Multivariate Visual Representations 1

CS 4460 – Intro. to Information Visualization Sep. 11, 2014 John Stasko

Agenda

20

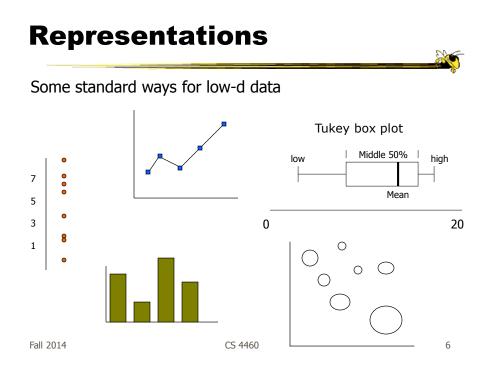
 General representation techniques for multivariate (>3) variables per data case
 But not lots of variables yet...

CS 4460

Quick Quiz

- What type of dataset has three variables per case?
- What is a scatterplot matrix?

Fall 2014	CS 4460	3
	ny Variables?	Revisit
• Data sets o	of dimensions 1, 2, 3 are	*


- Data sets of dimensions 1, 2, 3 are common
- Number of variables per class
 - 1 Univariate data
 - 2 Bivariate data
 - 3 Trivariate data
 - ->3 Hypervariate data Focus Today

Earlier

- We examined a number of tried-and-true techniques/visualizations for presenting multivariate (typically <=3) data sets
 - Hinted at how to go above 3 dimensions

Hypervariate Data

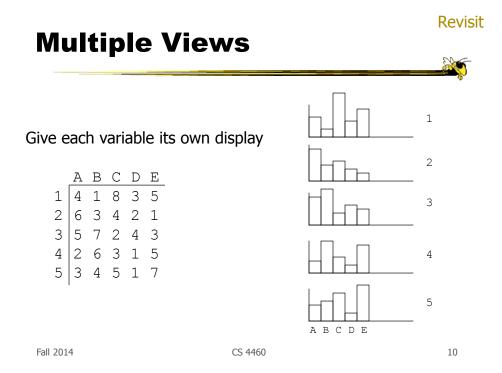
- How about 4 to 20 or so variables (for instance)?
 - Lower-dimensional hypervariate data
 - Many data sets fall into this category
 - Often modeled as tables or tabular data

Fall	2014
i un	2011

CS 4460

More Dimensions

 Fundamentally, we have 2 geometric (position) display dimensions

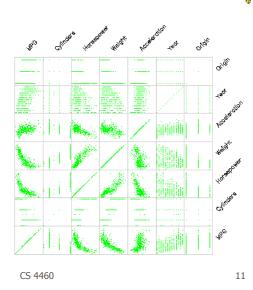

- For data sets with >2 variables, we must project data down to 2D
- Come up with visual mapping that locates each dimension into 2D plane
- Computer graphics: 3D->2D projections

CS 4460

Wait a Second

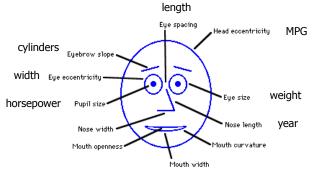
- A spreadsheet already does that
 - Each variable is positioned into a column
 - Data cases in rows
 - This is a projection (mapping)
- What about some other techniques?
 Already seen a couple

