Multivariate Visual Representations 1

CS 4460 – Intro. to Information Visualization Sep. 18, 2017 John Stasko

Learning Objectives

2

- For the following visualization techniques/systems, be able to describe each and its visual encoding, know what type of data it's best for, know its strengths and limitations, and understand how to apply it
 - Iconic representatons (Chernoff faces), Table Lens, InfoZoom, EZChooser, Mosaic plot, Star plots
- Explain the visual encoding and design issues of Parallel Coordinates, as well as their utility and limitations
- Understand how the different types of variables in a multivariate data set influence the visualization technique that should be chosen to represent the data
- Be able to apply any of these techniques to a data set that is an appropriate match for them

CS 4460

How Many Variables?

- Data sets of dimensions 1, 2, 3 are common
- Number of variables per class
 - 1 Univariate data
 - 2 Bivariate data
 - 3 Trivariate data
 - >3 Hyper/Multivariate data Focus This Week

Fall 2017	CS 4460	3

Earlier

- We examined a number of tried-and-true techniques/visualizations for presenting multivariate (typically <=3) data sets
 - Bar graph, line graph, pie chart, scatterplot, box plot, trellis display, crosstab, radar graph, heatmap
- Hinted at how to go above 3 dimensions

Hypervariate Data

- How about 4 to 20 or so variables (for instance)?
 - Lower-dimensional hypervariate data
 - Many data sets fall into this category

How would you handle that?

One Approach

 Stay with standard views, but use lots and lots of them

More Dimensions

- Fundamentally, we have 2 geometric (position) display dimensions
- For data sets with >2 variables, we must project data down to 2D
- Come up with visual mapping that locates each dimension into 2D plane
- Computer graphics: 3D->2D projections

Fall 2017

CS 4460

7

8

Wait a Second

- A spreadsheet already does that
 - Each variable is positioned into a column
 - Data cases in rows
 - This is a projection (mapping)
- What about some other techniques?
 - Already seen a couple

Revisit

Scatterplot Matrix

Fall 2017

Key Principle (today)

- Handle all data sets generically
 - Examine techniques not specific to some data or domain
 - Technique can generally handle all data sets

Iconic Representations

- Glyph (graphical object) represents a data case
- Visual properties of glyph represent different variables

Fall 2017	CS 4460

Remember?

Fall 2017

CS 4460

Chernoff Faces

of human face

Fall 2017

CS 4460

13

Cute applet:

http://www.cs.uchicago.edu/~wiseman/chernoff/

Table Lens

- Spreadsheet is certainly one hypervariate data presentation
- Idea: Make the text more visual and symbolic
- Just leverage basic bar chart idea

		Rao & Card CHI `94
Fall 2017	CS 4460	15

Visual Mapping

	A	В	С	D	E	F	
1	Sales rep	Quota	Variance to quota	1% of quota	Forecast	Actual bookings	
2	Albright, Gary	200,000	-16,062	92	205,000	183,938	
3	Brown, Sheryll	150,000	84,983	157	260,000	234,983	
4	Cartwright, Bonnie	100,000	-56,125	44	50,000	43,875	
5	Caruthers, Michael	300,000	-25,125	92	324,000	274,875	
6	Garibaldi, John	250,000	143,774	158	410,000	393,774	
7	Girard, Jean	75,000	-48,117	36	50,000	26,883	
8	Jones, Suzanne	140,000	-5,204	96	149,000	134,796	
9	Larson, Terri	350,000	238,388	168	600,000	588,388	
10	LeShan, George	200,000	-75,126	62	132,000	124,874	
11	Levenson, Bernard	175,000	-9,267	95	193,000	165,733	
12	Mulligan, Robert	225,000	34,383	115	275,000	259,383	
13	Tetracelli, Sheila	50,000	-1,263	97	50,000	48,737	
14	Wotisek, Gillian	190,000	-3,648	98	210,000	186,352	
15							
e t	quantita	tive			-	Hov har	w did they Idle nomi

CS 4460

D D

Instantiation

Fall 2017

Alternative

5

What if you Flipped rows and columns Sorted each row

Fall 2017

CS 4460

19

Result

Commercial product Demo/video

Fall 2017

Alternate UI

- Can slide the values in a row horizontally
- A particular data case then can be lined up in one column, but the rows are pushed unequally left and right

Limitations?

• Number of cases (horizontal space)

 Nominal & textual attributes don't work quite as well

An Application

- What if you cared about ranking items?
 Think of the attributes per item as contributing to some score or value for it
- Apply the Table Lens representation we saw earlier

CS 4460

i

Fall 2017

Categorical data?

• How about multivariate categorical data?

Students

- Gender: Female, male
- Eye color: Brown, blue, green, hazel
- Hair color: Black, red, brown, blonde, gray
- Home country: USA, China, Italy, India, ...

Fall 2017	CS 4460	27

Mosaic Plot

Fall 2017

Fundamental Limitation

- Run out of rows/columns for lots of data cases
- How about an alternative generic representation?

Parallel Coordinates

			vari	iables		
		V1	V2	V3	V4	V5
	D1	7	3	4	8	1
data cases	D2	2	7	6	3	4
	D3	9	8	1	4	2
Fall 2017	CS 4460					

Parallel Coordinates

Questions

What do two correlated variables look like?

What do two inversely correlated variables look like?

CS 4460

Issue

- Different variables can have values taking on quite different ranges
- Must normalize all down (e.g., 0->1)

Fall 2017

CS 4460

Generalizing the Principles

- General & flexible framework for axisbased visualizations
 - Scatterplots, par coords, etc.
- User can position, orient, and stretch axes
- Axes can be linked

Claessen & van Wijk TVCG (InfoVis) `11

Learning Objectives

- For the following visualization techniques/systems, be able to describe each and its visual encoding, know what type of data it's best for, know its strengths and limitations, and understand how to apply it
 - Iconic representatons (Chernoff faces), Table Lens, InfoZoom, EZChooser, Mosaic plot, Star plots
- Explain the visual encoding and design issues of Parallel Coordinates, as well as their utility and limitations
- Understand how the different types of variables in a multivariate data set influence the visualization technique that should be chosen to represent the data
- Be able to apply any of these techniques to a data set that is an appropriate match for them

HW 3

- Due Friday
- Questions?

Fall 2017	CS 4460

Upcoming

- Multivariate Visual Representations 2

 Prep: Dust & Magnet video
- Lab 2: SVG

CS 4460