Multivariate Data & Tables and Graphs

CS 4460 – Intro. to Information Visualization Aug. 28, 2017 John Stasko

Learning Objectives

- Explain different types of data models
- Describe different variable types (categories)
- Define metadata
- Know when to use a table versus a graph
- Explain marks and mark properties
- Identify effective techniques for low-dimensional (<=3) data
- Given raw data, be able to analyze, model, and transform into tabular data

CS 4460

Data

- Data is taken from and/or representing some phenomena from the world
- Data models something of interest to us
- Data comes in many different forms

 Typically, not in the way you want it
- What is available to me (in the raw)?

Example

Data Models

 Often characterize data through three components

Objects

Items of interest (students, courses, terms, ...)

– Attributes

Characteristics or properties of data (name, age, GPA, number, date, ...)

Relations

How two or more objects relate (student takes course, course during term, ...)

Data Tables

- We take raw data and transform it into a model/form that is more workable
- Main idea:
 - Individual items are called cases
 - Cases have variables (attributes)

Fall 2017

CS 4460

Statistical Model

- Independent and Dependent variables
- Dimensions
 - Discrete, categorical info
- Measures
 - Continuous, quantitative info

CS 4460

Data Table Format

		Case ₁	Case ₂	Case ₃
D I M	Variable ₁	Value ₁₁	Value ₂₁	Value ₃₁
e n	Variable ₂	Value ₁₂	Value ₂₂	Value ₃₂
s i o	Variable ₃	Value ₁₃	Value ₂₃	Value ₃₃
n s				
		- f	Think of (case ₁)	as a function = $\langle Val_{11}, Val_{12}, \rangle$

Fall 2017

CS 4460

Example Mary Jim Sally Mitch ... 145 SSN 294 563 823 Age 23 17 47 29 blonde Hair brown black red GPA 2.9 2.1 3.7 3.4 • • •

People in class

CS 4460

			25	
_	_	_		

	P1	P2	P3	P4	
Name	Mary	Jim	Sally	Mitch	
SSN	145	294	563	823	
Age	23	17	47	29	
Hair	brown	black	blonde	red	
GPA	2.9	3.7	3.4	2.1	
				Pe	eople in class

Fall 2017

CS 4460

11

20

Example

	X	licrosoft Excel -	baseball								_
	8	Eile Edit ⊻iew	(nsert Form	at <u>T</u> ools <u>D</u> a	ata <u>A</u> ccount	ing <u>W</u> indow	Help				_
		😂 🖬 🖨 🛛	λ 💖 🐰	🖻 🛍 🚿	n - 04	- 🐁 🌾	Σ f* 2		🔮 🤣 1	00% 🔹 🙎)
	Ari	al	• 10 •	BZT	I E E	≡ 🖬 s	6 % . •	28 -08 🖻	Æ 🔤 -	ð - A -	
		A1 💌		Name			, .				
				C	D	F	F	G	н	1	
	1	Name	At Bats	Hits	Home Run	Runs	Rhi	Walks	Years In M	Career At	Career Hits(
coholl	2	STRING	INT	INT	INT	INT	INT	INT	INT	INT	INT I
ISEDall	3	Andy Allanson	293	66	1	30	29	14	1	293	66
	4	Alan Ashby	315	81	7	24	38	39	14	3449	835
atistics	5	Alvin Davis	479	130	18	66	72	76	3	1624	457
	6	Andre Dawson	496	141	20	65	78	37	11	5628	1575
	7	Andres Galarra	321	87	10	39	42	30	2	396	101
	8	Alfredo Griffin	594	169	4	74	51	35	11	4408	1133
	9	Al Newman	185	37	1	23	8	21	2	214	42
	10	Argenis Salaza	298	73	0	24	24	7	3	509	108
	11	Andres Thomas	323	81	6	26	32	8	2	341	86
	12	Andre Thornton	401	92	17	49	66	65	13	5206	1332
	13	Alan Trammell	574	159	21	107	75	59	10	4631	1300
	14	Alex Trevino	202	53	4	31	26	27	9	1876	467
	15	Andy Van Slyk	418	113	13	48	61	47	4	1512	392
	16	Alan Wiggins	239	60	0	30	11	22	6	1941	510
	17	Bill Almon	196	43	7	29	27	30	13	3231	825
	18	Billy Beane	183	39	3	20	15	11	3	201	42
	19	Buddy Bell	568	158	20	89	75	73	15	8068	2273
	20	Buddy Biancala	190	46	2	24	8	15	5	479	102
	21	Bruce Bochte	407	104	6	57	43	65	12	5233	1478
		▶ ▶ baseball	100			40	- îi	1	L I		100