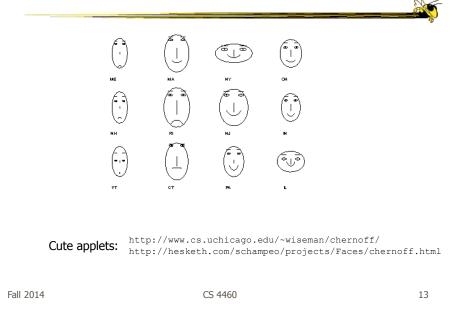
Fall 2014	CS 4460	9



Revisit

Scatterplot Matrix


Represent each possible pair of variables in their own 2-D scatterplot


Fall 2014

Chernoff Faces

Encode different variables' values in characteristics of human face

Examples

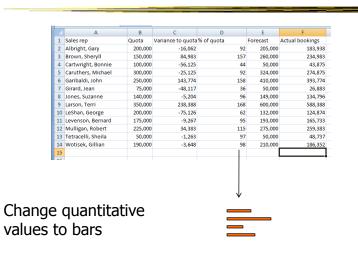


Table Lens

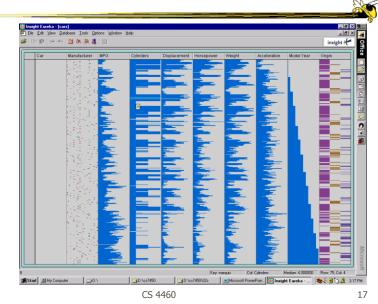
- Spreadsheet is certainly one hypervariate data presentation
- Idea: Make the text more visual and symbolic
- Just leverage basic bar chart idea

Rao & Card CHI '94

Visual Mapping

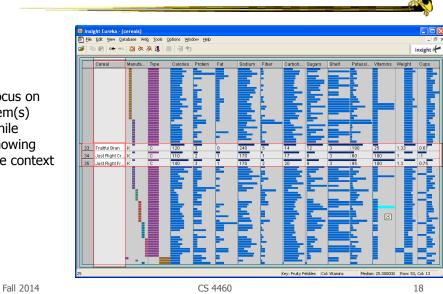
Fall 2014

CS 4460

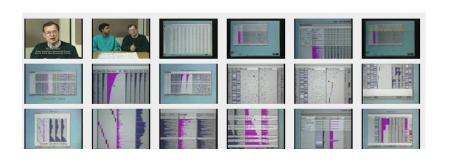

15

2

Tricky Part


	A	В	С	D	E	F	G	Н	1	E
1	Cereal	Manufactu	Туре	Calories	Protein	Fat	Sodium	Fiber	Carbo	j f
2	Frosted Mini-Wheats	К	c	100		3 () (3		1
3	Raisin Squares	К	С	90	1	2 () (2		
4	Shredded Wheat	N	С	80		2 () (3		1
5	Shredded Wheat 'n'Bran	N	С	90		3 () (4		L
6	Shredded Wheat spoon s	N	С	90		3 () (3		
7	Puffed Rice	Q	С	50		I () (0		
8	Puffed Wheat	Q	С	50	1	2 () (1 1		
9	Maypo	A	H	100	4	l 1	1 0	0		
10	Quaker Oatmeal	Q	H	100	4	5 2	2 (2.7		1
11	Strawberry Fruit Wheats	N	С	90	1	2 () 15	3		1
12	100% Natural Bran	Q	С	120	1	3 5	5 15	2		1
13	Golden Crisp	P	С	100	2	2 () 45	0		
14	Smacks	K	С	110	2	2 1	1 70	1 1		
15	Great Grains Pecan	P	С	120	1	3 3	3 75	3		
16	Cream of Wheat (Quick)	N	H	100	1	3 () 80	1 1		
17	Corn Pops	K	С	110				1		1
18	Muesli Raisins, Dates, &	R	С	150						5
19	Annie lacke	5	â	110	14) (: 1		P
1	the coreals (Ca									177

