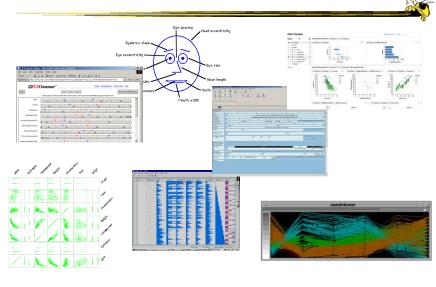
Multivariate Visual Representations 2

CS 4460 – Intro. to Information Visualization Sep. 20, 2017 John Stasko

Learning Objectives

- Explain the concept of dense pixel/small glyph visualization techniques
- Describe each of the following examples of that technique and list their unique properties
 - Pixel bar chart, Dust 'n Magnet, Kinetica, SandDance
- Explain the potential benefits and drawbacks of these approaches
- Describe the "set visualization" problem and explain what a Venn Diagram and an Euler Diagram are
- Describe different approaches for set visualization when the number of sets and elements grow larger
- Understand where to turn for assistance with visualizing "Big data"

Fall 2017 CS 4460


Recap

- We examined a number of techniques for projecting >2 variables (modest number of dimensions) down onto the 2D plane
 - Iconic displays
 - Table lens
 - Parallel coordinates
 - etc.

Fall 2017 CS 4460

Variety of Techniques

Fall 2017 CS 4460

Can We Make a Taxonomy?

- D. Keim proposes a taxonomy of techniques
 - Standard 2D/3D display

Bar charts, scatterplots

- Geometrically transformed display
 Parallel coordinates
- Iconic display
 Needle icons, Chernoff faces
- Dense pixel display
 What we're about to see...
- Stacked display
 Treemaps, dimensional stacking (coming later...)

TVCG '02

Fall 2017 CS 4460

Minimum Possible?

- We have data cases with variables
- What's the smallest representation we can use?
 - How?

Dense Pixel Display

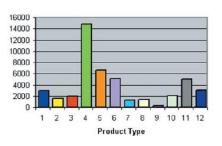
- Represent data case or a variable as a pixel (or as a small glyph such as a circle)
- Million or more per display
- Seems to rely on use of color
- · Can pack lots in
- Challenge: What's the layout? What does position mean?

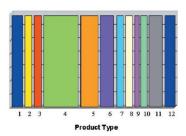
Fall 2017 CS 4460

Related Idea

7

- Pixel Bar Chart
- Overload typical bar chart with more information about individual elements


Keim et al Information Visualization '02


Fall 2017 CS 4460 8

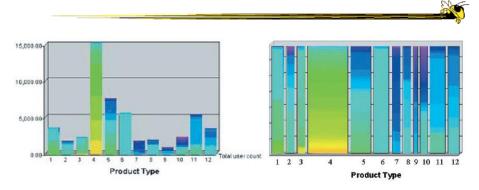
4

Idea 1

Height encodes quantity

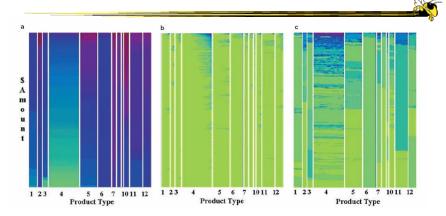
Width encodes quantity

What is the negative?


Fall 2017 CS 4460

Idea 2

- Make each pixel within a bar correspond to a data point in that group represented by the bar
 - Can do millions that way
- Color the pixel to represent the value of one of the data point's variables


Idea 3

Each pixel is a customer
Color encodes amount spent by that person
High-bright, Low-dark
Ordered by that color attribute too
Right one shows more customers

Fall 2017 CS 4460 11

Idea 4

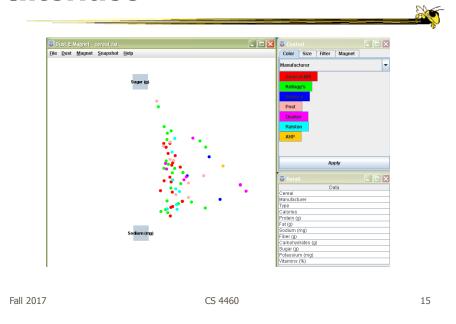
Product type is x-axis divider Customers ordered by y-axis: dollar amount

x-axis: number of visits Color is (a) dollar amount spent, (b) number of visits, (c) sales quantity

Next Step

- Use a little more room to represent each data case
 - Make each a small glyph such as a circle
- Position of each still important
- Interaction likely becomes a crucial part of the visualization

Fall 2017 CS 4460 13


Dust & Magnet

- · Interesting different metaphor
- Data cases represented as small bits of iron dust
- Different attributes/variables given physical manifestation as magnets
- Interact with objects to explore data

