Graph and Network Visualization

CS 4460 – Intro. to Information Visualization October 21, 2014 John Stasko

Connections

- Connections throughout our lives and the world
 - Circle of friends
 - Delta's flight plans
 - ...
- Model connected set as a *Graph*

What is a Graph?

- Vertices (nodes) connected by
- Edges (links)

Graph Terminology

- Graphs can have cycles
- Graph edges can be *directed* or undirected
- The *degree* of a vertex is the number of edges connected to it
 - In-degree and out-degree for directed graphs
- Graph edges can have values (*weights*) on them (nominal, ordinal or quantitative)

Trees are Different

- Subcase of general graph
- No cycles
- Typically directed edges
- Special designated root vertex

5

Fall 2014

CS 4460

Graph Uses

- In information visualization, any number of data sets can be modeled as a graph
 - US telephone system
 - World Wide Web
 - Distribution network for on-line retailer
 - Call graph of a large software system
 - Semantic map in an AI algorithm
 - Set of connected friends
- Graph/network visualization is one of the oldest and most studied areas of InfoVis

Graph Visualization Challenges

- Graph layout and positioning
 - Make a concrete rendering of abstract graph
- Navigation/Interaction
 - How to support user changing focus and moving around the graph
- Scale
 - Above two issues not too bad for small graphs, but large ones are much tougher

Fall 2014

CS 4460

Layout Examples

- Homework assignment
- Let's judge!

Results

What led to particular layouts being liked more?

Discuss

Fall 2014

CS 4460

Layout Algorithms

Entire research community's focus

Vertex Issues

- Shape
- Color
- Size
- Location
- Label

CS 4460

11

Fall 2014

Aesthetic Considerations

- Crossings -- minimize towards planar
- Total Edge Length -- minimize towards proper scale
- Area -- minimize towards efficiency
- Maximum Edge Length -- minimize longest edge
- Uniform Edge Lengths -- minimize variances
- Total Bends -- minimize orthogonal towards straight-line

Fall 2014

CS 4460

Which Matters?

 Various studies examined which of the aesthetic factors matter most and/or what kinds of layout/vis techniques look best

- Purchase, Graph Drawing '97
- Ware et al, *Info Vis* 1(2)
- Ghoniem et al, *Info Vis* 4(2)
- van Ham & Rogowitz, TVCG '08
- ...
- Results mixed: Edge crossings do seem important

Fall 2014

CS 4460

14

Shneiderman's NetViz Nirvana

- 1) Every node is visible
- 2) For every node you can count its degree
- 3) For every link you can follow it from source to destination
- 4) Clusters and outliers are identifiable

Fall 2014

CS 4460

But What about User Tasks?

- So what do people want to do with or learn from network visualizations?
 - Recurring theme of this class: Too often this is neglected

Graph Vis Task Taxonomy

- Start with Amar et al '05 low-level tasks
- Then add four types of other tasks (next pages)

Fall 2014	CS 4460	Lee et al BELIV '06	17

Graph Vis Task Taxonomy

- 1. Topology-based tasks
 - Adjacency

Find the set of nodes adjacent to a node

Accessibility

Find the set of nodes accessible to a node

- Common connection
 Given nodes, find the set of nodes connected to all
- Connectivity
 Find shortest path
 Identify clusters
 Identify connected components

Graph Vis Task Taxonomy

- 2. Attribute-based tasks
 - On the nodes

Find the nodes having a specific attribute value

- On the edges

Given a node, find the nodes connected only by certain kinds of edges

Fall 2014

CS 4460

Graph Vis Task Taxonomy

- 3. Browsing tasks
 - Follow path

Follow a given path

– Revisit

Return to a previously visited node

- 4. Overview task
 - Compound exploratory task
 Estimate size of a network
 Find patterns

CS 4460

Layout Heuristics

- Layout algorithms can be
 - polyline edges
 - planar
 - No edge crossings
 - orthogonal horizontal and vertical lines/polylines
 - grid-based vertices, crossings, edge bends have integer coords
 - curved lines
 - hierarchies
 - circular

- ...

