzTree. Likewise, the PMwCAS ensures this property for
word-sized modiٽcations.
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.. Recovery
Memory Lifetime:The PMwCAS librarymaintains a pool of descriptors at a well-deٽned location

on NVM. Each word descriptor contains a eldٽ specifying a memory recycling policy. This policy
deٽnes how the memory pointed to by the old value and new value eldsٽ should be handled when
the PMwCAS operation concludes. The PMwCAS library supports twomemory recycling policies: NONE
and FREE-ONE. With the former policy, there is no need for recycling memory. The BzTree uses this
policy for modifying non-pointer values, such as the status word in nodes. With the latter policy,
the PMwCAS library frees the memory pointed to by the old (or new) value depending on whether
the PMwCAS operation succeeds (or fails). The BzTree uses this policy when allocating and installing
a new node in the tree. To activate the node memory, BzTree provides a memory reference to the
descriptor word responsible for holding a pointer to the node memory. This ensures an atomic
transfer of the activated memory pointer to the descriptor. Thememory lifetime is then handled by
the PMwCAS library. In case of a failure, the node’s memory is reclaimed by the recovery algorithm.
This obviates the need for BzTree to implement its own memory recycling mechanism.

Recovery Steps: During recovery from a system failure, the allocator rstٽ runs its recovery algo-
rithm to reclaim memory chunks that have been reserved but not yet activated. Then, the PMwCAS
library executes its recovery algorithm to ensure that the effects of all successfully completed PMwCAS
operations are persisted. As covered in Section ., upon restart after a crash, any in-پight PMwCAS
operations marked as succeeded will roll forward, otherwise they will roll back. For operations
involving memory pointer swaps, the PMwCAS will ensure that allocated and active memory deref-
erenced by its descriptors will be correctly handled according to the provided memory recycling
policy.

Aborted Space Allocations: While PMwCAS recovery can handle recovery of -bit word modi-
,cationsٽ including pointer swaps and node memory allocations, it cannot handle recovery of dan-
gling record space allocations within a node. As detailed in .., an insert is broken into two
atomic parts: Ê record space allocation andË record initialization (copying key bytes and populat-
ing metadata) and making the record visible. The BzTree must be able to detect and recover failed
inserts that allocated space within a node inÊ, but crashed duringË before a record was fully pop-
ulated and made visible. The BzTree uses the allocation epoch for this purpose (as described in
Section .., this value is temporarily stored in the offset eldٽ untilË completes). Since this eldٽ
is populated atomically during Ê, any subsequent failure before completion of Ë will be detected
after recovery increments the global index epoch. Doing so will invalidate any searches – such as
those done by inserts checking for duplicate keys – that encounter an allocation from a previous
epoch. This dangling node space will be reclaimed when the node is rebuilt during consolidation
or a structure modiٽcation.

. Experimental Evaluation
We implemented the BzTree in approximately , lines of C++ code, using the PMwCAS li-

brary to ensure atomicity and durability of tree updates []. This library employs the Win na-
And update if leafs contain full record payloads.
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tive InterlockedCompareExchange64 to perform CAS. NVMdevices based on newmaterial tech-
nologies (e.g., Intel D XPoint) are not yet commercially available. We instead target ash-backedپ
NVDIMMs. These NVDIMMs are DRAM whose data content is saved to ashپ storage on power
failure. We conduct experiments on a workstation running Windows Server  on an Intel Xeon
E- CPU (at .GHz) with  physical cores.

EvaluationWorkloads
We use the YCSB benchmark in our evaluation. A detailed description of this benchmark is

presented in Appendix B. Both BzTree and Bw-tree are treated as standalone key-value record stores
that accept read (Get), write (Insert/Delete/Update/Upsert), and range scan operations. By
default, the write operations in the workload mixtures are Upserts. We conٽgure the distribution
of the keys accessed by the index operations to be based on the following distributions:
● Random: -bit integers from a Uniform distribution.
● Zipٽan: -bit integers from a Zipٽan distribution.
● Monotonic: -bit monotonically increasing integer.
We generate a skewedworkload using the Zipٽan distribution. Unlessmentioned otherwise, our

primary performance metric is throughput measured in operations per second. We use  worker
threads equal to the number of logical cores on our experiment machine. We use -byte keys and
values, and conٽgure the default page size for both BzTree and Bw-tree to be  KB. In all our experi-
ments, we preٽll the index with M records. We observed similar trends when the index is preٽlled
with ten million records. The BzTree, by default, assumes that keys are variable length and uses the
offset eldٽ in the record metadata entry to dereference keys (there is no xed-lengthٽ optimization).
We execute all the workloads three times under each setting and report the average throughput.

.. Design Complexity
As minimized complexity is one of our primary goals, we begin by quantifying the BzTree de-

sign complexity compared to the Bw-tree. The Bw-tree’s latch-free tree algorithms make use of a
single-word CAS []. Its complexity stems from the fact that multi-word updates temporarily leave
the index in an inconsistent state that other threadsmust detect and handle. The BzTree instead uses
PMwCAS to atomically install changes at multiple tree locations, and this reduces its complexity con-
siderably. Consider the node split algorithm: if the node split operation propagates only up to the
great-grandparent node, it involves atomic updates to  tree locations. With a single-word CAS ap-
proach, the developer must explicitly handle many of the 25 () possible intermediate states that
could be exposed to concurrent threads. In contrast, with PMwCAS, the developer only needs to rea-
son about  tree states: the initial state with none of the locations mutated, and the nalٽ state with
all the veٽ locations successfully mutated. More broadly, PMwCAS shrinks the state space associated
with mutating k tree locations from 2k states to k states.

To quantify the reduction in design complexity, we measure the lines of code (LOC) of the node
split algorithm in BzTree and Bw-tree. While the Bw-tree implementation contains  LOC, the

This is because each tree location can either be updated or not at a given point in time. Although some of these
intermediate states might never be observed in practice, we note that the state space grows exponentially.
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Figure .: RandomKeyAccessDistribution –The throughput of BzTree andBw-tree for theYCSB
benchmark with different workload mixtures.

one in BzTree only contains  LOC.This is because the BzTree implementation handles fewer tree
states. A relative reduction in LOC does not necessarily imply a more maintainable data structure.
We therefore measured the cyclomatic complexity (CC) of these algorithms. CC is a quantitative
measure of the number of linearly independent paths through the function’s source code and rep-
resents the function’s complexity. Higher values of CC, therefore, correspond to more complex
functions that are harder to debug and maintain. CC of the node split algorithms in BzTree and
Bw-tree are  and , respectively. This demonstrates that PMwCAS reduces the design complexity of
BzTree’s algorithms.

.. Runtime Performance
We now provide an analysis of the runtime performance of BzTree compared to the Bw-tree

on different workload mixtures and key access distributions. For each conٽguration, we scale up
the number of worker threads. The worker threads process tree operations in a closed loop. These
experiments are run with both indexes in volatile DRAM mode to (a) showcase the peak perfor-
mance of the BzTree (we study durability in the next section) and (b) provide a fair comparison to
the Bw-tree since its design targets volatile DRAM with no straightforward extension to NVM.

RandomKey Access Distribution: We rstٽ consider the results on the read-only workload with
random key distribution shown in Figure .a. These results provide an upper bound on the tree’s
performance because none of the operations modify the tree. The most notable observation from
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(c) Read-only Workload (Monotonic)
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Figure .: Zipٽan andMonotonic Key Access Distributions –The throughput of BzTree and Bw-
tree for the YCSB benchmark.

this experiment is that BzTree delivers % higher throughput than Bw-tree. This is primarily be-
cause BzTree employs raw pointers to inter-link tree nodes meaning readers do not have to use
indirection to locate child nodes.

The beneٽts of BzTree algorithms are more prominent on the write-intensive workloads in Fig-
ures .c and .d, where BzTree’s throughput is .× higher and .× higher than that of Bw-tree,
respectively. We attribute this gap to the reduction in algorithm complexity and BzTree’s ability to
perform in-place updates.