Instantiation


Fall 2014

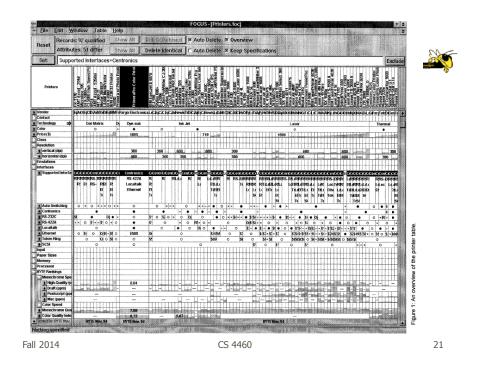
Details

Focus on item(s) while showing the context

See It

CS 4460

http://www.open-video.org/details.php?videoid=8304

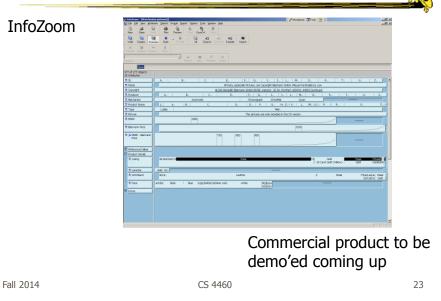

Video

19

Fall 2014

FOCUS

- Feature-Oriented Catalog User Interface
- Leverages spreadsheet metaphor again
- Items in columns, attributes in rows
- Uses bars and other representations for attribute values

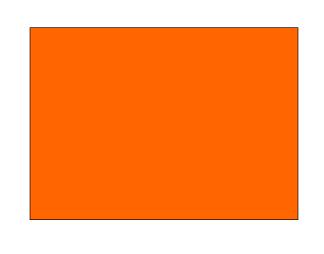


Characteristics

Can sort on any attribute (row)

- Focus on an attribute value (show only cases having that value) by doubleclicking on it
- Can type in queries on different attributes to limit what is presented too

Manifestation

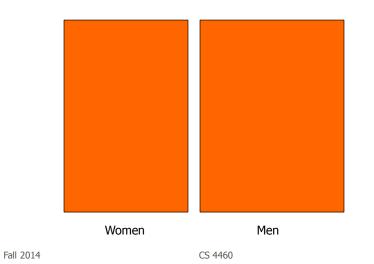

Categorical data?

• How about multivariate categorical data?

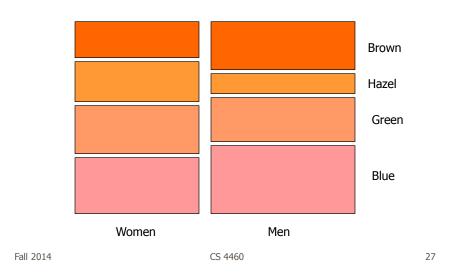
Students

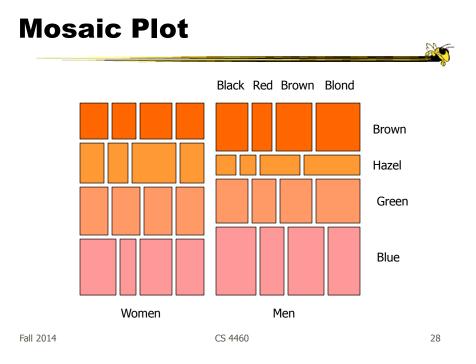
- Gender: Female, male
- Eye color: Brown, blue, green, hazel
- Hair color: Black, red, brown, blonde, gray
- Home country: USA, China, Italy, India, ...

