Multivariate Data \& Tables and Graphs

CS 4460 - Intro. to Information Visualization
Sep. 4, 2014
John Stasko

Agenda

- Data and its characteristics
- Tables and graphs
- Design principles

Data

- Data is taken from and/or representing some phenomena from the world
- Data models something of interest to us

Data Sets

- Data comes in many different forms
- Typically, not in the way you want them
- What is available to you (in the raw)?

Example

- Cars

- make
- model
- year
- miles per gallon
cost
number of cylinders
weights

Example

- Web pages

Data Models

- Often characterize data through three components

Objects

Items of interest
(students, courses, terms, ...)
Attributes
Characteristics or properties of data
(name, age, GPA, number, date, ...)
Relations
How two or more objects relate
(student takes course, course during term, ...)

Data Tables

- We take raw data and transform it into a model/form that is more workable
- Main idea:

Individual items are called cases

- Cases have variables (attributes)

Relational: Relations between cases (not our main focus today)

Data Table Format

Example

	Mary	Jim	Sally	Mitch
	...			
SSN	145	294	563	823
Age	23	17	47	29
Hair	brown	black	blonde	red
GPA	2.9	3.7	3.4	2.1
\ldots				

People in class

Or

	P1	P2	P3	P4	\ldots
	Name	Mary	Jim	Sally	Mitch
SSN	145	294	563	823	
Age	23	17	47	29	
Hair	brown	black	blonde	red	
GPA	2.9	3.7	3.4	2.1	

People in class

Example

Variable Types

- Three main types of variables

N -Nominal (equal or not equal to other values)
Example: gender
O-Ordinal (obeys < relation, ordered set)
Example: fr,so,jr,sr
Q-Quantitative (can do math on them)
Example: age

Alternate Characterization

- Two types of data

Quantitative
Relationships between values:
Ranking
Ratio
Correlation
Categorical
How attributes relate to each other:
Nominal
Ordinal
Interval
Hierarchical
From S. Few

Metadata

- Descriptive information about the data
- Might be something as simple as the type of a variable, or could be more complex
- For times when the table itself just isn't enough
- Example: if variable1 is " I ", then variable3 can only be 3,7 or 16

Data Cleaning

- Data may be missing/corrupted
- Remove?
- Modify?
- You may want to adjust values
- Use inverse
- Map nominal to ordinal/quantitative
- Normalize values

Scale between 0 and 1

How Many Variables?

- Data sets of dimensions 1, 2, 3 are common
- Number of variables per class
- 1 - Univariate data

2-Bivariate data

- 3 - Trivariate data
->3 - Hypervariate data

Representation

- What are two main ways of presenting multivariate data sets?
Directly (textually) \rightarrow Tables
Symbolically (pictures) \rightarrow Graphs
- When use which?

Strengths?

- Use tables when

The document will be used to look up individual values The document will be used to compare individual values
Precise values are required The quantitative info to be communicated involves more than one unit of measure

Use graphs when

The message is contained in the shape of the values
The document will be used to reveal relationships among values

Effective Table Design

- See Show Me the Numbers
- Proper and effective use of layout, typography, shading, etc. can go a long way
- (Tables may be underused)
(Image shown in class)

Example

(Image shown in class)

Basic Symbolic Displays

- Graphs \leftarrow
- Charts
- Maps
- Diagrams

From:
S. Kosslyn, "Understanding charts and graphs", Applied Cognitive Psychology, 1989.

1. Graph

Showing the relationships between variables' values in a data table

Properties

- Graph

Visual display that illustrates one or more relationships among entities
Shorthand way to present information
Allows a trend, pattern or comparison to be easily comprehended

Issues

- Critical to remain task-centric

Why do you need a graph?
What questions are being answered?
What data is needed to answer those questions?
Who is the audience?

Graph Components

- Framework

- Measurement types, scale
- Content

Marks, lines, points

- Labels

Title, axes, ticks

Many Examples

Quick Aside

- Other symbolic displays
- Chart
- Map
- Diagram

2. Chart

- Structure is important, relates entities to each other
- Primarily uses lines, enclosure, position to link entities

Examples: flowchart, family tree, org chart, ...

3. Map

Representation of spatial relations

Locations identified by labels

4. Diagram

- Schematic picture of object or entity
- Parts are symbolic

Examples: figures, steps in a manual, illustrations,...

Some History

- Which is older, map or graph?
- Maps from about 2300 BC
- Graphs from 1600's

Rene Descartes
William Playfair, late 1700's

Details

- What are the constituent pieces of these four symbolic displays?
- What are the building blocks?