Zipٽan Key Access Distribution: Figures .a and .b present the throughput of BzTree and
Bw-tree on different workloads with the Zipٽan key distribution. The beneٽts of BzTree’s reader-
friendly algorithms are prominent on the read-only workload, where BzTree outperforms Bw-tree
by %. By skipping the layer of indirection through the mapping table, readers can traverse BzTree
faster than Bw-tree. Unlike Bw-tree, BzTree supports inlined updates in leaf nodes and always keeps
the interior nodes consolidated. This reduces pointer chasing, thereby enabling a faster read path.

On the balanced workload in Figure .b, BzTree’s throughput is .× higher than that of Bw-
tree. Since most of key accesses are directed to a few leaf nodes with the Zipٽan key distribution,
the in-place update design of BzTree reduces the need for frequent node splits in comparison to Bw-
tree. This shrinks the amount of work performed by writers in BzTree, since the split operations
take more time to complete compared to single record writes.
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Figure .: Cost of Persistence –The throughput of BzTree for the YCSB benchmark in volatile and
durable modes across different workload mixtures based on the random key access distribution.

Monotonic Key Access Distribution: The performance of Bw-tree and BzTree on workloads
with the monotonic key distribution is shown in Figures .c and .d. We observe that on the
balanced workload, BzTree and Bw-tree deliver  M and  M operations per second, respectively.
The beneٽts of processor caching are prominent on this workload since keys are monotonically
increasing. This is a pathological conٽguration for concurrent writers since they always contend on
the same node. It is an approximate upper bound on the worst-case behavior of BzTree’s latch-free
algorithms on write-intensive workloads.

.. Durability
We now examine the cost of persistence by measuring the runtime performance of BzTree in

volatile and durablemodes on different workloadmixtures based on the randomkey access distribu-
tion. As shown in Figures .a and .b, the persistence overhead is % and % on the read-mostly
and balanced workloads, respectively. We attribute the small drop in throughput to the overhead
of using PMwCAS in durable mode as opposed to volatile version [].

In durable mode, the BzTree additionally uses the CLFLUSH instruction to write back the mod-
iٽed tree contents to NVM. Since CLFLUSH invalidates the line from the cache, this results in com-
pulsory cachemiss when the same data is accessed after the line has been .ushedپ Future processors
will support the CLWB instruction, which unlike CLFLUSH, does not invalidate the line and instead
only transitions it to a non-modiٽed state []. We expect that such a lightweight cache-line -ushپ
ing instruction will further increase BzTree’s throughput in durable mode by improving its caching
behavior. This experiment illustrates that the same BzTree implementation can be used for indexes
in both DRAM and NVM with a moderate cost to seamlessly support persistence.

.. Scan Performance
We next examine the performance of BzTree and Bw-tree on different workload mixtures of

the YCSB benchmark containing range scan operations. In this experiment, we conٽgure the scan
predicate’s key range so that the scan operation starts from a uniformly random starting offset, and
returns at most  matching records. The most notable observation from the results shown in Fig-
ure . is that BzTree scales better than Bw-tree. On the read-mostly workload with range scan
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Figure .: Scan Performance –The throughput of BzTree and Bw-tree on different workload mix-
tures containing range scan operations.

operations, as shown in Figure .a, the BzTree’s throughput with  worker threads is .× that
of its single-threaded performance. In contrast, Bw-tree’s throughput with  worker threads is
.× that of its single-threaded performance. This is mainly due to less pointer chasing and mem-
ory accesses in the BzTree. The Bw-tree must always perform delta updates to pages (new memory
prepended to a node representing an update), even for -byte payload changes. This causes the
scan to perform pointer chases over delta chains, e.g., when constructing a page snapshot to service
get-next requests.

The BzTree’s throughput on the read-mostly workload is .× higher than that of Bw-tree. We
attribute this to the reduction in indirection overhead of range scan operation, that forms % of the
read-mostly workload. On the balanced workload, as shown in Figure .b, the BzTree outperforms
Bw-tree by .×. This performance gap is realized by virtue of the reduction in algorithm complexity
and BzTree’s ability to perform in-place updates, compared to the Bw-tree’s usage of delta updates.
We observe that the absolute throughput of BzTree on the balancedworkload is .× higher than that
on the read-mostly workload. This is because range scan is more expensive than the write operation,
and the latter operation is more often executed in the balanced workload.

.. PMWCAS Statistics
To perform record updates and install structure modiٽcations, the BzTree uses the PMwCAS op-

eration with the word count varying from  to . We analyzed the failure frequency of PMwCAS
operations in the BzTree across varying degrees of contention on the balanced workload. We ob-
serve an increase of .% to .% in the fraction of failed PMwCAS operations going from  to 
threads. This is primarily because multiple worker threads concurrently attempt to split the same
leaf node and only one thread succeeds. A key takeaway is that on all conٽgurations, the overall
fraction of failed PMwCAS operations remains less than .%.

.. Sensitivity Analysis
We now analyze how the key size and unsorted free space size affects the runtime performance

of BzTree on the YCSB benchmark. We ran the read-only and read-heavy workloads based on the
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Figure .: Impact of Key Size and Free Space Size –The throughput of BzTree while running the
YCSB benchmark under different key size and free space size settings.

random key distribution.

Key Size: In this experiment, we xٽ the page size to be  KB, and vary the key size from  B
to  B. The key observation from the results in Figure .a is that the throughput drops by %
when we increase the key size on the read-only workload. We attribute this to more expensive key
comparisons in case of longer keys, both in the interior and leaf nodes. The performance impact
of key size is more prominent on the read-heavy workload where we observe a throughput drop of
%. This is because with longer keys, the leaf nodes are lledٽ faster with fewer keys, and this leads
to more frequent node splits that negatively affects throughput.

Free Space Size: Lastly, we examine the impact of the size of the free space on the BzTree’s
performance. We xٽ the page size to be  KB, and vary the free space size from  B to  B. The
BzTree uses the remaining space in the leaf node to store the sorted keys, as described in Section ...
Figure .b shows that the throughput increases by % when we decrease the free space size. This
is because readers need to perform fewer key comparisons in leaf nodes as the free space can only
contain fewer keys. Reducing the free space in this manner, however, increases the frequency of
node split operations and reduces space utilization. This is illustrated on the read-heavy workload,
where BzTree delivers its peak throughput when the free space size is  B.We attribute this tomore
node splits and key comparisons under smaller and larger free space size settings, respectively.

.. Memory Footprint

We next compare the peak memory footprint of BzTree and Bw-tree data structures while run-
ning the balanced workload in the YCSB benchmark. We observe that BzTree’s footprint is .×
smaller than that of Bw-tree for trees whose sizes range from  K to  M keys. For instance,
when we preٽll the index with  M keys, the peak memory footprint of BzTree and Bw-tree are
 MB and  MB, respectively. We attribute this to the compact node layout of BzTree and its
ability to buffer updates in place.
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Figure .: Execution Time Breakdown –The time that BzTree spends in its internal components
when running the balanced workload.

.. Execution Time Breakdown
In this experiment, we analyze the time that BzTree spends in its internal components during

execution. We examine the balanced workload in the YCSB benchmark with uniform key access
distribution. We use proٽling tools available inWindows Server to track the cycles executed within
the different components of BzTree []. We start this proٽling after preٽlling the index. The cycles
are classiٽed into four categories: () leaf node search, () internal node search, () PMwCAS, and ()
other miscellaneous components. This last category includes the time spent in copying data and
performing tasks such as garbage collection.

Themost notable result for this experiment, as shown in Figure ., is that even on the balanced
workload, BzTree only spends % of its time on performing PMwCAS operations. This is because
it spends the bulk of the time on traversing the tree and searching the leaf and internal nodes. We
observe that the proportion of the time that BzTree spends on searching nodes increases from %
to % when the workload is not write-intensive. This explains why the BzTree optimizations are
more beneٽcial for the balanced workload.

. Summary
It is challenging to design, debug, and extend latch-free indexing structures. This is because

“traditional” latch-free designs rely on a single-word CAS instruction that requires the developer to
carefully stage every atomic action so that each action leaves the tree in an intermediate state that is
recognizable to concurrent accessors. UpcomingNVM environments will onlymake this taskmore
difficult due to durability guarantees and the interplay with volatile CPU caches.