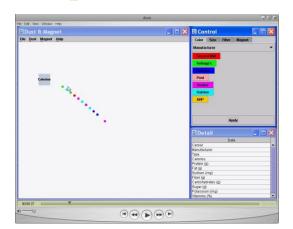
Yi, Melton, Stasko & Jacko Information Visualization '05

Interface

Interaction

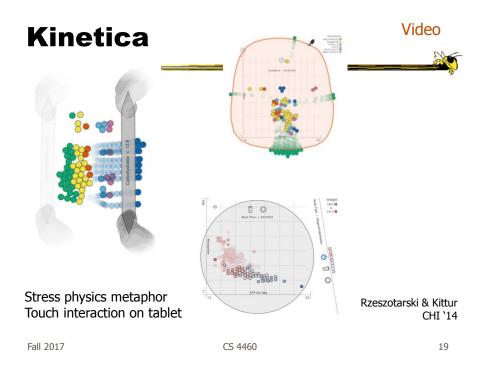
- Iron bits (data) are drawn toward magnets (attributes) proportional to that data element's value in that attribute
 - Higher values attracted more strongly
- All magnets present on display affect position of all dust
- Individual power of magnets can be changed
- Dust's color and size can connected to attributes as well

Interaction



- Moving a magnet makes all the dust move
 - Also command for shaking dust
- Different strategies for how to position magnets in order to explore the data

Fall 2017 CS 4460 17


See It Live

ftp://ftp.cc.gatech.edu/pub/people/stasko/movies/dnm.mov

Video & Demo

Go Big

Video

Dust & Magnet on a large multitouch display

Dai, Sadana, Stolper & Stasko InfoVis `15 Poster

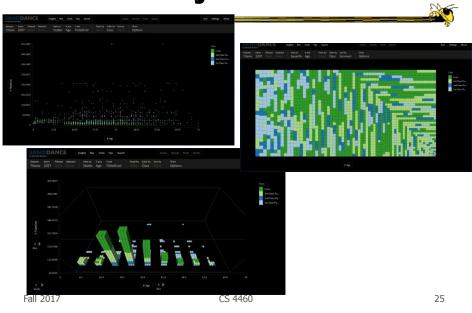
Sand Dance

- Data items as small squares
- Can position and color based on different attributes
- Multiple layouts provided
- Slick animated transitions

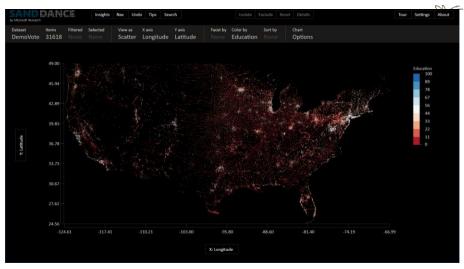
https://www.microsoft.com/en-us/research/project/sanddance/ https://www.youtube.com/watch?v=15Hns2igiag

Demo

Fall 2017



 $\label{lem:https://sanddance.azurewebsites.net/BeachPartyApp/BeachPartyApp.html} $$\text{Fall 2017}$$ CS 4460 $$2$$



Different Layouts

Geo for "Free"

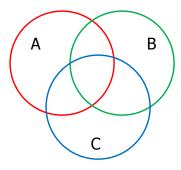
Fall 2017

Scatterplot with x-longitude, y-latitude CS 4460

13

26

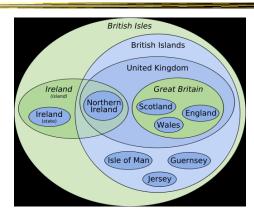
Set Data & Operations


- Different type of problem
 - Large set of items, each can be in one or more sets
 - How do we visually represent the set membership?
 - What's the well-known technique?

Fall 2017 CS 4460 27

Standard Technique

Venn Diagram



Contains all possible zones of overlap

Alternately

Euler Diagram

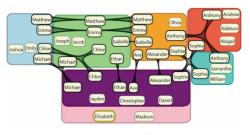
Does not necessarily show all possible overlap zones


http://en.wikipedia.org/wiki/File:British_Isles_Euler_diagram_15.svg

But what's the problem?