Mosaic Plot


Fall 2014

CS 4460


25

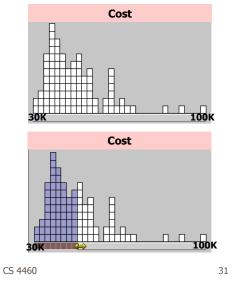

2

Mosaic Plot

Mosaic Plot

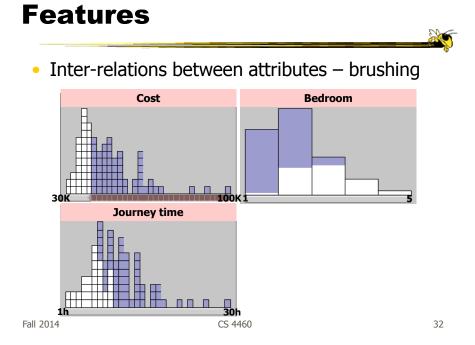
Attribute Explorer

 General hypervariate data representation combined with flexible interaction

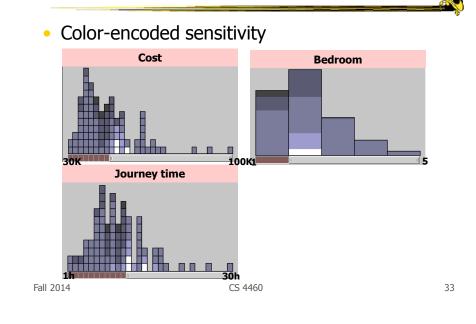

		Spence & Tweedie Inter w Computers `98
Fall 2014	CS 4460	29

Characteristics

- Multiple histogram views, one per attribute (like trellis)
- Each data case represented by a square
- Square is positioned relative to that case's value on that attribute
- Selecting case in one view lights it up in others
- Query sliders for narrowing
- Use shading to indicate level of query match (darkest for full match)


Features

- Attribute histogram
- All objects on all attribute scales



• Interaction with attributes limits

Fall 2014

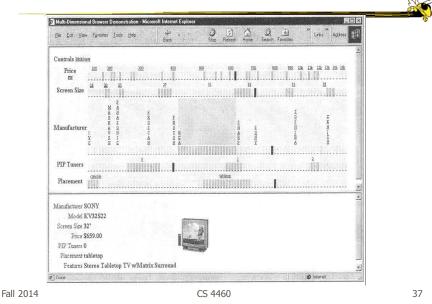
Features

Attribute Explorer

http://www.open-video.org/details.php?videoid=8162

Summary

- Summary
 - Attribute histogram
 - Attribute relationship
 - Sensitivity information
 - Especially useful in "zero-hits" situations or when you are not familiar with the data at all
- Limitations
 - Limits on the number of attributes


Fall 2014	CS 4460	35

MultiNav

- Each different attribute is placed in a different row
- Sort the values of each row
 - Thus, a particular item is not just in one column
- Want to support browsing

Lanning et al AVI '00

Interface

Alternate UI

- Can slide the values in a row horizontally
- A particular data case then can be lined up in one column, but the rows are pushed unequally left and right

Attributes as Sliding Rods

Instantiation er View - Microsoft In y)ew Favorites Iools Help + - ② [2] ③ ②(Search Galf 6 3 5- 0 a MY EZChooser" Back: Filer: Forward Repet How do I use **? ue(s) to limit items shown below. (Rer 10... 20 Cverel 60.. 70.. 00 2 3. 35. 4. 45. 0.. 50. 6 7 8 8 85. 90.. -----Grad (%) 57. 70. 77. 50. 57. 90. 97. D. 5... 99 marchander medican -15. -10. 5.. Washington Univer-Video 🔮 Internet https://www.youtube.com/watch?v=GEBx-XTrGps