With the BzTree design we demonstrate that using PMwCAS, a multi-word compare-and-swap
with durability guarantees, helps reduce index design complexity tremendously. Our experimental
evaluation shows that even though PMwCAS is computationally more expensive than a hardware-
based single-word CAS, the simplicity that we gain by using PMwCAS improves not only the main-
tainability but also the performance of the BzTree. A cyclomatic complexity analysis shows that the
BzTree is at least half as complex as state-of-the-art main-memory index designs (the Bw-tree and
MassTree). Another beneٽt of the BzTree design is its :exibilityپ the same design can be used on
both volatile DRAM and NVM, with a roughly % overhead to ensure persistence. In addition, ex-
isting B+Tree implementations that achieve durability on NVM often employ complex algorithms
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for ensuring recoverability. The BzTree, on the other hand, does not rely on custom recovery tech-
niques: it relies on the general-purpose PMwCAS to roll forward (or back) its in-پight wordmodiٽca-
tions before becoming online and active. This allows for near-instantaneous recovery of the BzTree
index and is a deٽning feature of its design.





Chapter 

Related Work

In this chapter, we provide a discussion of related work. We begin with a discussion of work related
to the general themes in this dissertation, then examine speciٽc areas in depth.

The design of a DBMS’s architecture is predicated on the target storage hierarchy. There are
essentially two types of DBMS architectures: disk-oriented [, ] and memory-oriented sys-
tems [, , , , ]. The former is exempliٽed by the rstٽ DBMSs, such as IBM’s System
R [], where the system is predicated on the management of blocks of tuples on disk using an in-
memory cache; the latter by IBM’s IMS/VS Fast Path [], where the system performs updates on
in-memory data and relies on the disk to ensure durability.

The need to ensure that all changes are durable has dominated the design of systems with both
disk-oriented and memory-oriented architectures [, , ]. This has involved optimizing the
layout of data for each storage layer depending on how fast it can perform random accesses [].
Further, updates performed on tuples stored in memory need to be propagated to an on-disk rep-
resentation for durability. Previous studies have shown that the overhead of managing this data
movement for OLTP workloads is considerable []. The advent of NVM offers an intriguing blend
of the two storage mediums. This dissertation explores the changes required in DBMS architectures
to leverage NVM. It has beneٽted from prior work and in some cases built upon it.

. Logging and Recovery
Safe RAM is one of the rstٽ projects that explored the use of NVM in software applications [].

Copeland et al. deٽne Safe RAM as a memory with enough backup power so that its contents
can be safely copied to disk in case of a power failure. Using simulations, they demonstrate the
improvement in transactional throughput and latency when they replace the disk with the Safe
RAM. Agrawal et al. present recovery algorithms for a hypothetical database machine in which
the memory is non-volatile []. They extend the write-ahead logging protocol to leverage NVM.
This scheme does not require theDBMS to persist updated pages onNVMat the time of committing
a transaction (i.e., NO-FORCE policy). This allows a hot page to be updated in memory by several
transactions without it ever being written to disk. This freedom, however, comes at the expense of
high data duplication and slow recovery.


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More recently, Fang et al. propose a NVM-centric DBMS architecture where in-memory log
buffers and disk-based log lesٽ are replaced by a single log in NVM []. They extend the ARIES
WAL protocol to NVM and address the problems of detecting partial writes and holes, and ensuring
recoverability. Wang et al. present a passive group commitmethod for a distributed logging protocol
extension to Shore-MT []. Instead of issuing a barrier for every processor at commit time, the
DBMS tracks when all of the records required to ensure the durability of a transaction are ushedپ to
NVM.This scheme reduces log contention. It considers a log record as committed when it is written
to a NVM buffer. When the log buffer is full, it is ushedپ to disk. To establish the ordering of log
records, the protocol assigns a global sequence number based on a logical clock to each record. This
work is based on the Shore-MT engine [], whichmeans that the DBMS records page-level before-
images in the undo logs before performing in-place updates. This results in high data duplication.

PCMLogging is a logging protocol designed for a three-tier storage system with DRAM, NVM,
and SSD []. This scheme involves writing implicit log records in modiٽed pages. When a transac-
tion is committed, PCMLogging ushesپ all the modiٽed pages to NVM to ensure that the database
contains the latest changes. To remove the effects of uncommitted transactions, the DBMS keeps
track of a list of running transactions and the pages that theymodiٽed onNVM.TheDBMSdoes not
apply in-place updates on pages stored on NVM so that the changes can be rolled back if needed.
This protocol does not leverage the byte-addressability property of NVM and employs a physical
undo mechanism.

Pelley et al. introduced a group commit mechanism to persist transactions’ updates in batches
to reduce the number of write barriers required for ensuring correct ordering on NVM []. The
authors explore three NVM-centric DBMS architectures based on Shore-MT []. These architec-
tures do not leverage the byte-addressability property of NVM.

MARS [] is an in-place updates engine optimized for NVM that relies on a hardware-assisted
primitive that allows multiple writes to arbitrary locations to happen atomically. MARS does away
with undo log records by keeping the changes isolated using this primitive. Similarly, it relies on this
primitive to apply the redo log records at the time of commit. In comparison, our WBL approach
is based on non-volatile pointers, a software-based primitive, and uses existing (or upcoming) syn-
chronization instructions. It removes the need to record redo information in the WAL, but still
needs to store undo log records until the transaction commits.

SOFORT [, ] is a hybrid storage engine designed for bothOLTP andOLAPworkloads. The
engine is designed to not perform any logging and uses MVCC. It targets a two-tier storage system
with DRAM and NVM. The engine stores the primary copy of the data on NVM, and supports
the maintenance of auxiliary data structures on DRAM and NVM. To support hybrid workloads,
SOFORTmanages data in read-optimizedmain storage forOLAP andwrite-optimized delta storage
for OLTP.The engine periodically merges the contents of the delta storage intomain storage to limit
the size of the delta. SOFORTmanages the main storage on NVM and supports near-instantaneous
recovery after a system failure. Similar to SOFORT, we also make use of non-volatile pointers [],
but we use these pointers differently. SOFORT’s non-volatile pointers are a combination of page ID
and offset. We eschew the page abstraction in our engines since NVM is byte-addressable, and thus
we use raw pointers that map to data’s location in NVM.
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REWIND is a userspace library for efficientlymanaging persistent data structures onNVMusing
WAL to ensure recoverability []. SiloR is an efficient parallelized logging, checkpointing, and
recovery subsystem for in-memory DBMSs []. Oh et al. present a per-page logging approach
for replacing a set of successive page writes to the same logical page with fewer log writes [].

FOEDUS is a scalable OLTP engine designed for a two-tier storage system with DRAM and
NVM []. It is based on the dual page primitive that points to a pair of logically equivalent pages,
a mutable volatile page in DRAM containing the latest changes, and an immutable snapshot page
on NVM.With logical equivalence, the existence of a volatile page implies that it contains the latest
modiٽcations. The absence of such a page implies that the snapshot page contains all the changes.
FOEDUS accomplishes physical independence between volatile and snapshot pages by deriving the
latter from the write-ahead log. This obviates the need for synchronization between these two phys-
ical entities. The engine employs a log gleaner that constructs snapshot pages in DRAM and sequen-
tially writes them to NVM. FOEDUS reduces read ampliٽcation by routing the read operation to
the appropriate version. The engine adopts an optimistic concurrency control scheme based on the
Masstree and the Foster B-Tree data structures [, ]. During recovery, the log gleaner creates
snapshot pages using the contents of the WAL log. Although FOEDUS delivers high performance,
it relies on canonical WAL and does not leverage the byte-addressability property of NVM.