Fall 2017

Wide vs. Long Data

13

Wide

Person	Age	Weight
Bob	32	128
Alice	24	86
Steve	64	95

Each attribute gets a column

Long (Narrow)

Person	Variable	Value
Bob	Age	32
Bob	Weight	128
Alice	Age	24
Alice	Weight	86
Steve	Age	64
Steve	Weight	95

CS 4460

For each data case, there is an attribute-value pair

https://en.wikipedia.org/wiki/Wide_and_narrow_data

Fall 2017

Variable Types

Three main types of variables

N-Nominal (equal or not equal to other values)

Example: gender

- O-Ordinal (obeys < relation, ordered set)
 Example: fr,so,jr,sr
- Q-Quantitative (can do math on them)
 Example: age

Metadata

- Might be something as simple as the type of a variable, or could be more complex
- For times when the table itself just isn't enough
- Example: if variable1 is "I", then variable3 can only be 3, 7 or 16

Fall 2017

CS 4460

Data Cleaning

- Data may be missing/corrupted
 - Remove?
 - Modify?
- You may want to adjust values
 - Use inverse
 - Map nominal to ordinal/quantitative
 - Normalize values
 Scale between 0 and 1

CS 4460

https://www.trifacta.com/start-wrangling/

17

Administratia

- Sign up for Piazza
- Class slides: external & internal
- Office hours coming
 - John S.
 - John T.
 - Ayshwarya
 - Ayan
 - Bethany

Surveys

Who hasn't completed one?

Fall 2017

CS 4460

How Many Variables?

- Data sets of dimensions 1, 2, 3 are common
- Number of variables per class
 - 1 Univariate data
 - 2 Bivariate data
 - 3 Trivariate data
 - ->3 Hypervariate data

CS 4460

Representation

- What are two main ways of presenting multivariate data sets?
 - Directly (textually) \rightarrow Tables
 - Symbolically (pictures) \rightarrow Graphs
- When use which?

Fall	2017	CS 4460	2	!1
S	trengths?		S. Few Show Me the Numbers	Ś
•	 Use tables when The document will be used to look up individual values The document will be used to compare individual values Precise values are required The quantitative info to be communicated involves more than one unit of measure 		 Use graphs when The message is contained in the shape of the values The document will be used to reveal relationships among values 	1

Effective Table Design

- See Show Me the Numbers

 Next examples taken from there
- Proper and effective use of layout, typography, shading, etc. can go a long way
- (Tables may be underused)

Fall 2017 CS 4460

Example

	QTD Sales			
00000			Americas Asia Europe	
50000 50000 50000	E	E	and games to come	

	Sales (U.S. \$)	Percent of Total Sales	Current Percent of Qtr Plan	Qtr End Projected Sales (U.S. \$)	Qtr End Projected Percent o Qtr Plan
Americas	469,384	60%	85%	586,730	107%
Europe	273,854	35%	91%	353,272	118%
Asia	34,847	5%	50%	43,210	62%
	\$778,085	100%	85%	\$983,212	107%

