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Abstract

Faceted topic models combine topical content with extraneous facets, such as ide-
ology or dialect. In this model, the “pure” topics are corrupted by the facets,
using a hierarchical generative model in which the pure topics act as priors on the
faceted topics. This is most easily modeled using the logistic-normal distribution,
which admits a normal prior on the mean.

1 Model

We build on latent Dirichlet allocation:

• For each document d, draw θd ∼ Dirichlet(αθ)

• For each token n < Nd

– Draw a topic index zn ∼ θd
– Draw a word token from the associated topic wn ∼ βzn

We augment each document with an additional discrete facet variable, vd ∼ ϑ, which selects the
appropriate faceted topic (ϑ ∼ Dir(αϑ)): wn ∼ β(vd)

zn . Here zn indexes the topic and vd indicates the
facet of the topic: for example, vd may select the “Detroit” version of the “electronic music” topic.
We may also introduce metadata yd, such that yd ∼ f(y;ρvd), indicating an arbitrary probability
distribution with parameters ρvd . In the geographical topic model, f(y;ρvd) takes the form of a
bivariate Gaussian; variational inference in this setting is deferred to [4].

The faceted topics take logistic-Normal priors, such that β(j)
k ∼ LN (µk,σ

2
k).1 It will be convenient

to introduce the auxiliary variable η, such that β = expη/
∑
i exp η[i] and η(j)

k ∼ N (µk,σ
2
k).

Throughout, i will index the word, j will index the facet, and k will index the topic. We draw
the pure topics from Normal priors, µk ∼ N (a, b)), and the topic-variances from Gamma priors,
σ2
k[i] ∼ G(c, d).

2 Variational Approximation

We’ll make a fully-factorized approximation:

Q(z,v,θ,ϑ,η,µ,σ2) =

 K∏
k

q(µk)q(σ2
k)

J∏
j

q(η
(j)
k )

 D∏
d

q(vd)q(θd)

Nd∏
n

q(zdn). (1)

1All covariance matrices are diagonal in this work.
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We want to maximize the following bound (with 〈x〉 denoting the expectation of x under the distri-
bution q).

L(w,y, z,v,θ,ϑ,η,µ,σ2) =〈log p(ϑ|αϑ)〉 − 〈log q(ϑ)〉

+
∑
k

〈log p(µk|ak, b)〉 − 〈log q(µk)〉

+ 〈log p(σ2
k|c, d)〉 − 〈log q(σ2

k)〉

+
∑
j

〈log p(η
(j)
k |µk, σ

2
k)〉 − 〈log q(η

(j)
k )〉

+ 〈log p(θd|αθ)〉 − 〈log q(θd)〉
+ 〈log p(vd|ϑ)〉 − 〈log q(vd)〉

+

Nd∑
n

〈log p(zn|θ)〉 − 〈log q(zn)〉

+ 〈log p(wn|zn, v,β)〉

The variational parameters on the normal distributions can be expressed in terms of expectations
(e.g. 〈µ〉) and variances (e.g. V(µ)), so I won’t introduce symbols for those. I’ll write φ for the
multinomial variational parameter on zn, where φnk = 〈δzn,k〉, the expectation of a delta function
that returns 1 when zn = k and zero otherwise. The parameter ωd plays an analagous role for vd.

2.1 Taylor Approximation

The term 〈log p(w|z, v, β)〉 will involve computing 〈log β
(j)
k [wn]〉, the expected log of the topic

probability for word wn. Approximation is required:

〈log β
(j)
k [wn]〉 = 〈η(j)k 〉 − 〈log

∑
i

exp η
(j)
k [i]〉 (2)

〈log
∑
i

exp η
(j)
k [i]〉 ≈ log ζ

(j)
k − 1 +

(∑
i

〈exp η
(j)
k [i]〉

)
/ζ

(j)
k ,

making a first-order Taylor approximation of the intractable expectation of the normalizer. This
approximation introduces the additional variational parameter ζ. See [1] for details.

3 Variational updates

3.1 Updates: η

3.1.1 Mean parameter 〈η〉

As shown above, the expected language models 〈log β〉 can be computed deterministically from the
parameters 〈η〉, 〈exp η〉, and ζ.