Fall 2014

CS 4460

21

Types of Layout Algorithms

Common Layout Techniques

- Hierarchical
- Force-directed
- Circular
- Geographic-based
- Clustered
- Attribute-based
- Matrix

We will discuss many of these further in the slides to come

Fall 2014

Scale Challenge

 May run out of space for vertices and edges (turns into "ball of string")

CS 4460

- Can really slow down algorithm
- Sometimes use *clustering* to help
 - Extract highly connected sets of vertices
 - Collapse some vertices together

CS 4460

Navigation/Interaction Challenge

- How do we allow a user to query, visit, or move around a graph?
- Changing focus may entail a different rendering

Fall 2014	CS 4460	25

Graph Drawing Uses

- Many domains and data sets can benefit significantly from nice graph drawings
- Let's look at some examples...

Music Artists

http://www.liveplasma.com/

Fall 2014

CS 4460

http://mibi.deviantart.com/art/Death-and-Taxes-2007-39894058

Social Analysis

 Facilitate understanding of complex socioeconomic patterns

 Social Science visualization gallery (Lothar Krempel):

– http://www.mpi-fg-koeln.mpg.de/~lk/netvis.html

 Next slides: Krempel & Plumper's study of World Trade between OECD countries, 1981 and 1992

(c) Lother Krempd, Max Planck Institut I Goodle diefforechung. Oologie

Steroids in MLB

Geo Applications

 Many problems and data sets have some geographic correspondence

Follow the Money

http://www.nsf.gov/news/special_reports/scivis/follow_money.jsp

Where does a dollar bill go?

Fall 2014

3 Subway Diagrams

- Geographic landmarks largely suppressed on maps, except water (rivers in London & Paris) and asphalt (highways in Atlanta)
 – Rather fitting, no?
- These are more *graphs* than maps!

But Is It InfoVis?

- I generally don't consider a pure graph layout (drawing) algorithm to be InfoVis
 - Nothing wrong with that, just an issue of focus
- For InfoVis, I like to see some kind of interaction or a system or an application...
 - Still, understanding the layout algorithms is very important for infovis

CS 4460

- Let's look at a few...

Fall 2014

<section-header><text><text><text>

Fall 2014

CS 4460

44

Fall 2014

Tree Layout

- Run a breadth-first search from a vertex – This imposes a spanning tree on the graph
- Draw the spanning tree
- Simple and fast, but obviously doesn't represent the whole graph

Hierarchical Layout

Often called Sugiyama layout

Force-directed Layout

- Spring model (common)
 - Edges Springs (gravity attraction)
 - Vertices Charged particles (repulsion)
- Equations for forces
- Iteratively recalculate to update positions of vertices

CS 4460

- Seeking local minimum of energy
 - Sum of forces on each node is zero

Fall 2014

Force-directed Example

Figure 2: A graph drawing through a number of iterations of a force directed algorithm.

http://www.cs.usyd.edu.au/~aquigley/3dfade/

Fall 2014

CS 4460

http://vis.stanford.edu/protovis/ex/force.html

In Action Protovi ICAL TOOLKIT FOR VISUALIZATIO ation Download Exa mples Doc Index « Previous / Next » Force-Directed Layouts

View full scr

CS 4460

Fall 2014

Images from JUNG

51

Spring layout

Variant

- Simple force-directed spring embedder

Variant

- Fruchterman-Reingold Algorithm
 - Add global temperature
 - If hot, nodes move farther each step
 - If cool, smaller movements
 - Generally cools over time

Fall 2014

CS 4460

Other Applications

- Email
- How would you visualize all email traffic in CoC between pairs of people?
- Solutions???