The instant-recovery protocol comprises of on-demand single-tuple redo and single-transaction
undo mechanisms to support almost instantaneous recovery from system failures [, ]. While
processing transactions, the DBMS reconstructs the desired version of the tuple on demand using
the information in the write-ahead log. The DBMS can, therefore, start handling new transactions
almost immediately after a system failure. Thedownside is that theDBMSperformance is lower than
that observed after the traditional ARIES-style recovery while the recovery is not yet complete. This
protocol works well when the DBMS runs on a slower durable storage device. But with NVM,WBL
enables the DBMS to deliver high performance than instant recovery immediately after recovery as
it does not require an on-demand redo process.

NV-logging focuses on the cost-effective use of NVM []. This protocol only uses NVM for
storing the database log sinceNVMismore expensive than SSD.Theauthors propose a per-transaction
decentralized logging scheme that works around the contention associated with a centralized log
buffer. TheDBMSmaintains a private log for each transaction. The log records are created inDRAM
and later ushedپ to a circular log buffer on NVM. The recovery scheme is a variant of the ARIES
protocol. Although NV-logging is cost-effective, this approach only leverages the low-latency se-
quential writes of NVM and does not exploit its ability to efficiently support random writes and
ne-grainedٽ data access. UnlikeWBL, all these systems require that the changes made to persistent
data must be preceded by logging.

. File-systems
Beyond DBMSs, researchers have explored using NVM in .le-systemsٽ Baker et al. evaluate

the utility of battery-backed DRAM as a client-side leٽ cache in a distributed lesystemٽ to reduce
write traffic to leٽ servers, and as a write buffer for write-optimized leٽ systems to reduce server
disk accesses [].
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Rio is a persistent leٽ cache that relies on an uninterruptible power supply to provide a safe, in-
memory buffer for lesystemٽ data []. It reduces transaction latency by absorbing synchronous
writes to diskwithout losing data during system crashes. The authors propose a safe synchronization
technique that writes dirty leٽ cache data reliably to disk during the last stage of a system crash.

BPFSuses a variant of shadowpaging onNVMto support ne-grainedٽ atomic updates by relying
on a special hardware instruction that ensures ordering between writes in different epochs []. It
uses a copy-on-write technique and -byte in-place atomic updates to provide metadata and data
consistency. SCMFS is a NVM-centric lesystemٽ that utilizes the OS’s virtual memorymanagement
module to map lesٽ to large contiguous virtual address ranges []. It supports efficient NVM
accesses but does not offer any consistency guarantees for both metadata and data.

PMFS is another lesystemٽ from Intel Labs that is explicitly tailored for byte-addressableNVM[,
]. Unlike BPFS, it leverages in-place atomic updates with ne-grainedٽ logging for ensuring meta-
data consistency, and a copy-on-write technique for guaranteeing data consistency. It optimizes
memory-mapped I/O by directly mapping NVM to the application’s address space and using large
page mappings. PMFS assumes a simpler hardware barrier primitive for ushingپ NVM stores to a
power fail-safe destination.

Direct access storage (DAX) is a mechanism for enabling direct access to lesٽ stored on NVM
without copying the data to the page cache [, , , ]. This requires only one copy between
the leٽ and the user buffers, thus improving the leٽ I/O performance. EXT DAX extends the
EXT leٽ system to support direct mapping of NVM by bypassing the buffer cache []. It relies on
journaling for atomic metadata updates. Unlike the EXT leٽ system, EXT DAX does not support
atomic updates to data. Aerie provides direct access for leٽ data I/O using user-level leases for NVM
updates []. It journals metadata but does not support atomic data updates andmemorymapping.

NOVA is a log-structured leٽ system that provides synchronous leٽ system semantics onNVM[].
Each inode in NOVA has a separate log, thereby allowing concurrent updates across lesٽ without
synchronization. NOVA uses a copy-on-write technique for writes by allocating new pages. It relies
on logging and lightweight journaling for complex atomic updates. During recovery, NOVA scans
all the logs to reconstruct the memory allocator’s state. NOVA-Fortis extends NOVA by support-
ing lightweight le-systemٽ snapshots and providing protection against media errors and corruption
due to software errors []. It demonstrates that a NVM-aware le-systemٽ can provide reliability
guarantees with a tolerable performance impact.

Kwon et al. present the architecture of a three-tier le-systemٽ that transparently migrates data
among different levels in the storage system []. It supports performance-isolated access to NVM
using a per-application log. This le-systemٽ is optimized for a speciٽc NVM technology that is ×
slower than DRAM. So it does not cache NVM-resident data on DRAM. For the same reason, it
bypasses DRAM while performing synchronous write operations.

Renen et al. present a buffermanager that eagerlymigrates data fromSSD toDRAM[]. When
a page is evicted from DRAM, the buffer manager considers admitting it into the NVM buffer. The
fundamental idea is to only admit recently referenced pages. The buffer manager maintains an
admission queue to keep track of pages considered for admission and only admits pages that were
recently denied admission.
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In Chapter , we introduce a taxonomy of data migration policies that subsumes the speciٽc
schemes adopted by prior systems. We derive insights that are applicable for a broader range of
three-tier storage systems and NVM technologies. In particular, we explore how the optimal data
migration policy depends on workload and storage system characteristics.

. Replication
With the WBL logging protocol described in Chapter , the DBMS can recover from system

and transaction failures. However, it cannot cope up with media failures or corrupted data. This
is because it relies on the integrity of durable data structures (e.g., the log) during recovery. These
failures are instead overcome through replication, wherein the DBMS propagates changes made by
transactions to multiple servers [, ]. When the primary server incurs a media failure, replica-
tion ensures that there is no data loss since the secondary servers can be conٽgured to maintain a
transactionally consistent copy of the database.

Mojimprovides reliable and highly-availableNVMbyusing a two-tier architecture that supports
an additional level of redundancy and efficiently replicates the data stored on NVM []. It allows
programmers to use fault-tolerant memory storage in their applications but does not provide the
transactional semantics required by a DBMS.

RAMCloud is aDRAM-based storage system that can be used as a low-latency key-value store [].
While both Mojim and RAMCloud provide reliable memory-based storage, the former exports
a memory-like interface to the applications and the latter supports a key-value interface. Unlike
RAMCloud, Mojim does not shard memory. It instead relies on fail-over to recover from failures.

. Memory Management
ANVM-aware memory allocator differs from a volatile memory allocator in three ways [, ,

]. The rstٽ difference is that it provides a durability mechanism to ensure that modiٽcations to
data stored onNVMare persisted []. This is necessary because the changesmade by a transaction
to a location on NVMmay still reside in volatile processor caches when the transaction commits. If
a power failure happens before the changes reach NVM, then these changes are lost [].

The allocator exposes a special API call to provide this durability. Internally, the allocator rstٽ
writes out the cache lines containing the data from any level of the cache hierarchy to NVM using
CLWB, the optimized cache ushingپ instruction that is part of the newly proposed NVM-related
instruction set extensions []. Then, it issues a SFENCE instruction to ensure that the stores are
ordered ahead of subsequent instructions. At this point, the stores may reside in the memory con-
troller’s write-pending queue (WPQ). In case of a power failure or shutdown, the asynchronous
DRAM refresh (ADR) instructions of newer NVM platforms automatically ushesپ the WPQ [],
thus ensuring that the data is durable.

The second variation is that the allocator provides a naming mechanism for allocations so that
pointers to memory locations are valid even after the system restarts [, ]. The allocator ensures
that the virtual memory addresses assigned to a memory-mapped region never change. With this
mechanism, a pointer to a NVM location is mapped to the same virtual location after the OS or
DBMS restarts. We refer to these pointers as non-volatile pointers.
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Lastly, the allocator ensures the atomicity of all thememory allocations so that after a system fail-
ure all memory regions are either allocated or available for use []. Allocator guarantees that there
are no torn data writes, dangling references, and persistent memory leaks by decoupling memory
allocations into two steps: () reserve and () activate. After the reserve step, the DBMS can use the
reserved memory region for storing ephemeral data. In case of a failure, however, the allocator re-
claims this memory region. To ensure that it owns a memory region even after a failure, the DBMS
must request the allocator to separately activate the memory region by updating the meta-data as-
sociated with that region. Under this two-step process, the DBMS rstٽ initializes the contents of a
memory region after the reserve step but before it activates it.