Because q(η) is Gaussian, 〈exp η〉 has a simple closed form; ζ can also be computed directly [1]:

〈exp η
(j)
k [i]〉 = exp

(
〈η(j)k [i]〉+

1

2
V(η

(j)
k [i])

)
(3)

ζ
(j)
k =

∑
i

〈exp η
(j)
k [i]〉. (4)
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This leaves us with the task of computing 〈η〉 and V(η). Unfortunately, these are not available in
closed form. We derive gradient-based updates from the objective L,

L
[〈η(j)k 〉[i]]

=〈log p(w|z, v, η)〉+ 〈log p(η
(j)
k [i]|µk[i], σ2

k[i])〉

=C +
∑
d

ωdj

Nd∑
n

φnk

(
δwn=i〈η

(j)
k [i]〉 − 〈exp η

(j)
k [i]〉/ζ(j)k

)
− 1

2
〈σ−2k [i]〉〈(η(j)k [i]− µk[i])2〉,

(5)

where C is constant in 〈η〉. The final term will be relevant for several of the updates – it expands to

〈(η(j) − µ)2〉 = 〈η(j)〉2 + 〈µ〉2 + V(η(j)) + V(µ)− 2〈µ〉〈η(j)〉 (6)

To take the gradient ∂L/∂〈η〉, we first observe that ∂
∂〈η〉 〈exp η〉 = 〈exp η〉, because the quantity

inside the exponent (equation 3) is linear in 〈η〉. Applying equation 6, the gradient of the objective
is,

∂L

∂〈η(j)k 〉[i]
= N(i, j, k)−N(j, k)〈exp η

(j)
k [i]〉/ζ(j)k − (〈η(j)k [i]〉 − 〈µk[i]〉)〈σ−2k [i]〉, (7)

where N(i, j, k) is the expected count of term i, facet j, and topic k (summing over φ and ω).
Because ζ(j)k =

∑
i′〈exp η

(j)
k [i′]〉, we have 〈exp η

(j)
k [i]〉/ζ(j)k = 〈βik〉. This yields the intuitively

appealing alternative form for the gradient,

∂L

∂〈η(j)k 〉[i]
= N(i, j, k)−N(j, k)β

(j)
k [i]− (〈η(j)k [i]〉 − 〈µk[i]〉)〈σ−2k [i]〉,

in which the first two terms compare expected counts using observed words with the expected counts
under the topic 〈β〉, and the third term penalizes divergence from the prior.

3.1.2 Variance V(η)

We now compute the posterior variance V(η). Again, we begin by identifying the terms of the
objective that relate to this variational parameter:

L
[V(η(j)k [i])]

=〈log p(w|z, v, η)〉+ 〈log p(η
(j)
k [i]|µk[i], σ2

k[i])〉 − 〈log q(η
(j)
k )〉

=C −
∑
d

ωdj

Nd∑
n

φnk〈exp η
(j)
k [i]〉/ζ(j)k −

1

2
〈σ−2k [i]〉V(η

(j)
k [i]) +

1

2
logV(η

(j)
k [i]),

(8)

The first term is from Equation 3, which shows that 〈exp η〉 includes the variance; the second term
is from Equation 6; the third term is obtained from the entropy of the normal distribution. Taking
the derivative with respect to the parameter of interest,

∂L

∂V(η
(j)
k [i])

=−
N(j, k)〈exp η

(j)
k [i]〉

2ζ
(j)
k

− 〈σ−2k [i]〉/2 +
1

2V(η
(j)
k [i])

=− 1

2

(
N(j, k)〈β(j)

k [i]〉+ 〈σ−2k [i]〉 − V(η
(j)
k [i])−1

)
(9)

V(η
(j)
k [i]) =

(∑
d

ωdj
∑
n

φnk〈β(j)
k [i]〉+ 〈σ−2k [i]〉

)−1
.

Note that the last line is not a closed-form solution, because 〈β(j)
k 〉 implicitly includes V(η

(j)
k );

the goal is to give intuition. If the expected word counts are zero, then the posterior variance V(η)
will be identical to the prior 〈σ2〉; as the expected word counts increase, the posterior variance goes
to zero.
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3.2 Updates: µ

The update for the expectation 〈µk〉 follows directly from the normal equations:

〈µk[i]〉 =
b2
∑J
j 〈η

(j)
k [i]〉+ 〈σ2

k[i]〉a[i]

b2J + 〈σ2
k[i]〉

. (10)

We’ll also need the variance of the variational distribution, V(µk). For simplicity we’ll elide the
topic index k and the word index i, but keep in mind that we need to compute V(µk[i]) for all k and
i. The relevant terms for the variational bound are:

L[V(µ)] =− 〈log q(µ)〉+ 〈log p(µ|a, b2)〉+

J∑
j

〈log p(η(j)|µ, σ2)〉

=
1

2
logV(µ)− 1

2b2
〈(µ− a)2〉 −

J∑
j

1

2
〈(η(j) − µ)2〉〈σ−2〉

=
1

2

(
logV(µ)− V(µ)b−2 − JV(µ)〈σ−2〉

)
∂L/∂V(µ) =V(µ)−1 −

(
b−2 + J〈σ−2〉

)
V(µ) =

(
b−2 + J〈σ−2〉

)−1
. (11)

Again, the solution is available in closed form, with a straightforward interpretation.