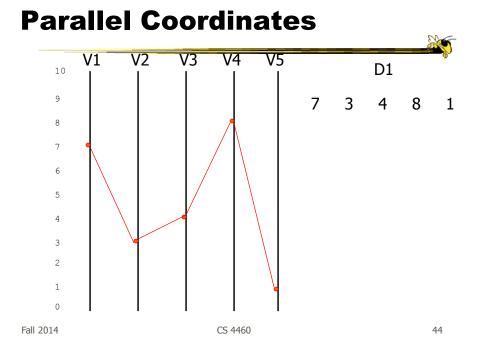
Fall 2014

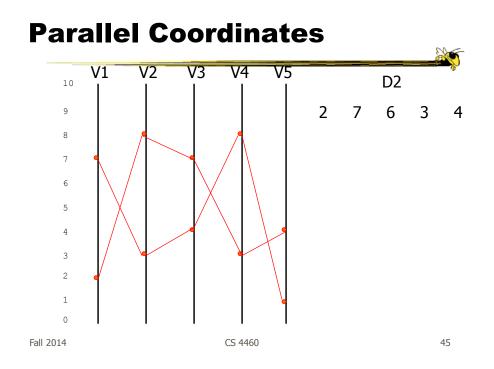
Limitations

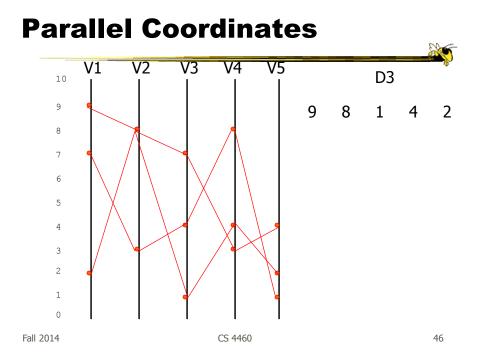
- Number of cases (horizontal space)
- Nominal & textual attributes don't work quite as well

Fall 2014

CS 4460


Parallel Coordinates

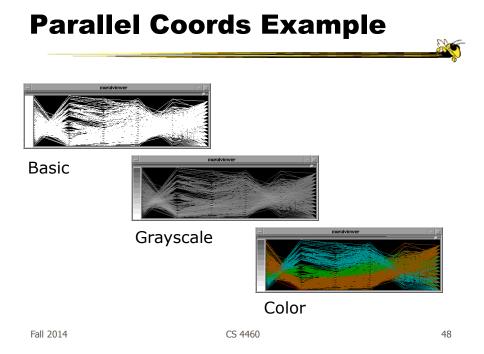

• What are they? – Explain...


Parallel Coordinates

	V1	V2	V3	V4	V5
D1	7	3	4	8	1
D2	2	7	6	3	4
D3	9	8	1	4	2


Fall 2014	CS 4460	43

Parallel Coordinates


Encode variables along a horizontal row

Vertical line specifies different values that variable can take

Data point represented as a polyline

Fall 2014

47

- Different variables can have values taking on quite different ranges
- Must normalize all down (e.g., 0->1)

Fall 2014	CS 4460

Application

- System that uses parallel coordinates for information analysis and discovery
- Interactive tool
 - Can focus on certain data items
 - Color

Taken from: A. Inselberg, "Multidimensional Detective" InfoVis '97, 1997.

CS 4460

Discuss

- What was their domain?
- What was their problem?
- What were their data sets?

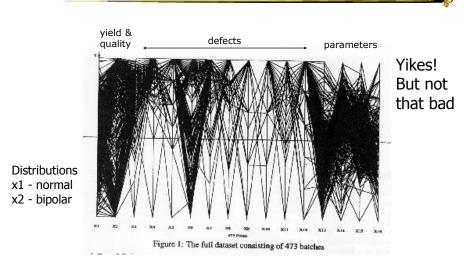
Fall	2014	

CS 4460

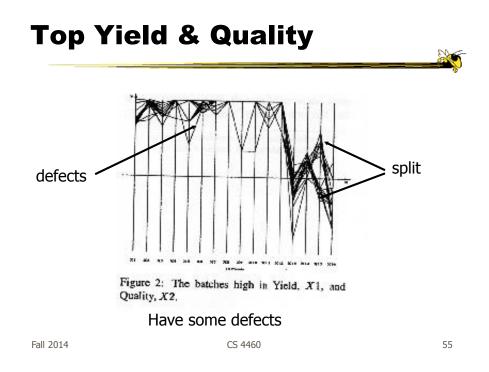
The Problem

- VLSI chip manufacture
- Want high quality chips (high speed) and a high yield batch (% of useful chips)
- Able to track defects
- Hypothesis: No defects gives desired chip types
- 473 batches of data

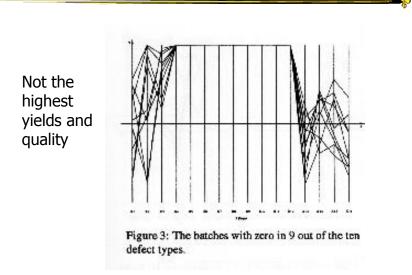
CS 4460


The Data

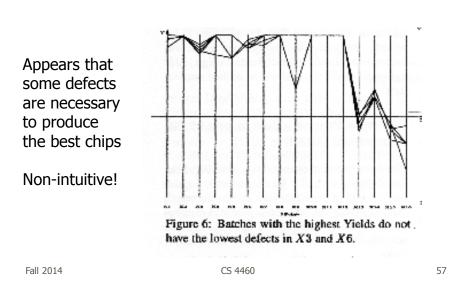
- 16 variables
 - -X1 yield
 - X2 quality
 - X3-X12 # defects (inverted)
 - X13-X16 physical parameters


