Multivariate Data & Tables and Graphs

CS 4460 – Intro. to Information Visualization Sep. 4, 2014 John Stasko

Agenda

- Data and its characteristics
- Tables and graphs
- Design principles

Fall 2014	CS 4460	3

Data Sets

- Data comes in many different forms
- Typically, not in the way you want them
- What is available to you (in the raw)?

CS 4460

Example

- Cars
 - make
 - model
 - year
 - miles per gallon
 - cost
 - number of cylinders
 - weights

- ...

Fall 2014

CS 4460

Example

Web pages

R

Data Models

Often characterize data through three components

 Objects
 Items of interest
 (students, courses, terms, ...)
 Attributes
 Characteristics or properties of data
 (name, age, GPA, number, date, ...)
 Relations
 How two or more objects relate
 (student takes course, course during term, ...)

Fall 2014

CS 4460

Data Tables

- We take raw data and transform it into a model/form that is more workable
- Main idea:
 - Individual items are called cases
 - Cases have variables (attributes)
 - Relational: Relations between cases (not our main focus today)

CS 4460

Data Table Format

		Case ₁	Case ₂	Case ₃
D I M	Variable ₁	Value ₁₁	Value ₂₁ Value ₂₂	Value ₃₁
e n				
s i o	Variable ₃	Value ₁₃	Value ₂₃	Value ₃₃
n s				
			-	as a function = <val<sub>11, Val₁₂,></val<sub>

Fall 2014

CS 4460

9

20

Exa	mpl	е				
	Mary	Jim	Sally	Mitch		ι.
SSN	145	294	563	823		_
Age	23	17	47	29		
Hair	brown	black	blonde	red		
GPA	2.9	3.7	3.4	2.1		
				_		

People in class

		23	5
-	_	-	
			• \$

	P1	P2	P3	P4
Name	Mary	Jim	Sally	Mitch
SSN	145	294	563 47 blonde	823
Age	23	17	47	29
Hair	brown	black	blonde	red
GPA	2.9	3.7	3.4	2.1
				People in class

Fall 2014

CS 4460

11

Example

		ficrosoft Excel -		at <u>T</u> ools <u>D</u> a	ata <u>A</u> ccounti	ng <u>₩</u> indow	Help					
		🖻 🖬 🖨 🖸	X 🚏 🐰	🖻 🛍 ダ	•••• •••	- 🝓 🍣	Σ ƒ**	1 XI 🛍	🔮 🛷 🛽 1	00% 🔹 [)	
	Ar	ial	• 10 •	BII	ī≣≣		6% ,	.0 .00 🗊	ŧ 🗉 •	🕭 - <u>A</u> -	-	
		A1 💌	=	Name								
		Α	В	С	D	E	F	G	Н	I	J	
	1		At Bats	Hits	Home Run	Runs	Rbi	Walks	Years In M	Career At	Career Hits	Ca
aseball	2		INT	INT	INT		INT		INT	INT		IN
asebali	3	Andy Allanson	293	66	1	30	29	14	1	293	66	
- 11 - 11	4	Alan Ashby	315	81	7	24	38	39	14	3449	835	
atistics	5	Alvin Davis	479	130	18	66	72	76	3	1624	457	
	6	Andre Dawson	496	141	20	65	78	37	11	5628	1575	
	7	Andres Galarra		87	10	39	42	30	2	396	101	
	8	Alfredo Griffin	594	169	4	74	51	35	11	4408	1133	
	9	Al Newman	185	37	1	23	8	21	2	214	42	
		Argenis Salaza	298	73	0	24	24	7	3	509	108	
		Andres Thomas		81	6	26	32	8	2	341	86	
		Andre Thornton	401	92	17	49	66	65	13	5206	1332	
	13	Alan Trammell	574	159	21	107	75	59	10	4631	1300	
	14	Alex Trevino	202	53	4	31	26	27	9	1876	467	
		Andy Van Slyk		113	13	48	61	47	4	1512	392	
		Alan Wiggins	239	60	0	30	11	22	6	1941	510	
	17	Bill Almon	196	43	7	29	27	30	13	3231	825	
		Billy Beane	183	39	3	20	15	11	3	201	42	
		Buddy Bell	568	158	20	89	75	73	15	8068	2273	
		Buddy Biancala		46	2	24	8	15	5	479	102	
	00	Bruce Bochte	407	104	6	57	43	65	12	5233	1478	
		baseball			^	40]	4		4-4	1.55	F