Mnemosyne andNV-heaps use software transactionalmemory to support transactional updates
to data stored on NVM [, ]. While the former supports word-based transactions, the latter
supports node-based transactions. The primitives provided by these systems allow programmers to
use NVM in their applications but do not provide the transactional semantics required by a DBMS.

Moraru et al. propose NVMalloc, a NVM-aware that helps with wear-leveling and protects
memory against erroneouswrites []. They augment the CPU caches with a set of counters to keep
track of the number of dirty cache lines that are yet to be written back to NVM. WAlloc is another
efficient wear-aware NVM allocator []. These allocators perform wear-leveling in software.

NVM-Malloc belongs to a family of allocators that assume that wear-leveling will be done in
hardware []. It prevents memory leaks by decoupling memory allocations into two steps. It man-
ages a single memory pool and uses relative pointers to keep track of objects. It uses a segregated-ٽt
algorithm for blocks smaller than  KB, and employs a best-ٽt technique for larger blocks.

PersistentMemoryDevelopmentKit (PMDK) is a collection ofNVM-centric libraries and tools [].
The libpmemobj library provides a transactional object store on NVM and internally uses a NVM
allocator. This allocator employs a a segregated-ٽt algorithm with multiple size classes for smaller
blocks less than KB and a best-ٽt technique for larger blocks. To reduce fragmentation, it splits
a KB chunk into smaller blocks. But, it does not contain a defragmentation mechanism.

Makalu is a fail-safe NVM allocator that employs a recovery-time garbage collector to main-
tains internal consistency []. It reduces the allocation persistence overhead by lazily persisting
unnecessary metadata and by using the garbage collector to avoids NVM leaks. Makalu’s allocation
strategy is similar to that of NVM-Malloc. Unlike NVM-Malloc, it only ensures the durability of
a subset of allocator metadata and reconstructs missing metadata during recovery. Makalu uses
regular volatile pointers and maps the memory pool at a xedٽ location to ensure that the pointers
are valid across restarts. However, this can result in the un-mapping of other objects that have been
already mapped in the address range.

PAllocator is a special-purpose NVM allocator that uses multiple lesٽ to dynamically expand
and shrink the managed NVM pools [, ]. Instead of using thread-local pools, PAllocator uses
one allocator object per physical core. This works well for DBMSs that spawn and terminate several
threads during query processing. It defragments memory by leveraging the hole punching feature
of sparse .lesٽ It supports fast recovery by persisting the bulk of the metadata and internally use
hybrid DRAM-NVM data structures.

X-Mem is amemorymanagement framework that automatically places data-structures in a two-
tier storage system with DRAM and NVM []. It allocates objects of different data structures in
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disjoint regions ofmemory to preserve semantic information at the granularity of a single allocation.
X-Mem contains a proٽling tool that identiٽes the access pattern to a data structure and improves
performance by automatically mapping memory regions of the data structure to DRAM or NVM.

. Hardware Support
Persistent caches simplify NVM software development by obviating the need for a persistency

model. Such caches can be constructed by ensuring that a battery backup is available to ushپ the
cache contents to NVM upon failure [, ], or by not caching NVM accesses []. However,
high NVM latency precludes its use as a processor cache [], and it is unclear how to provide
battery backup for systems with large caches. Our DBMS architectures only assume volatile caches.

Kolli et al. present a synchronous ordering (SO) scheme to formalize the memory persistency
model implied by Intel’s NVM-centric ISA extensions [, , ]. These extensions ensure correct
ordering of NVM writes [, , , , ]. SO presents fewer opportunities for overlapping
program execution and persist operations. To increase this overlap, the authors propose delegated
ordering. This technique decouples persist order enforcement from thread execution by buffering
persists in hardware.

BPFS uses barriers to divide program execution into epochs within which stores may be con-
currently persisted []. It supports epoch barriers by tagging cache blocks with the current epoch
id on every store. Since epoch barriers obviate stalls, this technique increases overlap between pro-
gram execution and persist operations compared to SO. However, it is tightly coupled with cache
management and requires write permissions to be discarded when epochs are drained. Delegated
ordering decouples cache management from the path taken by NVM writes.

Pelley et al. introduce a taxonomyof persistencymodels ranging from conservative (strict persis-
tency) to very relaxed (strand persistency)models []. They demonstrate that exposing additional
persist concurrency to the NVM controller improves performance. They present a variant of epoch
barriers that improves performance by managing inter-thread persist dependencies. However, they
do not propose hardware implementations for the persistency models. Joshi et al. propose efficient
persist barriers that support buffered epoch persistency []. Adoption of such persistency models
will improve the performance of NVM-centric DBMSs.

Kiln export a transactional storage system interface toNVMby guaranteeing the atomicity, dura-
bility, and consistency properties []. It assumes that processor caches are persistent and lever-
ages the implicit data versioning in caches. LOC adopts a custom hardware logging mechanism
and multi-versioned caches to minimize intra- and inter-transaction dependencies []. Unlike
these systems, DBMSs need to additionally provide the isolation guarantee between concurrently
executing transactions.

. Software Testing
Lantz et al. propose Yat [], a hypervisor-based testing framework for NVM-centric software

systems. It adopts a record-and-replay technique. During execution, it records all NVM writes by
logging hypervisor exits. It replaces instructions related to ensuring persistence on NVM with il-
legal instructions so that they can be traced via hypervisor exits. Yat splits the memory trace into
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segments that are delimited by persistence barriers. It lets writes within a segment to different NVM
locations to be reordered. During replay, it considers all possible segment reorderings and invokes
the recovery procedure after each execution. The authors restrict the number of examined reorder-
ings to bound testing time.

Oukid et al. present an automated testing framework that does not require software instrumen-
tation []. This framework performs on-line testing and improves code coverage by not examining
similar scenarios. It automatically crashes the evaluated software system and invokes the system’s
recovery procedure. The authors focus on improving software quality by efficiently covering a wide
range of NVM-related errors within a reasonable time-frame.

. Latch-Free Indexes
Modern devices with multi-core processors and high-capacity memory mandate highly concur-

rent indexes. This gave rise to the design of Bw-tree, a latch-free index built on top of the single-word
CAS primitive []. Although such an index delivers high performance, it is challenging to design,
debug, and extend. The developers must carefully design every SWCAS-based latch-free algorithm
so that each atomic action leaves the tree in a valid intermediate state for other threads [, ]. We
employ the stronger MWCAS primitive to simplify BzTree’s design.

Other state-of-the-art data structures includeART andMassTree. ART is a trie-based data struc-
ture that employs an adaptive node structure and adopts an optimistic lock coupling synchroniza-
tion algorithm [, , ]. MassTree is a hybrid cache-conscious B-tree/trie data structure that
eschews traditional latch coupling []. Unlike BzTree, its synchronization algorithm relies on
clever use of atomic operations and hand-over-hand latching. With this approach, developers need
to keep track of the latches being held along different control owپ paths to release the correct set of
locks. This increases the design complexity of the data structure. In addition, MassTree and ART,
by design, do not ensure durability on NVM.

. Multi-Word CAS
Amulti-word CAS instruction (MWCAS) simpliٽes latch-free programming of high-performance

data structures as exempliٽed in BzTree. A general-purpose MWCAS implementation is not available
in hardware. Prior work has focused on realizing MWCAS in software using the hardware-provided
SWCAS [, , , ]. The PMwCAS librarywe use is based on the volatile MWCASprimitive proposed
by Harris et al. []. MWCAS and transactional memory systems are similar in that they require
either all or none of the sub-operations to succeed []. Software transactional memory systems
have limited adoption due to high performance overhead []. In contrast, hardware transactional
memory (HTM) [, ] exhibits lower performance overhead and can help simplify the latch-
free design. However, HTM suffers from spurious transaction aborts either due to transaction size
or because of CPU cache associativity []. The PMwCAS library does not use HTM.