Visual Structures

- Composed of

Spatial substrate

- Marks
- Graphical properties of marks

Space

- Visually dominant
- Often put axes on space to assist
- Use techniques of composition, alignment, folding, recursion, overloading to

1) increase use of space
2) do data encodings

Marks

- Things that occur in space
- Points
- Lines
- Areas

Volumes

Graphical Properties

- Size, shape, color, orientation...

	Spatial properties	Object properties
Expressing extent	Position Size	Grayscale
Differentiating marks	Orientation	Color Shape Texture

Back to Data

- What were the different types of data sets?
- Number of variables per class

1 - Univariate data
2 - Bivariate data
3 - Trivariate data
$->3$ - Hypervariate data

Univariate Data

- Representations

What Goes Where?

- In univariate representations, we often think of the data case as being shown along one dimension, and the value in another

Y -axis is quantitative variable

See changes over consecutive values CS 4460

Compare relative point values

Alternative View

- We may think of graph as representing independent (data case) and dependent (value) variables
- Guideline:

Independent vs. dependent variables
Put independent on x-axis
See resultant dependent variables along y-axis

Bivariate Data

- Representations

Trivariate Data

- Representations

Alternative Representation

Still use 2D but have mark property represent third variable

Alternative Representation

Represent each variable in its own explicit way

Hypervariate Data

- Ahhh, the tough one
- Number of well-known visualization techniques exist for data sets of 1-3 dimensions
- line graphs, bar graphs, scatter plots
- We see a 3-D world (4-D with time)
- What about data sets with more than 3 variables?

Often the interesting, challenging ones

Multiple Views

Give each variable its own display

	A B C D E					
	4	1	1	8	3	5
	6	3	3	4	2	1
		7	7	2	4	3
				3	1	5

Scatterplot Matrix

Represent each possible pair of variables in their own 2-D scatterplot

Useful for what?
Misses what?

CS 4460
49

More to Come...

- Subsequent day will explore other general techniques for handling hypervariate data

Back to Graphs

- Design guidance
- Few provides many helpful principles to design effective graphs

S Few
"Effectively Communicating Numbers"
http://www.perceptualedge.com/articles/Whitepapers/Communicating_Numbers.pdf

Few's Selection \& Design Process

- Determine your message and identify your data
- Determine if a table, or graph, or both is needed to communicate your message
- Determine the best means to encode the values
- Determine where to display each variable
- Determine the best design for the remaining objects

Determine the range of the quantitative scale
If a legend is required, determine where to place it
Determine the best location for the quantitative scale
Determine if grid lines are required
Determine what descriptive text is needed

- Determine if particular data should be featured and how
examples...

Points, Lines, Bars, Boxes

- Points

Useful in scatterplots for 2-values
Can replace bars when scale doesn't start at 0

- Lines

Connect values in a series
Show changes, trends, patterns
Not for a set of nominal or ordinal values

- Bars

Emphasizes individual values
Good for comparing individual values

- Boxes

Shows a distribution of values

Vertical vs. Horizontal Bars

- Horizontal can be good if long labels or many items
(Image shown in class)

Multiple Bars

- Can be used to encode another variable
(Image shown in class)

Multiple Graphs

- Can distribute a variable across graphs too
(Image shown in class)

Sometimes called a trellis display

Examples

Before

You want to present quantitative sales performance data for the 4 regions of your company for the four quarters of the year

After?

(Image shown in class)

Before

(Image shown in class)

After?

(Image shown in class)

Before

(Image shown in class)

After?

(Image shown in class)

Before

(Image shown in class)

After?

(Image shown in class)

Book Recommendation

Loaded with examples of how to redesign ineffective tables and graphs

Advice

- Take DB \& IR courses

Learn about query languages, relational data models, datacubes, data warehouses, ...

Project

- Keep working on topics...
- Proposal due Sept. 16
- More topics being added (AJC, ...)
- Things to watch out for

Nice HCI project, but not infovis
Is the dataset rich enough (enough variables)?

Upcoming

- S. Few's Design Guidance
-Reading:
Now You See It, chapters 5-12
- Multivariate Visual Representations 1

Reading:
Munzner chapter 7

Sources Used

Few book
CMS book
Referenced articles
Marti Hearst SIMS 247 lectures
Kosslyn '89 article
A. Marcus, Graphic Design for Electronic Documents and User Interfaces
W. Cleveland, The Elements of Graphing Data

