Time Series Data

CS 4460 - Intro. to Information Visualization
November 27, 2017
John Stasko

Learning Objectives

- Identify different types of temporal data discrete, interval, linear, cyclic, continuous, ordinal, branching
- List potential tasks for temporal data analysis
- Familiarity with basic temporal representations

Line graph, stacked graph, stream graph, bubble tracks, connected scatterplot

- Familiarity with specific temporal representation techniques and systems

Lifelines 1-2 \& EventFlow, ThemeRiver, Cluster/calendar view, MieLog, LiveRAC,

- Discuss the benefits \& limitations of all the techniques
- Be able to apply learned knowledge and examples to the design of visualizations for new data and problems

Time Series Data

- Fundamental chronological component to the data set

Data Sets

- Each data case is likely an event of some kind
- One of the variables can be the date and time of the event
- Examples:
sunspot activity baseball games medicines taken cities visited stock prices

How about events with a duration?
Discrete vs. Interval

Data Mining

- Data mining domain has techniques for algorithmically examining time series data, looking for patterns, etc.
- Good when objective is known a priori
- But what if not?

Which questions should I be asking?
InfoVis better for that

Tasks

- What kinds of questions do people ask about time series data?

Time Series Tasks

- Is there an order that things occur in?
- How long do events last?
- Is there a cycle?
- How does an event change over time?
- How often does an event happen?

Time Series User Tasks

- Examples

When was something greatest/least?

- Is there a pattern?
- Are two series similar?
- Do any of the series match a pattern?
- Provide simpler, faster access to the series

Other Tasks

- Does data element exist at time t ?
- When does a data element exist?
- How long does a data element exist?
- How often does a data element occur?
- How fast are data elements changing?
- In what order do data elements appear?
- Do data elements exist together?

Muller \& Schumann '03 citing

Taxonomy

- Discrete points vs. interval points
- Linear time vs. cyclic time
- Ordinal time vs. continuous time
- Ordered time vs. branching time vs. time with multiple perspectives

Classical Presentation

- What is the tried and true, most common way of representing time series data?

Focus here is measuring some value over time

Line Graph

Classic Views

CThtp://www.schwab.co... _- ${ }^{2}$

Fall 2017

Fun One

What If Everybody in Canada Flushed At Once?

http://www.patspapers.com/blog/item/what if everybody flushed at once Edmonton water gold medal hockey game/

Data?

- What are these presenting?
- One continuous quantitative value over time (time on x, variable on y)
- What if there are multiple values to track?

Multiple Lines

https://homes.cs.washington.edu/~jheer//files/zoo/index.png

Proportions of Total

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
Alternative?

Stacked Graph

Fall 2017

Data?

- What if the different values don't comprise a whole?
- Don't add

Havre et al InfoVis '00

ThemeRiver

Streamgraph
 Movie
 Byron \& Wattenberg TVCG '08 revenues

http://www.nytimes.com/interactive/2008/02/23/movies/20080223_REVENUE_GRAPHIC.html

Design Issues

- Curve shape

Wiggle, symmetry, balance

- Definitely some interesting math to do it
- Color choice
- Labeling
- Layer ordering
- Paper provides very nice discussion of this

Document Edits

Flow of changes across
electronic documents

Brightness indicates text age
Registered authors color-coded
Anonymous authors in white

Different Data

- Nominally-typed events occurring over time with durations
- Do days/weeks/months/years matter?
- If yes, then...

Calendar View

Fall 2017
CS 4460
27

More Context

- How do we see more context/overview?

DateLens

Fisheye approach

Bederson et al ACM ToCHI '04

Alternative

Mackinlay, Robertson \& DeLine
Fall 2017
UIST '94

Different Data

- Nominally-typed events occurring over time with durations
- Do days/weeks/months/years matter?

If no, then...

Gantt Chart

Gantt Chart Template for Excel

Potential tasks:
Put together complete story
Garner information for decision-making
Notice trends
Gain an overview of the events to grasp the big picture

Lifelines Project

Challenges

- Scalability (could be thousands of tests)
- Can multiple records be visualized in parallel (well)?