Fall 2017

CS 4460

Example

Product	Jan	Feb	Mar	Apr	May	Jun
Product 01	93,993	84,773	88,833	95,838	93.874	83,994
Product 02	87,413	78,839	82,615	89,129	87,303	78 114
Product 03	90,036	81,204	85,093	91,803	89,922	80.458
Product 04	92,737	83,640	87,646	94,557	92,620	82 872
Product 05	83,733	75,520	79,137	85.377	83.627	74 826
Total	447,913	403,976	423,323	456,705	447,346	400 264

Product	Jan	Feb	Mar	Apr	May	Jun
Product 01	93,993	84,773	88,833	95.838	93.874	83 994
Product 02	87,413	78,839	82,615	89,129	87,303	78 114
Product 03	90,036	81,204	85.093	91,803	89 922	80 458
Product 04	92,737	83,640	87.646	94,557	92 620	82 872
Product 05	83,733	75,520	79,137	85.377	83 627	74 826
Total	447,913	403,976	423,323	456,705	447,346	400,264

Fall 2017

CS 4460

25

Graphs

- Visual structures composed of
 - Spatial substrate
 - Marks
 - Graphical properties of marks

Space

- Visually dominant
- Often put axes on space to assist
- Use techniques of composition, alignment, folding, recursion, overloading to 1) increase use of space
 - 2) do data encodings

Fall 2017	CS 4460	27

Graphical Properties

• Size, shape, color, orientation...

Back to Data

- What were the different types of data sets?
- Number of variables per class
 - 1 Univariate data
 - 2 Bivariate data
 - 3 Trivariate data
 - >3 Hypervariate data

Univariate Data

What Goes Where?

• In univariate representations, we often think of the data case as being shown along one dimension, and the

value in another

Alternative View

- We may think of graph as representing independent (data case) and dependent (value) variables
- Guideline:
 - Independent vs. dependent variables
 Put independent on x-axis
 See resultant dependent variables along y-axis

Fall 2017	CS 4460	33

Trivariate Data

Representations

Alternative Representation

Still use 2D but have mark property represent third variable

Alternative Representation

Represent each variable in its own explicit way

CS 4460

Hypervariate Data

- Ahhh, the tough one
- Number of well-known visualization techniques exist for data sets of 1-3 dimensions
 - line graphs, bar graphs, scatter plots
 - We see a 3-D world (4-D with time)
- What about data sets with more than 3 variables?

– Often the interesting, challenging ones

Fall 2017

CS 4460

Multiple Views

Give each variable its own display

Fall 2017

Scatterplot Matrix

Represent each possible pair of variables in their own 2-D scatterplot

Useful for what? Misses what?

Fall 2017

40

Dear Data

http://www.dear-data.com
http://www.dear-data.com/all

Fall 2017

CS 4460

41

Thoughts

Liked the "living more in the present"

- Note each data case is not a simple event occurrence
 - Typically some attribute as well
 Which animal did you see?
 How did you feel?
 What did you eat?
- What would you log?

More to Come...

 Subsequent days will explore other general techniques for handling hypervariate data

Fall 2017

CS 4460

43

Advice

- Take DB & IR courses
 - Learn about query languages, relational data models, datacubes, data warehouses, ...

Learning Objectives

- Explain different types of data models
- Describe different variable types (categories)
- Define metadata
- Know when to use a table versus a graph
- Explain marks and mark properties
- Identify effective techniques for low-dimensional (<=3) data
- Given raw data, be able to analyze, model, and transform into tabular data

Fall	2017
run	2017

CS 4460

45

HW 1

Data analysis without vis

• Due Friday

Upcoming

Statistical Charts & Graphs
 – Prep: Few article, pp. 1-20

• Lab: HTML, CSS, DOM

Fall 2017

CS 4460

Sources Used

Few book CMS book Referenced articles Marti Hearst SIMS 247 lectures Kosslyn '89 article A. Marcus, *Graphic Design for Electronic Documents and User Interfaces* W. Cleveland, *The Elements of Graphing Data*

CS 4460