. Persistent Indexes
The advent of NVM triggered the development of different persistent indexes [, , , ,

]. SinceNVMdevices are expected to have limitedwrite endurance, these indexes focus on reduc-
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ing the number of stores to NVM. Write atomic B+Tree accomplishes this by using an indirection
slot array to minimize the movement of index entries and adopts a redo-only logging algorithm for
ensuring durability []. CDDS B+Tree is a multi-versioned

B+Tree []. Instead of performing in-place updates and logging, it relies on versioning to guar-
antee recoverability and consistency. CDDS, by design, performs a lot of cache line ,ushesپ which
degrades its performance. In contrast, NV-Tree [] employs an append-only update strategy and
re-constructs internal index nodes during recovery. However, it requires the internal nodes to be
stored in consecutive memory blocks. FPTree [] is a hybrid DRAM-NVM index that keeps the
internal nodes in volatile memory and stores the leaf nodes on NVM, requiring the overhead of a
partial index rebuild during recovery. It exploits hardware transactional memory and ne-grainedٽ
locks to handle concurrent internal and leaf node accesses.

BzTree ( Chapter ) design differs from these approaches in three ways. First, the BzTree does
not require custom recovery code. Prior persistent NVM index designs employ sophisticated log-
ging and recovery algorithms. These logging algorithms record all the tree updates to persistent
storage to achieve persistence, and periodically write out checkpoints to speed up recovery. For ex-
ample, the FPTree’s node split algorithm requires the writer to log information about the node being
split and the newly allocated leaf node. Depending on when the crash occurs within the algorithm,
the writer either rolls the split operation forward or backward. Developing correct logging and re-
covery algorithms are challenging and contributes to the increased design complexity of these data
structures. In addition, existing designs often require the reconstruction of internal index nodes
after a system failure. In contrast, BzTree does not require a tree-level recovery algorithm. Sec-
ond, the BzTree design works seamlessly across both volatile and persistent environments. To our
knowledge, the BzTree is the only index design exibleپ enough to function and performwell in both
environments. Lastly, The BzTree is the only design that is latch-free and highly concurrent, while
also ensuring persistence guarantees on NVM.





Chapter 

Future Work

We see several directions for future work on NVM-centric DBMSs. A subset of the directions here
focus onDBMS components that have not been explored in this dissertation, while others represent
new questions arising from this work.

. Query Optimization
Cost-based query optimizers in modern DBMSs are designed to take into consideration the gap

between sequential and random I/O costs of durable storage devices. They, however, do not account
for read/write asymmetry exhibited byNVMwhile performing sequential and random I/O [, ].
The optimizer must, therefore, differentiate between reads and writes, and take into consideration
the convergence of sequential and random accesses in NVM.

The table and index scan algorithms retrieve the tuples satisfying a given predicate by scanning
through the associated table and index respectively. The original cost functions of these algorithms
in the optimizer only distinguish between sequential and random accesses. We can adapt these
functions to indicate that these accesses are reads. Similarly, when the result of a sub-tree in an
execution plan is needed multiple times by the associated parent node, the DBMS materializes it.
The cost function for this materialization operation should indicate that the associated accesses to
storage are writes.

We can adapt the cost function of a join algorithm by considering the two phases of the algo-
rithm. The function should account for writing and reading all the data one time each. All the
reads during the join phase tend to be sequential, while the writes in the partitioning phase are ran-
dom. We note that these adapted cost functions still do not account for the byte-addressability of
NVM [].

. Query Processing Algorithms
The algorithms backing the relational operators in main-memory DBMSs are designed to have

low computational complexity and to exploit the processor caches in modern multi-core chips [,
, , ]. We nowneed to redesign these algorithms to also reduce the number of writes to durable
storage, given the read-write asymmetry and limited write-endurance of NVM [, , , , ].


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The cache-friendly implementation of the hash-join algorithm partitions the input tables so that
every pair of partitions can tٽ within the CPU caches. Unfortunately, the partitioning phase neces-
sitates writing out the entire tables back on NVM in their partitioned form []. One can avoid this
by keeping track of virtual partitions of the tables that only contain the identiٽers of the tuples that
belong to a given partition, and accesses the records in place during the join phase. In this manner,
virtual partitioning avoids data copying to reduce the number of writes at the expense of additional
reads.

For sorting NVM-resident data, the DBMS can use a hybrid write-limited sorting algorithm
called segment sort [, ]. This algorithm sorts a fraction of the input using the write-intensive
faster external merge-sort algorithm, and the remaining fraction using the write-limited slower se-
lection sort algorithm. The selection sort algorithm involves multiple read passes over the input,
and writes each element of the input only once at its nalٽ location. The DBMS uses the fraction as
a knob for constraining the write-intensiveness of the algorithm with respect to its symmetric-I/O
counterpart at the cost of lower performance.

Like with sorting, there are also join algorithms that are designed for asymmetric NVM storage.
The segmented Grace hash-join, which unlike the regular Grace join, materializes only a fraction of
the input partitions, and continuously iterates over the rest of the input to process the remaining
partitions []. The associated read-ampliٽcation does not hurt performance given the read-write
asymmetry. We note that it is important that write-limited algorithms converge to the I/O-minimal
behavior of their counterparts that are designed for symmetric I/O at lower write-intensity levels.

. Access Methods
Given the read-write asymmetry in NVM, it is important to redesign the persistent data struc-

tures that are used as access methods in a DBMS so that they perform fewer writes to NVM [, ,
, , ]. In a persistent NVM-aware B+tree index, the foremost change is to keep the entries
in the leaf node unsorted so that the tree performs fewer writes and cache line ushesپ when it is
mutated [, ]. Unsorted key-value entries in the leaf node require an expensive linear scan.
This operation is sped up by hashing the keys, and using the hashes as a lterٽ to avoid comparing
the keys [].

Another design optimization is to selectively enforce persistency where the tree only persists its
leaf nodes and reconstructs its inner nodes during recovery []. In a storage hierarchy containing
DRAM and NVM, the tree can persist the leaf nodes on NVM and maintain the inner nodes on
DRAM. During recovery from a system failure, the tree rebuilds all the inner nodes that it placed in
DRAM. Although this approach increases the recovery latency of the tree, the associated improve-
ments in search and update operations during regular processing justify it [].

A DBMS can also leverage the asymmetric I/O property by temporarily relaxing the balance of
the B+tree []. Such imbalance (potentially) causes extra reads to access the tree but reduces the
number of writes. This is a good trade-off for NVM because reads are less expensive than the writes
and reduces wear-down of the storage device. By periodically re-balancing the tree and reducing the
number of writes, a NVM-aware B+tree outperforms the regular B+tree across different workloads.
We note that other data structures used as access methods in a DBMS, such as hash tables, must also
be redesigned for NVM.
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. Larger-than-Memory Databases
The fundamental limitation of memory-oriented DBMSs is that their improved performance is

only achievable when the database is smaller than the amount of physical memory available in the
system. If the database does not tٽ in memory, then the OS will start to page virtual memory, and
main memory accesses will cause page faults. In a three-tier storage hierarchy with DRAM, NVM,
and SSDs, the DBMS ensures that the “hot” data resides on DRAM. It then migrates the “cold” data
to the NVM and SSD layers over time as the data ages and is likely to be updated. The latency of a
transaction that accesses a cold tuple will be higher in a three-tier storage hierarchy. This is because
NVM supports faster reads than SSD. During update operations, however, the DBMS quickly writes
to the log and database on NVM. Eventually, the DBMS migrates the cold data to SSD.

We note that WBL protocol described in Chapter  can be used even in such a three-tier stor-
age hierarchy. In this case, the DBMS uses a SSD to store the less frequently accessed tuples in the
database. It stores the log and the more frequently accessed tuples on NVM. As bulk of the data is
stored on SSD, the DBMS only requires a less expensive NVM device with smaller storage capacity.
In Chapter , we examine impact of dynamic data placement on a three-tier storage hierarchy con-
tainingNVM.However, the traces used in our experiments are obtained from aDBMS that employs
WAL. We plan to explore the utility of WBL in a three-tier storage hierarchy in future work.

. SQL Extensions
The DBMS should contain certain SQL extensions to allow the user to control data placement

on NVM [, ]. For instance, the user can indicate that certain performance-critical tables and
materialized views should reside on NVM using the ON_NVM attribute. When this attribute is speci-
edٽ for a tablespace, the DBMS creates all the tables and materialized views within this tablespace
on NVM.