Fall 2014

Variable Types

- Three main types of variables
 - N-Nominal (equal or not equal to other values)

Example: gender

- O-Ordinal (obeys < relation, ordered set)
 Example: fr,so,jr,sr
- Q-Quantitative (can do math on them)
 Example: age

Fall 2014

CS 4460

Alternate Characterization

- Two types of data
 - Quantitative
 Relationships between values:
 Ranking
 Ratio
 Correlation
 - Categorical How attributes relate to each other: Nominal Ordinal Interval Hierarchical

From S. Few

Fall 2014

CS 4460

Metadata

- Might be something as simple as the type of a variable, or could be more complex
- For times when the table itself just isn't enough
- Example: if variable1 is "I", then variable3 can only be 3, 7 or 16

Fall 2014

CS 4460

Data Cleaning

- Data may be missing/corrupted
 - Remove?
 - Modify?
- You may want to adjust values
 - Use inverse
 - Map nominal to ordinal/quantitative
 - Normalize values
 Scale between 0 and 1

CS 4460

How Many Variables?

- Data sets of dimensions 1, 2, 3 are common
- Number of variables per class
 - 1 Univariate data
 - 2 Bivariate data
 - 3 Trivariate data
 - >3 Hypervariate data

Fall	2014	

CS 4460

Representation

- What are two main ways of presenting multivariate data sets?
 - Directly (textually) \rightarrow Tables
 - Symbolically (pictures) \rightarrow Graphs
- When use which?

Strengths?

S. Few Show Me the Numbers

• Use tables when

- The document will be used to look up individual values
- The document will be used to compare individual values
- Precise values are required
- The quantitative info to be communicated involves more than one unit of measure

• Use graphs when

- The message is contained in the shape of the values
- The document will be used to reveal relationships among values

Fall 2014

CS 4460

19

Effective Table Design

- See Show Me the Numbers
- Proper and effective use of layout, typography, shading, etc. can go a long way
- (Tables may be underused)

Example

(Image shown in class)

Fall 2014

CS 4460

21

Example

(Image shown in class)

Basic Symbolic Displays

- Graphs 🗲
- Charts
- Maps
- Diagrams

From: S. Kosslyn, "Understanding charts and graphs", *Applied Cognitive Psychology*, 1989.

20

23

Fall 2014

1. Graph

Showing the relationships between variables' values in a data table

CS 4460

Properties

• Graph

- Visual display that illustrates one or more relationships among entities
- Shorthand way to present information
- Allows a trend, pattern or comparison to be easily comprehended

Fall 2014	CS 4460		25
Issues			
– Why do yo – What ques		vered?	•
	money		
Fall 2014	CS 4460	time	- 26

Graph Components

- Framework
 - Measurement types, scale
- Content
 - Marks, lines, points
- Labels
 - Title, axes, ticks

Fall 2014

CS 4460

27

Many Examples

Quick Aside

- Other symbolic displays
 - Chart
 - Мар
 - Diagram

Fall 2014	CS 4460

2. Chart

- Structure is important, relates entities to each other
- Primarily uses lines, enclosure, position to link entities

Examples: flowchart, family tree, org chart, ...

CS 4460

3. Map

2

Representation of spatial relations Locations identified by labels

Fall 2014

CS 4460

31

U 0 00

4. Diagram

- Schematic picture of object or entity
- Parts are symbolic

Examples: figures, steps in a manual, illustrations,...

Fall 2014

Some History

- Which is older, map or graph?
- Maps from about 2300 BC
- Graphs from 1600's
 - Rene Descartes
 - William Playfair, late 1700's

Fall 2014

Details

• What are the constituent pieces of these four symbolic displays?

CS 4460

• What are the building blocks?

Visual Structures

- Composed of
 - Spatial substrate
 - Marks
 - Graphical properties of marks

CS 4460

Space

- Visually dominant
- Often put axes on space to assist
- Use techniques of composition, alignment, folding, recursion, overloading to
 - 1) increase use of space
 - 2) do data encodings

Marks

Graphical Properties

• Size, shape, color, orientation...