Fall 2014	CS 4460

Possible Solutions

- Put everyone on circle, lines between
 Color or thicken line to indicate magnitude
- Use spring/tension model
 - People who send a lot to each other are drawn close together
 - Shows clusters of communications

CS 4460

http://www.visualcomplexity.com

Fall 2014

CS 4460

57

Interaction

 One of the key ways we move beyond graph layout to graph visualization (InfoVis) is interaction with the graph

Focus of Graph

- Particular node may be focus, often placed in center for circular layout
- How does one build an interactive system that allows changes in focus?
 - Use animation
 - But intuition about changes not always right

Fall 2014

CS 4460

Focus Change Animation

Straight linear interpolation of focus changes not as appealing as changes along polar coordinates

Video

CS 4460

TreePlus

- Don't draw entire graph
- Have a focus vertex, then incrementally expand and show connections (min span tree) from there
- Interaction:
 - Single-click: show connections via highlight
 - Double-click: new focus vertex
 - Smooth animated change in focus
- "Plant a seed and watch it grow" Lee et al 7VCG '06 Fall 2014 CS 4460 61

Recent Trends in GraphViz

- Attributes of nodes influence geometric positioning
 - Not just some arbitrary layout
- Utilize graph statistical analysis too
- Largely driven by interest in social network analysis

PivotGraph

- Cluster on common node attributes
 Put all A's together, all B's together, ...
- "Roll up" nodes
 - Draw edge from A to B depending on how many edges from some A to some B
- Position nodes into a grid based on attributes

Figure 10. Communication network of people in a large company. X-axis is division, y-axis is office geography. The division in the leftmost column has far more cross-location communication than the others.

Fall 2014

CS 4460

67

http://www.cs.umd.edu/hcil/nvss/

Semantic Substrates

- Group nodes into regions
 According to an attribute
 Categorical, ordinal, or binned numerical
- In each region: Position nodes according to some other attribute(s)
- Give users control of link visibility

Shneiderman & Aris *TVCG* (InfoVis) '06

CiteVis

- Showing InfoVis Conference paper citation patterns
 - Papers are graph vertices
 - A cites B is graph edge
- Attribute-based layout
 - Year x Number of citations
- Uses color & interaction to show citations rather than drawn links

	Stasko, Choo, Han,	Hu, Pileggi, Sadana & Stolper InfoVis poster `13
Fall 2014	CS 4460	71

🛃 Info	/is Citations			
Author:		Concept:	-	Keyword:
12			00000	
11				
10			0000000	000000
09				00000000
08	 			
07			00000	
06				
05			0000000	
04			00000	
03				
02				
00				
99				
98				
97				
96				
95				
	Hierarchical Edge Bundles: Visualization of Adjacency Relations in F	Hierarchical Data		
	Holten, D.			

http://www.cc.gatech.edu/gvu/ii/citevis

Fall 2014

Vizster

- Visualize social networking sites like friendster, myspace, facebook
- Implementation
 - Crawled 1.5 million members (Winter 2003)
 - Written in Java using the *prefuse* tookit (<u>http://prefuse.sourceforge.net</u>)
- Oppose Shneiderman's mantra. Instead: "Start with what you know, then grow."

		Heer & boyd InfoVis `05	
014	CS 4460	73	3

Fall 2014

Visualization

http://www.cs.umd.edu/hcil/socialaction/

SocialAction

- Combines graph structural analysis (ranking) with interactive visual exploration
- Multiple coordinated views
 - Lists by ranking for analysis data
 - Basic force-directed layout for graph vis

Perer & Shneiderman *TVCG* (InfoVis) '06

Social Network Attributes

- Bary center total shortest path of a node to all other nodes
- Betweenness centrality how often a node appears on the shortest path between all other nodes
- Closeness centrality how close a node is compared to all other nodes
- Cut-points the subgraph becomes disconnected if the node is removed
- **Degree** number of connections for node
- **HITs** "hubs and authorities" measure
- Power centrality how linked a node is to rest of network

Attribute Ranking

- Run these measures on all nodes and rank them
- Sort the rankings and show in lists and scatterplots
- Allow user to filter based on rankings
- Can aggregate rankings for cohesive subgroups of nodes

Fall 2014

CS 4460

Graph Visualization

- Standard node-link
- Node positions remain constant across different metric views to promote comprehension
- Links can have types
- Coherent subgroups can be aggregated (like in Vizster)
 - Uses Newman's community identification algo

CS 4460

Users begin with an overview of the entire social network. On the left side, overview statistics that describe the overall structure are presented. On the right, the network is visualized using a force directed algorithm

The gatekeepers are found using a statistical algorithm. Users filter out the unimportant nodes using a dynamic slider which simplifies the visualization while maintaining the node positions and structure of the network.