ALTER TABLESPACE nvm_table_space DEFAULT ON_NVM;
By default, theDBMS stores all the columns in a table taggedwith the ON_NVM attribute onNVM.

However, the user can choose to store only a subset of the columns onNVM if desired. For instance,
the following SQL statement excludes the ORDER_TAX column in the ORDERS table frombeing stored
on NVM.

ALTER TABLE orders ON_NVM EXCLUDE(order_tax);

. Testing
Testing the correctness of a NVM DBMS is challenging. This is because the ordering of writes

to NVM is outside the control of the system. For instance, cache-line evictions can happen at any
time, and theDBMS cannot completely control the behavior of processor caches. Yat is a hypervisor-
based framework for testing the correctness of NVM-oriented systems []. It adopts a record and
replay method to simulate architectural failure conditions that are speciٽc to NVM. After capturing
a sequence of write and fence operations by the DBMS, Yat tests all permissible ordering of the
operations to provide extensive coverage of possible error conditions. When it detects a system
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failure, it reports the exact sequence of operations that led to the failure. This information is useful
for identifying the root cause of the failure. We plan to test the Peloton DBMS using NVM software
validation frameworks in future work.

. High Availability
With the WBL logging protocol, the DBMS can recover from system and transaction failures.

However, it cannot cope up with media failures or corrupted data. This is because it relies on the
integrity of durable data structures (e.g., the log) during recovery. These failures are instead over-
come through replication, wherein the DBMS propagates changes made by transactions to multiple
servers [, ]. When the primary server incurs a media failure, replication ensures that there is
no data loss since the secondary servers can be conٽgured to maintain a transactionally consistent
copy of the database.

The round-trip latency between the primary and secondary server is on average a couple of
orders of magnitude higher than the durable write latency of NVM. The networking cost is, thus,
the major performance bottleneck in replication. A faster replication standard, such as the NVMe
over Fabrics [, ], is required for efficient transaction processing in a replicated environment
containing NVM []. With this technology, the additional latency between a local and remote
NVM device is expected to be less than a few microseconds. As every write must be replicated
in most usage models, we expect a logging scheme designed for NVM to outperform WAL in this
replicated environment because it incurs fewer writes.



Chapter 

Conclusion

In this dissertation, we presented the design and implementation of DBMS architectures that are
explicitly tailored for NVM. It focused on three aspects of a DBMS: () logging and recovery, ()
storage and buffer management, and () indexing.

In Chapter , we presented the fundamentals of storage methods in a NVM DBMS. We imple-
mented three storage engines with different architectures and then developed optimized variants of
each of these engines that better make use of NVM’s characteristics. Our analysis showed that the
NVM-optimized engines outperform their traditional counterparts while reducing the number of
writes to the storage device by more than half on write-intensive workloads. We attribute this to the
reduction in redundant data that theNVM-optimized engines storewhen a transactionmodiٽes the
database. We found that the NVM access latency has the most impact on the runtime performance
of these engines, more so than the workload skew or the number of modiٽcations to the database
in the workload.

We next described WBL, a NVM-optimized logging and recovery protocol, in Chapter . WBL
not only improved the runtime performance of the DBMS, but it also enabled it to recovery nearly
instantaneously from system failures. The way that WBL achieved this is by tracking what parts
of the database have changed rather than how it was changed. With WBL, a NVM DBMS directly
ushesپ the changes made by transactions to the database instead of recording them in the log. By
ordering writes to NVM correctly, it guarantees that all transactions are durable and atomic. Our
evaluation showed that WBL reduces the system’s recovery time by ×.

We explored the fundamentals of buffer management in a three-tier storage system including
DRAM, NVM, and SSD in Chapter . We described a set of data migration optimizations enabled
byNVM.The key idea is that since the DBMS can directly operate onNVM-resident data, the buffer
manager can adopt a lazy data migration policy for copying data over to DRAM.We illustrated that
these optimizations have to be tailored depending on the characteristics of the storage hierarchy
and the workload. We then made the case for adaptive data migration, a continuous adaptation
mechanism in the buffermanager that achieves a near-optimal datamigration policy for an arbitrary
workload and storage hierarchy without requiring any manual tuning.

Lastly, in Chapter , we examined the implications of NVM for index data structures. With
the BzTree design we demonstrated that using PMwCAS, a multi-word compare-and-swap with dura-
bility guarantees, helps reduce index design complexity tremendously. Our analysis showed that


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even though PMwCAS is computationally more expensive than a hardware-based single-word CAS,
the simplicity that we gain by using PMwCAS improves not only the maintainability but also the per-
formance of the BzTree. A cyclomatic complexity analysis showed that the BzTree is at least half as
complex as state-of-the-art main-memory index designs.

All together, the work described in this dissertation illustrates that rethinking the key algorithms
and data structures employed in a DBMS for NVMnot only improves performance and operational
cost, but also simpliٽes development and enables theDBMS to support near-instantaneous recovery.
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Non-Volatile Memory Emulation

NVM storage devices are currently prohibitively expensive and only support small capacities. For
this reason, we use a NVM hardware emulator developed by Intel Labs [] in this dissertation. In
this chapter, we present the architecture of the hardware emulator and the interfaces that it exports to
applications. We then describe the internals of theNVM-awarememory allocator thatwe developed
speciٽcally for DBMSs.

A. NVMHardware Emulator
Intel has developed a NVM hardware emulator, called persistent memory evaluation platform

(PMEP), thatmodels the latency and bandwidth characteristics of upcomingNVMtechnologies [,
]. This emulator supports tunable read latencies and read/write bandwidths. It enables us to
evaluate multiple hardware proٽles that are not speciٽc to a particular NVM technology. Unlike
NVM simulators, like PCM-SIM [], this emulator enables us to better understand the impact of
cache evictions, prefetching, and speculative execution on long-running DBMS workloads.

NVM technologies have higher read and write latency than DRAM. PMEP emulates the latency
for theNVMpartition using customCPUmicrocode. Themicrocode estimates the additional cycles
that the CPU would have to wait if DRAM is replaced by slower NVM and then stalls the CPU for
those cycles. The accuracy of the latency emulation model has been validated by comparing the
performance of several applications on emulated NVM and slower NUMA memory []. PMEP
emulates the write bandwidth of NVM by limiting the number of DDR operations performed per
microsecond.

The emulator is implemented on a dual-socket Intel Xeon processor-based platform. Each pro-
cessor has eight cores that run at . GHz and supports four DDR channels with two DIMMs per
channel. The cores on each processor share a  MB L cache. The emulator’s custom BIOS par-
titions the available DRAM memory into emulated NVM and regular (volatile) memory. Half of
the memory channels on each processor are reserved for emulated NVMwhile the rest are used for
regular memory. The emulated NVM is visible to the OS as a single NUMA node that interleaves
memory (i.e., cache lines) across the two sockets. We conٽgure the latency and bandwidth for the
NVM partition by writing to CPU registers through the OS kernel. We refer interested readers to
[] for more technical details on the emulator.


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We divide the NVM partition into two sub-partitions. The rstٽ sub-partition is available to soft-
ware as a NUMA node. The second sub-partition is managed by persistent memory leٽ system
(PMFS), a leٽ system optimized for persistent memory []. Applications allocate and access mem-
ory in the rstٽ sub-partition using libnuma library or tools such as numactl [, ]. We refer to this
interface provided by the emulator as the NUMA interface.

Applications can also use regular POSIX leٽ system interface to allocate and access memory in
the second sub-partition through the PMFS interface. The sustained bandwidth of NVM is likely
to be lower than that of DRAM. We therefore use the PMEP’s throttling mechanism to reduce the
NVMbandwidth to be × lower (.GB/s) thanDRAM.Wenowdiscuss the two emulator interfaces
and how we utilize them.

