Few's Design Guidance

CS 4460 - Intro. to Information Visualization September 9, 2014
John Stasko

Today's Agenda

Stephen Few's Guidance

- Excellent advice for the design of tables and graphs
- Page references are from Now You See It
- Let's review some of his recommendations
- We explored chapters 1-4 earlier
- Today we examine chapters 5-12

Analytic Techniques \& Practices

- Some examples he has highlighted
- Optimal quantitative scales
- Reference lines and regions
- Trellises and crosstabs
- Multiple concurrent views and brushing
- Focus and context together
- Details on demand
- Over-plotting reduction

Add Reference Lines

(Image shown in class)

p. 96

More Reference Lines

(Image shown in class)
p. 97

Trellis Display

Typically varies on one variable
(Image shown in class)
p. 100

Crosstab

Crosstab

(Image shown in class)

$$
\text { p. } 103
$$

Multiple Concurrent Views

Vintage infovis

(Image shown in class)

Concurrent Views

- He calls such things faceted analytical displays
Sometimes that term is used in other ways in infovis
- As opposed to dashboards
- They are for monitoring, not analysis

Overplotting

Too many data points
(Image shown in class)
p. 118

Overplotting Solutions

- Reducing size of data objects
- Removing all fill color from data objects
- Changing the shape of data objects
- Jittering data objects
- Making data objects transparent
- Encoding the density of values
- Reducing the number of values

Aggregating the data

- Filtering the data
- Breaking the data into a series of separate graphs
- Statistically sampling the data

Quantitative Data

- Fundamental visualization techniques

Time Series Data

- Patterns to be shown

Trend

- Variability
- Rate of change
- Co-variation
- Cycles

Exceptions

Time Series Visualizations

- Effective visualization techniques include...

Line Graphs

(Image shown in class)

When to use:
When quantitative values change during a continuous period of time

$$
\text { p. } 151
$$

Bar Graphs

(Image shown in class)

When to use:
When you want to support the comparison of individual values
p. 152

Dot Plots

(Image shown in class)

When to use:
When analyzing values that are spaced at irregular intervals of time
p. 153

Radar Graphs

(Image shown in class)

When to use:
When you want to represent data across the cyclical nature of time
p. 154

Heatmaps

(Image shown in class)

When to use:
When you want to display a large quantity of cyclical data (too much for radar)
$\begin{array}{lll}\text { Fall } 2014 & \text { CS } 4460 & \text { p. } \\ 21\end{array}$

Box Plots

(Image shown in class)

When to use:
You want to show how values are distributed
across a range and how that distribution
changes over time

Animated Scatterplots

(Image shown in class)

When to use:
To compare how two quantitative variables change over time

Banking to $\mathbf{4 5}^{\circ}$

(Image shown in class)

Same diagram, just drawn at different aspect ratios

People interpret the diagrams better when lines are around 45°, not too flat, not too steep
p. 171

Question

(Image shown in class)

Which is increasing at a faster rate, hardware sales or software sales?

Log scale shows this

Both at same rate, 10%
Fall 2014
CS 4460
p. 172

Patterns

(Image shown in class)

Daily sales
Average per day
p. 176

Cycle Plot

Combines visualizations from two prior graphs
(Image shown in class)

$$
\text { p. } 177
$$

A Story
 How much wine of different varieties is produced?

(Image shown in class)
p. 191-2

Pareto Chart

(Image shown in class)

Shows individual contributors and	$80 / 20$ rule - increasing total
80% of effect comes from 20%	

p. 194

29

Bump Chart

Shows how ranking relationships change over time
(Image shown in class)
p. 201

Deviation Analysis

(Image shown in class)

Do you show the two values in question or the difference of the two?
p. 203

Distribution Analysis Views

- Histogram
- Frequency polygon
- Strip plot
- Stem-and-leaf plot

Histogram

(Image shown in class)

Frequency Plot
(Image shown in class)

Strip Plot

(Image shown in class)
p. 227

Stem-and-leaf Plot

(Image shown in class)

$$
\text { p. } 228
$$

Comparisons

(Image shown in class)

Note how first one's curve is smooth (not such a noticeable difference). Second one is more noticeable. Same data.
p. 234

Correlation Analysis

Bleah. How can we clean this up?
(Image shown in class)
p. 276

Crosstab

(Image shown in class)

p. 277

Color Choice in Heatmaps

Argues that black should not be used as a middle value because of its saliency (visual prominence)
(Image shown in class)
p. 285-7

Further Articles

Fall 2014
CS 4460

Blog

Critique It

AJC, July 2010

HW 2

- Table and graph design
- Given two (Excel) data sets, design a table and graph for the data, respectively
- Due next Tuesday

Project

- Proposals due next Tuesday
- More ideas...
- Discuss your proposed topic
- Teams...

Quick Survey

- Knowledge of?
- HTML
- CSS
- Javascript
- DOM
- SVG
- CSV

JSON

What are you Listening to?

- Represent music listening histories
- What would you want to show?
- How might you visualize it?

LastHistory

- Visualizing a person's listening history from last.fm
- Want to support
- Analysis
- Reminiscing
- Potential to synchronize with photos and calendar entries from that time

Upcoming

- Multivariate Visual Representations 1
- Reading

Munzner chapter 7

- Multivariate Visual Representations 2
- Reading

Munzner chapter 12