000 es Cind C es 🕀 Edge Types - - - - - font Size: -O Label Size: \varTheta 205 240 203 277 225 239 256 26 222 283 157 157 327 522 128 108 132 28 26 105 120 147 138

Fall 2014

Labels are always given priority so users can understand what the data represents. When user selects a node, neighbors are highlighted and details appear on the left. In order to protect sensitive information, node labels have been anonymized except for those individuals publicly identified in the Zacarias Moussaoui trial.

http://www.cs.umd.edu/hcil/socialaction/

Senate Voting Patterns

Fall 2014

CS 4460

Implementation

- Jung
 - Network data structures and algorithms
- Prefuse
 - Graph drawing
- Piccolo
 - Scatterplot and Matrix views

Fall 2014	CS 4460

Comments

- One of my favorite recent InfoVis papers
- Not too innovative on the vis technique side, but wonderful application and synthesis of useful capabilities
- Actually, a very nice *visual analytics* example
- Good subsequent paper on case studies evaluation of it (on our later Eval day)

CS 4460

Really Big Graphs

- May be difficult to keep all in memory
- Often visualized as "hairballs"
- Smart visualizations do structural clustering, so you see a high-level overview of topology

Alternate Big Graph Approach

- Show some of the details, rather than high level structure
- Allow users to focus on particular nodes
- Adapt DOI algorithm from trees to graphs

CS 4460

- Rely heavily on interaction
- Different paradigm: "Search, show context, expand on demand"

van Ha	am & Perer
TVCG	(InfoVis) '09

89

|--|

<complex-block>

Graphs as Maps

- Represent a large graph as a map
- Maintain inherent structure and relationships between nodes
- Follow standard cartographic representations

		Gansner, Hu & Kobourov IEEE CG&A (PacificVis) '10
Fall 2014	CS 4460	91

http://www2.research.att.com/~yifanhu/MAPS/imap.html

Fall 2014

CS 4460

TV Shows

Fall 2014

College Basketball	60 Minutes	Chan	nel 2 Action News	Mexico	Gol Premium	Inside the
Cost and		The Offert Area	1 Allow	2009 NBA		NBA
	Extra Entertainment	Tonight Academy Awar	ds Channel 2 Actio	Playoffs	MLB Baseball	2009 Australian Tennis Open
a late Chan	2009 NCAA		At Noon			College Ga
aig Ferguson	Basketball Tournament	Wheel of	Channel 2 Action News	limmy Kimmel	Boston Legal	Women's College
Saturday Night Date	eline NBC	Fortune	Ide Edition	Live	ESPNews	Basketball
Live		Super Bowl XLIII			The Insider	~
	The Tonight Show with	Pre-Game Show	NBC	Nightly	NFL Football	Callers Com
Super Bowl	Jay Leno	File	Conference	News Nightlin	e Dancing with	Scoreboa
XLIII		residential Address	AT	Good Morning	the Stars	
Basketball Lat	te Show with	to Congress	$\neg \lor$	America A	BC World News with	
Dav	vid Letterman Today			10111111111	Charles Gibson	Conference Wite Course
		KYUENew	Late Night with	The Oprah	The Bac	helor
d Case Law &		The 51st Annual	Jimmy Fallon	Wintrey Show	13	0
Order	The Amazing	Grammy Awards		J J	The Ellen	Private Practice
10 Hours	Race 14 FC	at Nine		De	eGeneres Show	Brot
Mystery The O.C.	The Morning Show wi	th Total	NBC Nightly News	PGA lournament	Carson Da	ly S
inima (Mike and Juliet	The Bear		Live Live	e with Regis	20/20
Judge Ju	udy	Good Day Austin No	TWS	Conan O'Brien	& Kelly	TALL SOL
longuiton	Caringar	Austin		Genera	Hospital	Lifeon
Fights Back	opiniger	The Last Templar		Heroes	Martin States	Mars Primetir
Indee	Alex Di Cristina's Cou	int	Medium		One Life	Man
Judger	Alex Divorce Court	Dealor	ST SHAR	KVUE News Davbreak	to Live	le view
Vond	Ludge Joe XIII	No Deal	Igure Skating	Delauthan	All My	CBS Evening
Judge Mathis	Brown	The Martha	Chuck	Dark	Children	News Today W
ninator. The Sarah	The People's	Life		Friday Night	The Early	Days of Bachael R
onnor Chronicles	K		The	e Bonnie Lights	Show 30 Rock	Our Lives
David	Beverly Hills	Who V	Vants to Be	How	rie Do	The Pr
		at 10pm	llionaire?	X		e Young and Is Rig
Family Feud		Good	Day	The Bold and		lie nestiess
	Southi	and	X	As the	Good Mornin America Week	g Golf Central
The Mental iminal Minds	IIST 10TV News HD	Kings		World Turns		
ALLAN ALLA	Flashpoint at 11pm	A	2		Guiding Light ABC World	d Joel Osteen
1	Survivo	or: Tocantins - The		CBC Mareina	News Nov	CBS News
	Dre	allian Minhlanda		Cosmorning		Sunday Morning