A.. NUMA Interface
This interface allows us to evaluate the performance of DBMSs on NVMwithout making major

modiٽcations to the source code. All memory allocations for an application are assigned to the
special NUMA node using numactl. Any read or write to memory are slowed down according to
the emulator’s latency setting. One potential drawback of this interface is that the DBMS’s program
code and OS data structures related to the DBMS’s processes also reside in NVM. Furthermore,
memory for other unrelated processes in the system could be allocated to the NUMA node. We did
not observe this issue in our trials because of the default Linuxmemory policy that favors allocations
from regular (volatile) memory nodes. In addition, the DBMS’s program code is likely to be cached
in the on-chip CPU caches, minimizing the overhead of fetching from the NVM.

A.. PMFS Interface
The emulator also supports a leٽ system interface that allows us to deploy DBMSs using NVM

with DRAM. Traditional leٽ systems that operate at block granularity and in a layer above the block
device abstraction are not best suited for fast, byte-addressable NVM.This is because the overhead
of translating between two different address spaces (i.e., virtual addresses in memory and blocks in
the block device) and maintaining a page cache in a traditional leٽ system is signiٽcant. PMFS is a
lightweight leٽ system developed at Intel Labs that addresses this issue by completely avoiding page
cache and block layer abstractions []. PMFS includes several optimizations for byte-addressable
NVM that provide a signiٽcant performance improvement over traditional leٽ systems (e.g., EXT).
Typically, in a block-oriented ,lesystemٽ leٽ I/O requires two copies; one involving the block device
and another involving the user buffer. PMFS, however, requires only one copy between the leٽ
and the user buffers. This improves the leٽ I/O performance by –× compared to block-oriented
.lesystemsٽ PMFS also allows applications to access NVM using memory-mapped I/O.

Both of the above interfaces use memory from the emulated NVM.The key difference, however,
is that the lesystemٽ interface supports a naming mechanism that ensures that leٽ offsets are valid
after the system restarts. The downside of the lesystemٽ interface is that it requires the application’s
writes to go through the kernel’s virtual lesystemٽ (VFS) layer. In contrast, when the application uses
the allocator interface, it can write to and read from NVM directly within userspace. However, the
allocator interface does not automatically provide a naming mechanism that is valid after a system
restart. We use a memory allocator that is designed for NVM to overcome this limitation.
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FigureA.: Write Bandwidth of Emulator Interfaces –Comparison of the durable write bandwidth
of Intel Lab’s NVM emulator using the allocator and lesystemٽ interfaces.

A. NVM-aware Memory Allocator
AnNVM-aware memory allocator for a DBMS needs to satisfy two essential requirements. The

rstٽ is that it should provide a durability mechanism to ensure that modiٽcations to data stored
on NVM are persisted. This is necessary because the changes made by a transaction to a location
on NVM may still reside in volatile CPU caches when the transaction commits. If a power failure
happens before the changes reach NVM, then these changes are lost. The allocator exposes a special
API call to provide this durability mechanism.

Internally, the allocator rstٽ writes back the modiٽcations to NVM using the cache-line write
back (CLWB) instruction []. This instruction writes back the modiٽed data in the cache-lines to
NVM. Unlike the cache-line ushپ (CLFLUSH) instruction that is generally used for ushingپ oper-
ations, CLWB does not invalidate the line from the cache and instead only transitions it to a non-
modiٽed state. This reduces the possibility of a compulsory cache miss when the same data is ac-
cessed momentarily after the line has been .ushedپ After ushingپ the cache lines, it issues a SFENCE
instruction to ensure that the data ushedپ from the CPU caches becomes durable. Otherwise, this
data might still be buffered in the memory controller and lost in case of a power failure. From here
on, we refer to the above-mentioned durability mechanism as the sync primitive.

The second requirement is that it should provide a naming mechanism for allocations so that
pointers to locations in memory are valid even after the system restarts. The allocator ensures that
the virtual memory addresses assigned to a memory-mapped region never change. With this mech-
anism, a pointer to a NVM location is mapped to the same virtual location after the OS or DBMS
restarts. We refer to these pointers as non-volatile pointers [].

The NVM allocator that we use in our evaluation is based on the open-source NVM-related
libpmem library []. We extended this allocator to follow a rotating best-ٽt allocation policy and
to support multi-threaded usage. The allocator directly maps the NVM to its address space. Un-
like the lesystemٽ interface, accessing a region of memory obtained from this allocator does not
require copying data to user buffers. After an OS restart, the allocator reclaims memory that has
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not been persisted and restores its internal metadata to a consistent state. This recovery mechanism
is required only after the OS restarts and not after the DBMS restarts, because the allocator handles
memory management for all applications.

To show that accessing NVM through the allocator interface is faster than using the lesystemٽ
interface, we compare themusing amicro-benchmark. In this experiment, the application performs
durable writes to NVM using the two interfaces with sequential and random access patterns. The
application performs durable writes using the lesystem’sٽ fsync system call and the allocator’s sync
primitive. We vary the size of the data chunk that the application writes from  to  bytes. The
results in Figure A. show that NVM-aware allocator delivers –× higher write bandwidth than
the .lesystemٽ The performance gap is more evident when the application writes out small data
chunks sequentially. We also note that the gap between sequential and random write bandwidth is
lower than that observed in other durable storage technologies.
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Benchmarks

We now describe the benchmarks used in our evaluations in this dissertation. We ported these
benchmarks in a good faith to follow the original spirit of each benchmark’s speciٽcation.

B. YCSB
TheYahoo! Cloud Services Benchmark (YCSB) is a workload that is representative of large-scale

services provided by web-scale companies []. It is a key-value store workload. We conٽgure each
tuple to consist of a unique key and  columns of random string data, each  bytes in size. Thus,
the total size of a tuple is approximately KB.

The workload used for this analysis consists of two transaction types, a read and an update
transaction. The read randomly selects a key and reads a single tuple. The update randomly selects
a key and updates all  non-key values for the tuple selected. We use veٽ types of workloadmixtures
that allow us to vary the I/O operations that the DBMS executes. These mixtures represent different
ratios of read and update transactions:
● Read-Only: % reads
● Read-Heavy: % reads, % updates
● Balanced: % reads, % updates
● Write-Heavy: % reads, % updates
In addition to the read-write mix, we also control the amount of skew that determines how often

a tuple is accessed by transactions. We use YCSB’s Zipٽan distribution to model temporal skew in
the workloads, meaning that newer items are accessed much more frequently than older items. The
amount of skew is controlled by the Zipٽan constant s > 0, where higher values of s generate higher
skewed workloads. We pick values of s in the range of . to ., which is representative of a range
of skewed workloads. We refer to workloads with s = 0.5 and s = 1.5 as low-skew and high-skew
workloads, respectively.

B. TPC-C
This benchmark is an industry standard for evaluating the performance of OLTP systems [].

The benchmark simulates an order-processing application, and consists of nine tables and veٽ dif-


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ferent transaction types. Only two of the transaction types modify tuples, but they make up %
of a TPC-C workload. For simplicity, we have conٽgured transactions to only access data from a
single warehouse. Thus, all transactions are single-sited (i.e., there are no distributed transactions)
because warehouses are mapped to partitions.

B. Voter
This is anOLTP benchmark that simulates a phone-based election application. It is derived from

the software system used to record votes for a television talent show. The workload consists of many
short-lived transactions that each update a small number of tuples. Users call in to vote for a con-
testant which invokes a new transaction that updates the total number of votes for each contestant.
A separate transaction is periodically invoked to display the vote totals for all contestants.

B. CH-benCHmark
This is a complex HTAP workload that is derived from a transactional workload based on the

order entry processing of TPC-C and a corresponding TPC-H-equivalent OLAP query suite. It is
useful to evaluate DBMSs designed to serve both OLTP and OLAP workloads. CH-benCHmark
extends the TPC-C benchmark with  additional analytical queries.

B. AuctionMark
This is an OLTP benchmark that models the workload characteristics of an on-line auction

site []. The database and workload properties are derived from information extracted from a
well-known auction site. The workload consists of  transactions, two of which are periodically
executed to process recently ended auctions. The user-to-item ratio follows a highly skewed Zipٽan
distribution. The total number of transactions that target each item is temporally skewed, as items
receive more activity as the auction approaches its closing.
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