3.3 Updates: σ2

Eliding the word index i and the topic index k, the relevant parts of the variational bound for the
expected variation 〈σ2

ki〉 are:

L[〈σ2〉] =

J∑
j

〈log p(η(j)|µ, σ2)〉+ 〈log p(σ2|c, d)〉 − 〈log q(σ2)〉. (12)

The relevant elements of the first term of equation 12 are:

L[η|σ2] =
∑
j

−1

2
〈log 2πσ2〉 − 〈(ηj − µ)2/2σ2〉

=C − 1

2

∑
j

(
〈log σ2〉+ 〈(ηj − µ)2〉〈σ−2〉

)
=C − J

2
〈log σ2〉 − S〈σ−2〉,

where S =
∑
j〈(ηj − µ)2〉/2.

3.3.1 Exponential version

There are several ways we can define the variational distribution q(σ−2ki ), but the simplest is to use
the exponential distribution, q(σ−2ki ) = Exp(σ−2ki ; γki), where γki is a variational parameter. Then
we have, 〈σ−2ki 〉 = 1/γki and 〈log σ2

ki〉 = −〈log σ−2ki 〉 = −ψ(1) + log γki.

Recall that the prior on σ2 is a Gamma distribution, σ2 ∼ G(c, d). Then the relevant elements for
the second two terms of equation 12 are

L =C − (c− 1)〈log σ−2〉 − d〈σ−2〉 − log γ − 1

=C − c log γ − d/γ,
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so the overall likelihood bound is:

L =C − J

2
〈log σ2〉 − S〈σ−2〉 − c log γ − d/γ

=C − (
J

2
+ c) log γ − (S + d)/γ

dL/dγ =− (
J

2
+ c)γ−1 + (S + d)γ−2

=− (
J

2
+ c)γ + (S + d)

γ =
S + d
J
2 + c

Thus we can update γ in closed form. Remember that we are eliding the topic index k and the term
index i, so we need to compute each γki.

3.3.2 Gamma version

In the Geographical Topic Model paper [2], the variational distribution over σ2
ki is a Gamma distri-

bution, q(σ2
ki) = G(σ2

ki; c̃ki, d̃ki), with variational parameters c̃ki and d̃ki. Those updates cannot be
computed in closed form, but the derivatives are given here. Eliding k and i, we note the following
properties of the Gamma distribution:

〈σ2〉 = c̃/d̃

〈σ−2〉 = d̃/(c̃− 1)

〈log σ2〉 = Ψ(c̃)− log d̃.

The relevant elements from the remaining two terms of equation 12 are found in the PDF of the
Gamma distribution:

L[σ2|c̃,d̃] = c log d− log Γ(c) + (c− 1)(Ψ(c̃)− log d̃)− c̃d/d̃

− c̃ log d̃+ log Γ(c̃)− (c̃− 1)(Ψ(c̃)− log d̃) + c̃ (13)

= (c− c̃)(Ψ(c̃)− log d̃) + c̃(1− d/d̃− log d̃) + log Γ(c̃) (14)

= (c− c̃)〈log σ2〉+ c̃(1− d/d̃− log d̃) + log Γ(c̃) (15)

We can now take derivatives. Note that Ψ′ equals the trigamma function:

L[c̃] =(c− c̃− J/2)〈log σ2〉 − S〈σ−2〉+ (1− d/d̃− log d̃)c̃+ log Γ(c̃)

dL/dc̃ =− 〈log σ2〉+ (c− c̃− J/2)Ψ′(c̃) + S
d̃

(1− c̃)2
+ 1− d/d̃− log d̃+ Ψ(c̃)

=(c− c̃− J/2)Ψ′(c̃) + S
d̃

(1− c̃)2
+ 1− d/d̃ (16)

Now we’ll do the other parameter, d̃:

L[d̃] =− (c− 1) log d̃− c̃d/d̃− c̃ log d̃+ (c̃− 1) log d̃+
J

2
log d̃− S

c̃− 1
d̃

=(J/2− c) log d̃− c̃d/d̃− S

c̃− 1
d̃

∂L

∂d̃
=(J/2− c)/d̃+ c̃d/d̃2 − S

c̃− 1

0 =(J/2− c)d̃+ c̃d− S

c̃− 1
d̃2
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where we have multiplied through by d̃2. We can now apply the quadratic formula to solve for d̃,
obtaining

d̃ = − c̃− 1

2S

(
c− J/2−

√
(J/2− c)2 + 4d

c̃

c̃− 1
S

)
(17)

In practice, we iterate between gradient-based updates for c̃ and closed-form updates for d̃.