Fall 2014

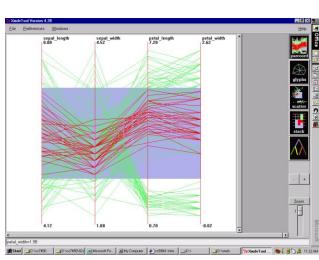
CS 4460


Parallel Coordinate Display

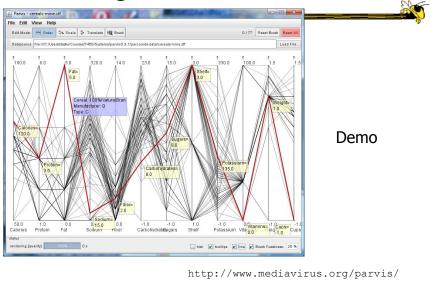
CS 4460



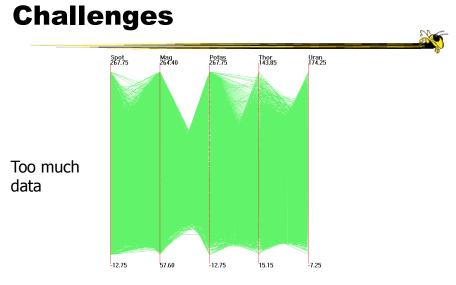
Minimal Defects


Fall 2014

Best Yields


XmdvTool Toolsuite created by Matthew Ward of WPI

Includes parallel coordinate views


Fall 2014

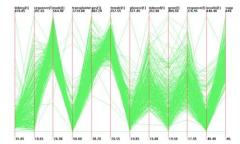
ParVis System

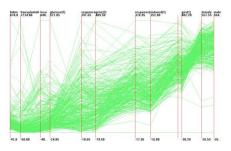
CS 4460

Fall 2014

Out5d dataset (5 dimensions, 16384 data items)

Fall	2014
i un	2011

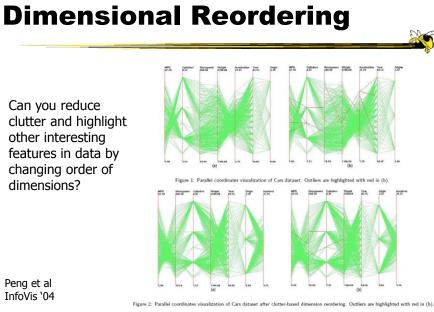

CS 4460


60

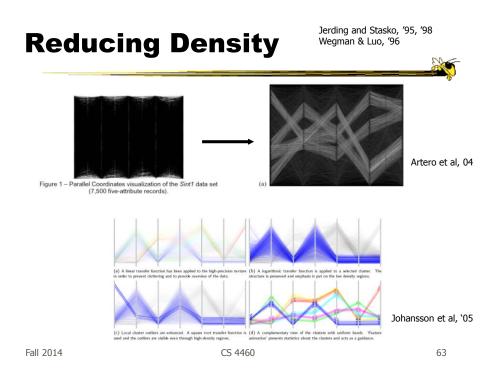
(courtesy of J. Yang)

Dimensional Reordering

Which dimensions are most like each other?