	Spatial properties	Object properties
Expressing extent	Position Size	Grayscale
Differentiating marks	Orientation	Color Shape Texture

Back to Data

- What were the different types of data sets?
- Number of variables per class
 - 1 Univariate data
 - 2 Bivariate data
 - 3 Trivariate data
 - >3 Hypervariate data

Fall 2014	CS 4460	39

What Goes Where?

• In univariate representations, we often think of the data case as being shown along one dimension, and the

value in another

Fall 2014

Alternative View

 We may think of graph as representing independent (data case) and dependent (value) variables

- Guideline:
 - Independent vs. dependent variables
 - Put independent on x-axis

See resultant dependent variables along y-axis

Bivariate Data

Representations

Fall 2014

Alternative Representation

Still use 2D but have mark property represent third variable

CS 4460

Alternative Representation

Represent each variable in its own explicit way

Fall 2014

CS 4460

Hypervariate Data

- Ahhh, the tough one
- Number of well-known visualization techniques exist for data sets of 1-3 dimensions
 - line graphs, bar graphs, scatter plots
 - We see a 3-D world (4-D with time)
- What about data sets with more than 3 variables?

- Often the interesting, challenging ones

Fall 2014

CS 4460

Multiple Views

Give each variable its own display

48

Scatterplot Matrix

Represent each possible pair of variables in their own 2-D scatterplot

Useful for what? Misses what?

Fall 2014

More to Come...

 Subsequent day will explore other general techniques for handling hypervariate data

Back to Graphs

Design guidance

 Few provides many helpful principles to design effective graphs

S Few "Effectively Communicating Numbers" http://www.perceptualedge.com/articles/Whitepapers/Communicating_Numbers.pdf

Fall 2014

CS 4460

Few's Selection & Design Process

- Determine your message and identify your data
- Determine if a table, or graph, or both is needed to communicate your message
- Determine the best means to encode the values
- Determine where to display each variable
- Determine the best design for the remaining objects
 - Determine the range of the quantitative scale
 - $\,$ If a legend is required, determine where to place it
 - Determine the best location for the quantitative scale
 - Determine if grid lines are required
 - Determine what descriptive text is needed
- Determine if particular data should be featured and how

Some examples...

CS 4460

51

Points, Lines, Bars, Boxes

- Points
 - Useful in scatterplots for 2-values
 - Can replace bars when scale doesn't start at 0
- Lines
 - Connect values in a series
 - Show changes, trends, patterns
 - Not for a set of nominal or ordinal values
- Bars
 - Emphasizes individual values
 - Good for comparing individual values
- Boxes
 - Shows a distribution of values

Fall 2014

CS 4460

Vertical vs. Horizontal Bars

 Horizontal can be good if long labels or many items

(Image shown in class)

CS 4460

Multiple Bars

• Can be used to encode another variable

(Image shown in class)

Fall 2014

CS 4460

Multiple Graphs

Can distribute a variable across graphs too

(Image shown in class)

Sometimes called a trellis display

CS 4460

Examples

Fall 2014

CS 4460

57

Before

You want to present quantitative sales performance data for the 4 regions of your company for the four quarters of the year

Fall 2014

CS 4460

59

Before

(Image shown in class)

Fall 2014

CS 4460

61

Before

(Image shown in class)

Fall 2014

CS 4460

63

Before

(Image shown in class)

Fall 2014

CS 4460

65

2

Book Recommendation

Second Edition	
Designing Tables and Graphs to Enlighten	Loaded with example of how to redesign ineffective tables and graphs
Stephen Few	

Advice

Take DB & IR courses

 Learn about query languages, relational data models, datacubes, data warehouses, ...

Fall 2014	CS 4460

Project

- Keep working on topics...
 - Proposal due Sept. 16
 - More topics being added (AJC, ...)
- Things to watch out for
 - Nice HCI project, but not infovis
 - Is the dataset rich enough (enough variables)?

CS 4460

Upcoming

- S. Few's Design Guidance
 - Reading: Now You See It, chapters 5-12
- Multivariate Visual Representations 1

Reading:
 Munzner chapter 7

Fall 2014

CS 4460

69

Sources Used

Few book CMS book Referenced articles Marti Hearst SIMS 247 lectures Kosslyn '89 article A. Marcus, *Graphic Design for Electronic Documents and User Interfaces* W. Cleveland, *The Elements of Graphing Data*