3.4 Update: θ

We’ll need the expectation 〈log θ〉. The update is identical to LDA:

〈log θk〉 = Ψ(αθ +

N∑
n

φnk)−Ψ(Kαθ +

N∑
n

K∑
k

φnk)

= Ψ(αθ +

N∑
n

φnk)−Ψ(K(N + αθ)) (18)

where Ψ is the digamma function, K is the number of topics, and the document index d is implicit.

3.5 Update: ϑ

The update for ϑ is similar, but we sum over all documents rather than indices in a single document:

〈log ϑj〉 = Ψ(αϑ +

D∑
d

ωdj)−Ψ(J(D + αϑ)), (19)

where J is the number of facets and ωdj is a variational parameter that characterizes a discrete
distribution over the set 1, 2, . . . J (defined above).

3.6 Updates: ω and φ

The parameter φ parametrizes the topic indicator z; its update is identical to standard LDA, except
that you have to marginalize over settings of v:

φnk ∝ exp{〈log θdk〉+

J∑
j

ωdj〈log β
(j)
k [wn]〉}, (20)

where 〈log β
(j)
k [i]〉 is defined in Equation 2. The update for ω is similar:

ωdj ∝ exp{〈log ϑj〉+

Nd∑
n

K∑
k

φnk〈log β
(j)
k [wn]〉}p(yd|ρj), (21)

where we append a probability distribution over the metadata yd at the end.

4 Algorithm

The basic idea here is variational expectation-maximization: iterate over the variational parameters
until convergence, then update the remaining (non-variational) parameters (mostly priors, but also
ρ).

Initialize all φ from Latent Dirichlet Allocation
Initialize all ω from a mixture model on y with J components
Initialize all 〈η(j)k 〉, 〈µk〉, 〈θd〉, 〈ϑ〉 empirically (by counting)
Initialize variance parameters sensibly
while not done with EM do

while not done with E-step do
for Each topic k do
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for Each facet j do
Use LBFGS to update 〈η(j)k 〉 from the Equations 5 (objective) and 7 (gradient).
Use LBFGS to update V(η

(j)
k ) from the Equation 8 (objective) and 9 (gradient).

Update ζ(j)k from Equation 4.
end for
Use the closed-form equations 10 and 11 to update 〈µk〉 and V(µk).
Use LBFGS to update c̃k from the Equations 15 (objective) and 16 (gradient).
Use the closed-form equation 17 to update d̃k,

end for
for Each document d do

while not converged do
for Each token n < Nd do

Update φn from Equation 20
end for
Update ωd from Equation 21
Update 〈θd〉 from Equation 18

end while
end for
Update 〈ϑ〉 from Equation 19

end while
Update the metadata parameters ρ.
Optionally: update the Dirichlet priors αθ and αϑ (see [3]).
Optionally: update the Normal priors a and b by taking point estimates of all the µj and fitting
a Gaussian.
Optionally: update the Gamma priors c and d by taking point estimates of all the σj .2

end while

5 Simplified Approximation

We now consider a simplified variational approximation, in which 〈σ2
k[i]〉 and V(µk) are identical

for all terms i. Thus, the variational gamma parameters c̃ and d̃ are now scalars rather than vectors.
We simply modify the derivation in Section 3.3, starting with equation 12:

L[c̃k,d̃k]
=W

(
〈log p(σ2

k|c, d)〉 − 〈log q(σ2
k)〉
)

+

J∑
j

W∑
i

〈log p(η
(j)
k [i]|µk[i], σ2

k[i])〉

Essentially, the gradient and objective work out to be the same as in Equations 15 and 16, except
that we use the average 1

W

∑J
j

∑W
i 〈(η(j)[i] − µ[i])2〉. Similarly, we obtain a closed-form for d̃ in

which the S term is computed in average over all terms.
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2Unfortunately there’s no closed-form for this. Consider playing sneaky games with these priors to control
how much variance is in the facets.
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