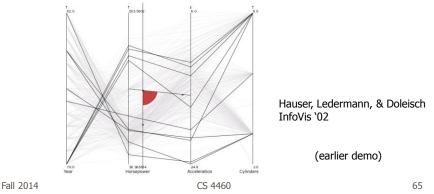
Same dimensions ordered according to similarity


		Yang et al InfoVis '03	
Fall 2014	CS 4460		61

Fa

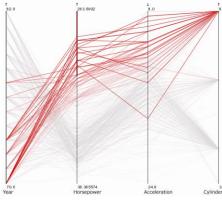
InfoVis '04

Fall 2014



Improved Interaction

- How do we let the user select items of interest?
- Obvious notion of clicking on one of the polylines, but how about something more than that


Attribute Ratios

- Angular Brushing
 - Select subsets which exhibit a correlation along 2 axes by specifying angle of interest

Range Focus

- Smooth Brushing
 - Specify a region of interest along one axis

Video

http://www.vrvis.at/via/research/ang-brush/parvis4.mov

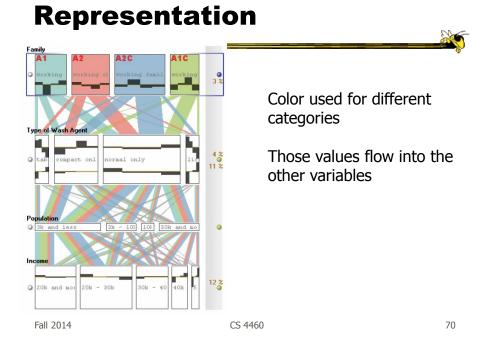
Fall 2014

CS 4460

67

Different Kinds of Data

How about categorical data?
 – Can parallel coordinates handle that well?


Parallel Sets

- Visualization method adopting parallel coordinates layout but uses frequencybased representation
- Visual metaphor
 - Layout similar to parallel coordinates
 - Continuous axes replaced with boxes
- Interaction
 - User-driven: User can create new classifications Kosara, Bendix, & Hauser TVCG '05

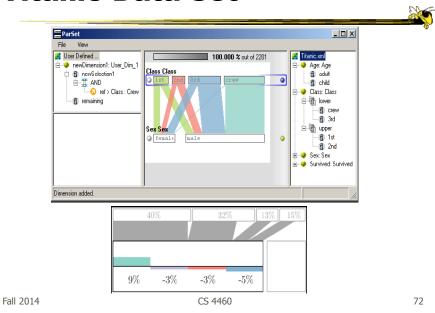
CS 4460

69

Fall 2014

Example

		20	
_	_		
_	_		


	Class	Sex		
		female	male	
Titanic passengers	first	145 44.6%	180 55.4%	325
data set		30.8% 6.6%	$10.4\% \ 8.2\%$	14.8%
	second	106 37.2%	179 62.8%	285
		22.6% 4.8%	10.4% 8.1%	12.9%
	third	196 27.8%	510 72.2%	706
		41.7% 8.9%	29.5% 23.2%	32.1%
	crew	23 2.6%	862 97.4%	885
		4.9% 1.1%	49.8% 39.1%	40.2%
		470	1731	2201
		21.4%	78.6%	100%

Fall 2014

CS 4460

71

Titanic Data Set

Interactions

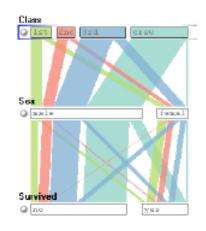
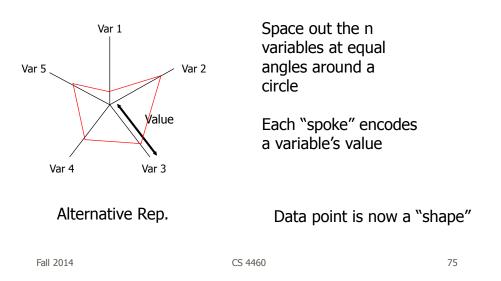
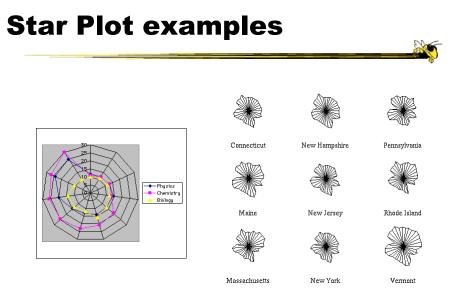



Fig. 7. Basic interaction elements in Parallel Sets: reordering categories (a, b) helps to generate a more meaningful layout; grouping categories (c, d) enables a hierarchical analysis/exploration; excluding categories from the visualization (e, f) allows for interactive filtering; and category highlighting (g, h) enables the selective investigation of high-dimensional relations.