Fall 2017 CS 4460 29

Bubble Sets


Video

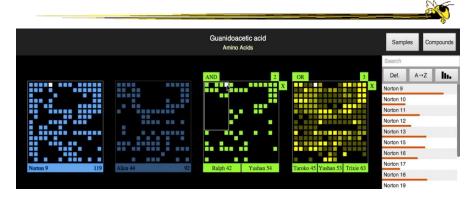
Collins et al TVCG (InfoVis) '09

ComED & DupED

Item can appear more than once

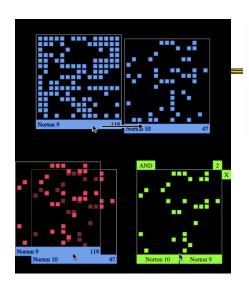
Item appears once

Video


Riche & Dwyer TVCG (InfoVis) '10

Fall 2017 CS 4460

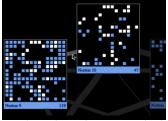
Another Set Problem


OnSet

Represent set as a box, elements are spots in that box Use interaction to do set union, intersection

> Sadana, Major, Dove & Stasko TVCG (InfoVis) '14

Fall 2017 CS 4460



Dragging and dropping a PixelLayer to create a new AND MultiLayer.

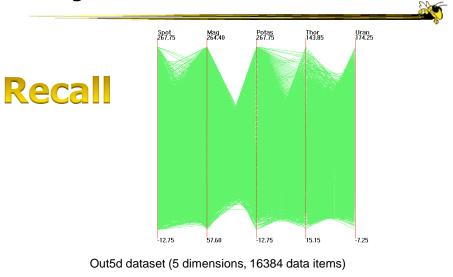
http://www.cc.gatech.edu/gvu/ii/setvis

Demo/video

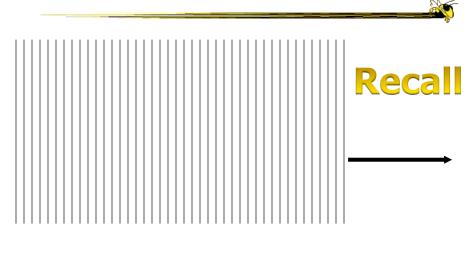
A MultiLayer OR with three sets. A MultiLayer AND of nested OR layers.

OnSet shows the similarity of two sets via the thickness of a band between them. Hovering over a similarity band highlights the common elements between two

Fall 2017 CS 4460 34


Step Back

- Most of the techniques we've examined work for a modest number of data cases or variables
 - What happens when you have lots and lots of data cases and/or variables?


Fall 2017 CS 4460

Many Cases

Fall 2017 CS 4460 (courtesy of J. Yang) 38

Many Variables

Fall 2017 CS 4460 37

Strategies

- How are we going to deal with such big datasets with so many variables per case?
- Ideas?

General Notion

- Data that is similar in most dimensions ought to be drawn together
 - Cluster at high dimensions
- Need to project the data down into the plane and give it some ultra-simplified representation
- Or perhaps only look at certain aspects of the data at any one time

Fall 2017 CS 4460

Mathematical Assistance 1

- There exist many techniques for clustering high-dimensional data with respect to all those dimensions
 - Affinity propagation
 - k-means
 - Expectation maximization
 - Hierarchical clustering

Mathematical Assistance 2

- There exist many techniques for projecting n-dimensions down to 2-D (dimensionality reduction)
 - Multi-dimensional scaling (MDS)
 - Principal component analysis
 - Linear discriminant analysis
 - Factor analysis

Comput Sci & Eng courses Data & Visual Analytics, Prof. Chau Data mining Knowledge discovery

Fall 2017 CS 4460 41

Other Techniques

- Other techniques exist to manage scale
 - Sampling We only include every so many data cases or variables
 - Aggregation We combine many data cases or variables
 - Interaction (later)
 - Employ user interaction rather than special renderings to help manage scale

Use?

- What kinds of questions/tasks would you want such techniques to address?
 - Clusters of similar data cases
 - Useless dimensions
 - Dimensions similar to each other
 - Outlier data cases

- ...

 Think about the "cognitive tasks" we want to accomplish

Fall 2017 CS 4460 43

Recap

- We've seen many general techniques for multivariate data these past two days
 - Know strengths and limitations of each
 - Know which ones are good for which circumstances
 - We still haven't explored interaction much

HW 3

- Due Friday
- Submit one copy
- Questions?

Fall 2017 CS 4460 4

Quick Tip

- If you send me an email, include "4460" in the Subject line somewhere
 - Just easier for me to find these then

Learning Objectives

- Explain the concept of dense pixel/small glyph visualization techniques
- Describe each of the following examples of that technique and list their unique properties
 - Pixel bar chart, Dust 'n Magnet, Kinetica, SandDance
- Explain the potential benefits and drawbacks of these approaches
- Describe the "set visualization" problem and explain what a Venn Diagram and an Euler Diagram are
- Describe different approaches for set visualization when the number of sets and elements grow larger
- Understand where to turn for assistance with visualizing "Big data"

Fall 2017 CS 4460 47

Upcoming

- Lab 2: SVG
 - Prep: Murray section on SVG, Soueidan article
- Systems & Toolkits