Fall 2014

CS 4460

95

<section-header><image>

Drawing Graphs Better

• Can we do clever "tricks" to make dense graphs more readable?

CS 4460

-

Hierarchical Edge Bundles

- Bundle edges that go from/to similar nodes together
 - Like wires in a house
- Uses B-spline curves for edges
- Reduces the clutter from many edges

		Holten <i>TVCG</i> (InfoVis) '06
2014	CS 4460	99

Fall 2014

Example

Fig. 12. Radial layout construction. (a) A radial tree layout is used for the inner circle and subsequently mirrored to the outside; (b) the inner layout is hidden and its structure is used to guide the adjacency edges. An icicle plot based on the mirrored layout is used to show the hierarchy.

Example

Fig. 13. A software system and its associated call graph (caller = green, callee = red). (a) and (b) show the system with bundling strength $\beta = 0.85$ using a balloon layout (node labels disabled) and a radial layout, respectively. Bundling reduces visual clutter, making it easier to perceive the actual connections than when compared to the non-bundled versions (figures 2a and 11a). Bundled visualizitons also show relations between sparsely connected systems more clearly (encircled regions); these are almost completely obscured in the non-bundled versions. The encircled regions highlight identical parts of the system for (a), (b), and figure 15.

Fall 2014

CS 4460

Matrix Representations

- There has been renewed interest in matrix representations of graphs recently
- I think the regularity, symmetry, and structure of a matrix are a win – people understand them well, but they don't

scale up really well

MatrixExplorer

 Provides matrix view in combination with node-link and various operations for gaining different perspectives

CS 4460

Fall 2014

Node Reordering

Extremely important operation with matrix representations

Fig. 6. Initial order (left) and TSP order (right). Colors represent clusters found by the user. Clusters are different in the two representations. Users found more clusters with TSP order. Headers red indicators (right) represents the distance between adjacent rows/columns.

CS 4460

103

TVCG (InfoVis) '06

Simplifying Input

 Make it easier to input graphs and then explore them

http://nodexl.codeplex.com/

NodeXL

Fall 2014

CS 4460

107

Characteristics

- Plug-in for MS Excel
- Includes many network layout and network analysis metrics
- Data import:
 - List out vertices and edges in Excel columns
 - Native importers for email, Twitter, YouTube, etc.

Smith et al C&T `09

Non-Network Data?

- But what if you don't have vertex-edge data to begin?
 - May just have tabular data from spreadsheet or database
- Still may want to explore data modeled as a graph
 - Consider DB of NSF grants (PIs, institution, PM, amount, ...)
 - Look for clusters, patterns, connections, ...