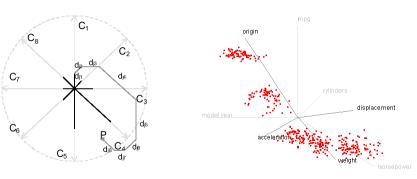
Fall 2014


Video



73

Star Plots


http://seamonkey.ed.asu.edu/~behrens/asu/reports/compre/comp1.html

Fall 2014

Star Coordinates

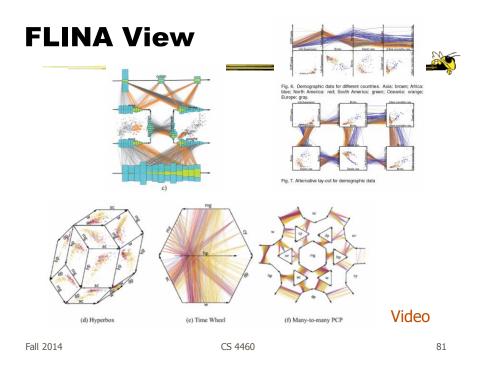
- Same ideas as star plot
- Rather than represent point as polyline, just accumulate values along a vector parallel to particular axis
- Data case then becomes a point

E. Kandogan, "Star Coordinates: A Multi-dimensional Visualization Technique with Uniform Treatment of Dimensions", InfoVis 2000 Late-Breaking Hot Topics, Oct. 2000

Demo

Fall 2014

Star Coordinates


- Data cases with similar values will lead to clusters of points
- (What's the problem though?)
- Multi-dimensional scaling or projection down to 2D

Fall 2014	CS 4460	79

Generalizing the Principles

- General & flexible framework for axisbased visualizations
 - Scatterplots, par coords, etc.
- User can position, orient, and stretch axes
- Axes can be linked

Claessen & van Wijk TVCG (InfoVis) '11

Parallel Coordinates

- Technique
 - Strengths?
 - Weaknesses?

Project

- Teams & Topics due Tuesday
 Bring 2 copies
- More topic ideas

Fall 2014

CS 4460

83

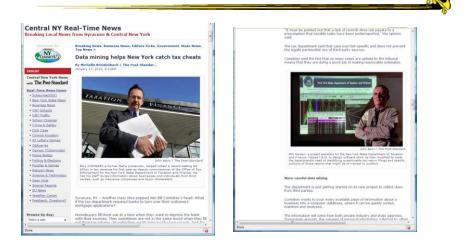
2

HW 2

- Design table & graph
- Due Tuesday
 - Bring 2 hardcopies

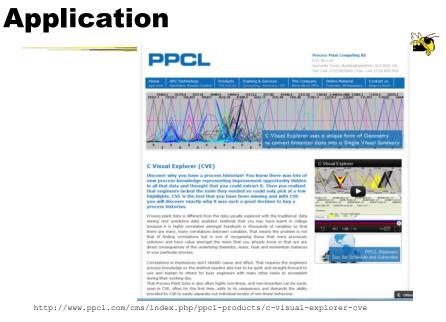
Upcoming

- Multivariate Visual Representations 2
 - Reading: Munzner chapter 12
- D3 tutorial


 Reading
 Interactive Data Visualizations for the Web, chapters 3 and 5

Fall 2014

CS 4460


85

Application

http://www.syracuse.com/news/index.ssf/2010/01/data_mining_helps_new_york_cat.html

Fall 2014

Fall 2014

CS 4460