Statistical Graphs & Charts

CS 4460 – Intro. to Information Visualization August 30, 2017 John Stasko

Learning Objectives

- Learn different statistical data graphs
 - Line graph, Bar Graph, Scatterplot, Trellis, Crosstab, Stacked bars, Dotplot, Radar graph, Box plot, Pareto chart, Bump chart, Histogram, Frequency plot, Strip plot, Steam-and-leaf plot, Heatmap
- Learn type of data and analytic goal each technique best applies to
- Develop skill at choosing graph(s) to display different types of data and data sets
- Learn approaches to address overplotting
- Understand concept of "banking to 45°"
- Just get better at applying and using the standard charts

Sources Used

Fall 2017

CS 4460

3

Few's Selection & Design Process

- Determine your message and identify your data
- Determine if a table, or graph, or both is needed to communicate your message
- Determine the best means to encode the values
- Determine where to display each variable
- Determine the best design for the remaining objects
 - Determine the range of the quantitative scale
 - If a legend is required, determine where to place it
 - Determine the best location for the quantitative scale
 - Determine if grid lines are required
 - Determine what descriptive text is needed
- Determine if particular data should be featured and how

S Few	
"Effectively Communicating Numbers"	
http://www.perceptualedge.com/articles/Whitepapers/Communicating_Numbers.pdf	

Some examples...

Fall 2017

Let's See Some Examples

Vertical vs. Horizontal Bars

 Horizontal can be good if long labels or many items

• Page references are from Now You See It

More Reference Lines

p. 97

Fall 2017

Trellis Display

Typically varies on one variable

Distribute different values of that variable across views

Fall 2017

CS 4460

11

p. 100

Crosstab

Varies across more than one variable

p. 102

Fall 2017

Crosstab

CS 4460

13

Overplotting

Too many data points

p. 118

Overplotting Solutions

- Reducing size of data objects
- Removing all fill color from data objects
- Changing the shape of data objects
- Jittering data objects
- Making data objects transparent
- Encoding the density of values
- Reducing the number of values
 - Aggregating the data
 - Filtering the data
 - Breaking the data into a series of separate graphs
 - Statistically sampling the data

Fall 2017

CS 4460

Time Series Data

- Patterns to be shown
 - Trend
 - Variability
 - Rate of change
 - Co-variation
 - Cycles
 - Exceptions

15

Time Series Visualizations

• Effective visualization techniques include...

Fall 2017

CS 4460

17

Line Graphs

When to use:

When quantitative values change during a continuous period of time

p. 151

Fall 2017

Bar Graphs

When to use:			
When you wan comparison of	t to support the individual values	p. 152	
Fall 2017	CS 4460		19

Dot Plots

When to use:

When analyzing values that are spaced at irregular intervals of time

p. 153 20

Radar Graphs

When to use: When you want to represent data across the cyclical nature of time

Fall 2017

CS 4460

p. 154

When to use:

When you want to display a large quantity of cyclical data (too much for radar)

Fall 2017

CS 4460

p. 157

Box Plots

When to use:		
You want to show how across a range and how changes over time	values are distributed w that distribution	n 157
changes over time		p. 157
Fall 2017	CS 4460	23

Animated Scatterplots

When to use:

To compare how two quantitative variables change over time

Fall 2017

Banking to 45°

Same diagram, just drawn at different aspect ratios

People interpret the diagrams better when lines are around 45°, not too flat, not too steep

p. 171

25

Fall 2017

CS 4460

Question

Which is increasing at a faster rate, hardware sales or software sales?

5

Both at same rate, 10%

Log scale shows this

p. 172

Fall 2017

CS 4460

27

28

Stacked Bars

Fall 2017 CS 4460

Pareto Chart

Shows individual contributors and increasing total

80/20 rule – 80% of effect comes from 20%

Fall 2017

CS 4460

p. 194 29

Bump Chart

Shows how ranking relationships change over time

30

Deviation Analysis

Do you show the two values in question or the difference of the two?

p. 203

Fall 2017

CS 4460

Distribution Analysis Views

- Histogram
- Frequency polygon
- Strip plot
- Stem-and-leaf plot

Histogram

Fall	2017
i un	2017

CS 4460

p. 225

Frequency Plot

8/30/2017

Strip Plot

p. 227

35

Fall 2017

CS 4460

Stem-and-leaf Plot

p. 228

Comparisons

Note how first one's curve is smooth (not such a noticeable difference). Second one is more noticeable. Same data. p. 234 37

Fall 2017

CS 4460

Correlation Analysis

Bleah. How can we clean this up?

8/30/2017

Crosstab

p. 277 ³⁹

Fall 2017

CS 4460

Color Choice in Heatmaps

Argues that black should not be used as a middle value because of its saliency (visual prominence)

Some people are redgreen color blind too

http://fivethirtyeight.com/features/our-47-weirdest-charts-from-2015/

Fall 2017	CS 4460	41

From QlikView

Critique It

Fall 2017

Learning Objectives

- Learn different statistical data graphs •
 - Line graph, Bar Graph, Scatterplot, Trellis, Crosstab, Stacked bars, Dotplot, Radar graph, Box plot, Pareto chart, Bump chart, Histogram, Frequency plot, Strip plot, Steam-and-leaf plot, Heatmap
- Learn type of data and analytic goal each technique best applies to •
- Develop skill at choosing graph(s) to display different types of data • and data sets
- Learn approaches to address overplotting
- Understand concept of "banking to 45°" •
- Just get better at applying and using the standard charts •

HW 1

 Remember to bring two hardcopies on Friday

Fall 2017

CS 4460

45

Friday

- First lab of term
 - Prep: Read Murray 1st half chapter 3
 - Bring your laptop
 - Install the following on your laptop sublime (or some other code editor/IDE) Chrome (or some other browser) python (if Mac or Linux, already there)
 - git clone or download starter code

Upcoming

Lab 1 – HTML, CSS, DOM
– Prep: Murray, chapter 3 up to Javascript

• No Class – Labor Day

Fall 2017

CS 4460

47