CS 4460

Fall 2014

Ploceus

Liu, Navathe, Stasko VAST '11, Information Visualization `14

- Framework and system for modeling and visualizing tabular data as network
- Allow user to model data as graph interactively through direct manipulation
 - What are vertices, edges, edge weights, ...
- Visualizes graph on-the-fly (different layouts and network metrics)
- Advanced ops (project, aggregate, slice-ndice) can be specified interactively too

Fall 2014

CS 4460

Ploceus

Graph Drawing Support

- Libraries
 - JUNG (Java Universal Network/Graph Framework)
 - Graphviz (formerly dot?)
- Systems
 - Gephi
 - TouchGraph

http://jung.sourceforge.net/

JUNG

http://www.graphviz.org

Graphviz

Fall 2014

http://gephi.org

Gephi

TouchGraph

http://www.touchgraph.com/navigator

Graph Visualization Resource

- Very nice overview & survey
 - Herman et al, IEEE TVCG '00
 - but a little dated now

Fall 2014

CS 4460

Graph Drawing Resources

Book

 diBattista, Eades, Tamassia, and Tollis, Graph Drawing: Algorithms for the Visualization of Graphs, Prentice Hall, 1999

117

- Tutorial (talk slides)
 - http://www.cs.brown.edu/people/rt/papers/gd-tutorial/gd-constraints.pdf
- Web links
 - http://graphdrawing.org

Upcoming

- Hierarchies and Trees
 - Reading
 Munzner chapter 9
- Text and Documents 1 – Reading

Fall 2014

CS 4460

119

Additional Material

MoireGraph

- Uses radial layout not terribly unlike hyperbolic tree, but no hyperbolic geometry
- Impose levels on graph by doing min span tree from some node
- Put root at center, nodes at subsequent levels further out radially, with descreasing space for each

• Interaction is key	Jankun-Kelly & I InfoVis '03		1a
Fall 2014	CS 4460	12	1

Fall 2014

100		

Figure 5: Animated Navigation. Selecting a node in a MoireGraph changes the focus. The angular coordinates of a node and the node's size are interpolated during the animation.

Case Study

- NicheWorks
 - Interactive Visualization of Very Large Graphs Graham Wills Lucent (at that time)

Fall 2014	CS 4460

125

TopoLayout

- Topological features are detected recursively inside a graph
- Their subgraphs are collapsed into single nodes, forming a hierarchy
- Each feature drawn with an algorithm tuned for its topology

Big Graphs

- 20,000 1,000,000 Nodes
- Works well with 50,000
- Projects
 - Software Engineering
 - Web site analysis
 - Large database correlation
 - Telephone fraud detection

Fall	2014		

CS 4460

Features

- Typical interactive operations
- Sophisticated graph layout algorithm
 - 3 Layouts
 Circular
 Hexagonal
 Tree
 - 3 Incremental Algorithms Steepest Descent Swapping Repelling

CS 4460

Web Site Example

Fall 2014

CS 4460

Fraud Example

Zooming in, we notice they have similar calling patterns and numbers (likely part of same operation)

Illegal to call between Israel and Jordan at the time, so fraudsters set up rented apts in US and charge Israeli and Jordanian business people for 3rd party calling

When bills came to US, they would ignore and move on

More Neat Stuff

- http://willsfamily.org/gwills/
- Lots of interesting application areas
- More details on NicheWorks

Fall 2014	CS 4460	135

PNNL's Graph Vis Work

- Graph Signatures
- Goal is to characterize the different styles of nodes in graph based on their local connectivity patterns

Wong et al *TVCG* `06

CS 4460

Fall 2014

Fall 2014

CS 4460

Example 2

Figure 6: A force-directed layout of GD96B.

CS 4460 Fall 2014 139

Example 2 50 40 30 20 10 0 1 2 3

Figure 8. Nodes that share the same color belong to the same cluster identified in Figure 7. Eight signatures (represented as bar graphs) are selected to highlight the general topology of the seven clusters. Notice the previously missing organizer (node 9 in red) hidden among as ea of followers in Figure 6.