Few's Design Guidance

CS 4460 – Intro. to Information Visualization September 9, 2014 John Stasko

Today's Agenda

Fall 2014 CS 4460

Stephen Few's Guidance

- Excellent advice for the design of tables and graphs
- Page references are from Now You See It
- Let's review some of his recommendations
 - We explored chapters 1-4 earlier
 - Today we examine chapters 5-12

Fall 2014 CS 4460

Analytic Techniques & Practices

- Some examples he has highlighted
 - Optimal quantitative scales
 - Reference lines and regions
 - Trellises and crosstabs
 - Multiple concurrent views and brushing
 - Focus and context together
 - Details on demand
 - Over-plotting reduction

Fall 2014 CS 4460 4

Add Reference Lines

(Image shown in class)

p. 96

Fall 2014 CS 4460

More Reference Lines

(Image shown in class)

p. 97

Fall 2014 CS 4460 6

Trellis Display

(Image shown in class)

Typically varies on one variable

Crosstab

Fall 2014

(Image shown in class)

Varies across more than one variable

p. 102

CS 4460

Crosstab

(Image shown in class)

p. 103

Fall 2014 CS 4460

Multiple Concurrent Views

Vintage infovis

(Image shown in class)

Fall 2014 CS 4460 p. 107

Concurrent Views

- He calls such things faceted analytical displays
 - Sometimes that term is used in other ways in infovis
- As opposed to dashboards
 - They are for monitoring, not analysis

Fall 2014 CS 4460 11

Overplotting

Too many data points

(Image shown in class)

p. 118

Fall 2014 CS 4460 12

Overplotting Solutions

- Reducing size of data objects
- Removing all fill color from data objects
- Changing the shape of data objects
- Jittering data objects
- Making data objects transparent
- Encoding the density of values
- Reducing the number of values
 - Aggregating the data
 - Filtering the data
 - Breaking the data into a series of separate graphs
 - Statistically sampling the data

Fall 2014 CS 4460 13

Quantitative Data

Fundamental visualization techniques

Fall 2014 CS 4460 14

Time Series Data

- Patterns to be shown
 - Trend
 - Variability
 - Rate of change
 - Co-variation
 - Cycles
 - Exceptions

Fall 2014 CS 4460 15

Time Series Visualizations

• Effective visualization techniques include...

Fall 2014 CS 4460 16

Line Graphs

(Image shown in class)

When to use:

When quantitative values change during a continuous period of time

p. 151

Fall 2014 CS 4460 17

Bar Graphs

(Image shown in class)

When to use:

When you want to support the comparison of individual values

p. 152

Fall 2014 CS 4460 18

Dot Plots

(Image shown in class)

When to use:

When analyzing values that are spaced at irregular intervals of time

p. 153 Fall 2014 CS 4460 19

Radar Graphs

(Image shown in class)

When to use:

When you want to represent data across the cyclical nature of time

p. 154Fall 2014 CS 4460 20

Heatmaps

(Image shown in class)

When to use:

Fall 2014

When you want to display a large quantity of cyclical data (too much for radar)

p. 157
CS 4460 21

Box Plots

(Image shown in class)

When to use:

You want to show how values are distributed across a range and how that distribution changes over time

p. 157

Fall 2014 CS 4460 22

Animated Scatterplots

(Image shown in class)

When to use:

To compare how two quantitative variables change over time

Fall 2014 CS 4460

p. 159

Banking to 45°

(Image shown in class)

Same diagram, just drawn at different aspect ratios

People interpret the diagrams better when lines are around 45°, not too flat, not too steep

p. 171

Fall 2014 CS 4460 24

Question

(Image shown in class)

CS 4460

Which is increasing at a faster rate, hardware sales or software sales?

Log scale shows this

Both at same rate, 10%

Fall 2014

p. 172

Patterns

(Image shown in class)

Daily sales

Average per day

p. 176

Fall 2014 CS 4460

Cycle Plot

Combines visualizations from two prior graphs

(Image shown in class)

p. 177

Fall 2014 CS 4460 27

A Story

How much wine of different varieties is produced?

(Image shown in class)

p. 191-2

Fall 2014 CS 4460 28

Pareto Chart

(Image shown in class)

Shows individual contributors and increasing total

80/20 rule – 80% of effect comes from 20%

p. 194

Fall 2014 CS 4460

29

Bump Chart

Shows how ranking relationships change over time

(Image shown in class)

p. 201

Fall 2014 CS 4460 3

Deviation Analysis

(Image shown in class)

Do you show the two values in question or the difference of the two?

p. 203
Fall 2014 CS 4460 31

Distribution Analysis Views

- Histogram
- Frequency polygon
- Strip plot
- Stem-and-leaf plot

Fall 2014 CS 4460 32

Histogram

(Image shown in class)

 p. 225

 Fall 2014
 CS 4460
 33

Frequency Plot

(Image shown in class)

p. 226 Fall 2014 CS 4460 34

Strip Plot

(Image shown in class)

p. 227

Fall 2014 CS 4460 35

Stem-and-leaf Plot

(Image shown in class)

p. 228

Fall 2014 CS 4460 36

Comparisons

(Image shown in class)

Note how first one's curve is smooth (not such a noticeable difference). Second one is more noticeable. Same data.

p. 234

Fall 2014 CS 4460

37

Correlation Analysis

Bleah. How can we clean this up?

(Image shown in class)

p. 276

Fall 2014 CS 4460 38

Crosstab

(Image shown in class)

p. 277

Fall 2014 CS 4460

39

Color Choice in Heatmaps

(Image shown in class)

Argues that black should not be used as a middle value because of its saliency (visual prominence)

Some people are redgreen color blind too

p. 285-7

Fall 2014 CS 4460 40

Further Articles

Blog

Fall 2014 CS 4460 42

Critique It

AJC, July 2010
Fall 2014 CS 4460 43

HW 2

- Table and graph design
- Given two (Excel) data sets, design a table and graph for the data, respectively
- Due next Tuesday

Project

- Proposals due next Tuesday
- More ideas...
- Discuss your proposed topic
- Teams...

Fall 2014 CS 4460 45

Quick Survey

- Knowledge of?
 - HTML
 - CSS
 - Javascript
 - DOM
 - SVG
 - CSV
 - JSON

Fall 2014 CS 4460 46

What are you Listening to?

- Represent music listening histories
- What would you want to show?
- How might you visualize it?

Nice example of a project

Fall 2014 CS 4460 47

LastHistory

- Visualizing a person's listening history from last.fm
- Want to support
 - Analysis
 - Reminiscing
- Potential to synchronize with photos and calendar entries from that time

Baur et al TVCG (InfoVis) '10

Fall 2014 CS 4460 48

Upcoming

- Multivariate Visual Representations 1
 - ReadingMunzner chapter 7
- Multivariate Visual Representations 2
 - ReadingMunzner chapter 12

Fall 2014 CS 4460 50