Comparisons
What trends do you see in the last 8 EKGs?
Compare the 8 people who all seem to have the same problem

- Support (reg-ex text) queries
- Support alignment, rank, and filter
- Medical application:

Look for temporal coincidence of two events
First pneuomonia and asthma attack
Medical professionals don't want to fool with zooming and panning

Follow-on

More Follow-on

Smart aggregations to show overviews of large collections of events

Monroe et al TVCG '13

HCIL Projects

Data?

- What if you want to show two continuous variables over time?
And not just use two lines

Bubblechart Animation

Alternative

- How do we address weaknesses?

How to get rid of time slider?

Trace View

Connected Scatterplot

- Showing two variables over time
- Use standard scatterplot
- Plot the two values at different points in time
- Connect those points, in order, with a line
- Label key times (e.g., years)

Janet L. Yellen, on the Economy's Twists and Turns

Nice Article

Fundamental Tradeoff

- Is the visualization time-dependent, ie, changing over time (beyond just being interactive)?

Static
Shows history, multiple perspectives, allows comparison
Dynamic (animation)
Gives feel for process \& changes over time, has more space to work with

InfoVis to the Rescue

- What about some more unique data sets?
- Can we come up with good individual solutions?

Case Study 1

- Understand patterns of presence/resource usage/events over time
- Show this large amount of data in an easily understandable and query-able manner
- Scenarios:
- Workers punch in and punch out of a factory

Want to understand the presence patterns over a calendar year

- Power plant electricity usage over a year

Ideas

- Any ideas on what we could do here?

One Idea

Approach Taken

- Cluster analysis
- Find two most similar days, make into one new composite
- Keep repeating until some preset number left or some condition met
- How can this be visualized?

Ideas?

Display

Characteristics

- Unique types of days (individual or cluster) get their own color
- Contextually placed in calendar and line graph for it is shown
- Stop clustering when a threshold met or at a predetermined number of clusters
- Interactions

Click on day, see its graph
Select a day, see similar ones

- Add/remove clusters

Insights

- Traditional office hours followed
- Most employees present in late morning
- Fewer people are present on summer Fridays
- Just a few people work holidays
- When the holidays occurred

- School vacations occurred
May 3-11, Oct 11-19, Dec 21-31
- Many people take off day after holiday
- Many people leave at 4pm on December 5

Special day in Netherlands, St. Nicholas' Eve

Case Study 2

- Computer system logs
- Potentially huge amount of data
- Tedious to examine the text
- Looking for unusual circumstances, patterns, etc.

Case Study 3

- Domain: Computer systems management
- Very large scale temporal log data

Many processes, machines

- Show more context of what else was going on at that time
- Likely have to abstract some then
- Allow several different levels of detail at once
- Allow drill-down for details

Fall 2017

Interaction is vital Semantic zooming

McLachlan et al CHI '08

59

Case Study 4

- How about events in time and place?

Many applications of this problem

GeoTime

- Represent place by 2D plane (or maybe 3D topography)
- Use $3^{\text {rd }}$ dimension to encode time
- Object types:
- Entities (people or things)
- Locations (geospatial or conceptual)
- Events (occurrences or discovered facts)

Kapler \& Wright InfoVis '04

Example

Example

Fall 2017
CS 4460

Nice overview

Visual Methods for Analyzing Time-Oriented Data

Wolfgang Aigner, Silvia Miksch, Wolfgang Müller, Heidrun Schumann, and Christian Tominski
Abstract-Providing appropriate methods to faciltate the analysis of time-oriented data is a key issue in many application domains. In this paper, we focus on the unique role of the parameter time in the context of visually driven data analysis. We will discuss three majo aspects-visualization, analysis, and the user. It will be illustrated that it is necessary to consider the characteristics of time when generating visual representations. For that purpose, we take a look at different types of time and present visual examples. Integrating visual and analytical methods has become an increasingly important issue. Therefore, we present our experiences in temporal data supporting user-centered visual analysis. We describe event-based visualization as a promising means to adapt the visualization pipeline to needs and tasks of users.

Index Terms-Time-oriented data, visualization, analysis, user.

1 Introduction and Motivation

ONSIDERING the characteristics of data is vital when designing visual representations. A salient characteristic is whether or not data are related to time. That time is an is whether or not data are related to time. That time is an
outstanding dimensionis reflected by Shneiderman'sTaskby outstanding dimension is reflected by Shneiderman's Taskby as one of seven basic data types. Nowadays, time-oriented data are ubiquitous in many application domains as, for example, in business, medicine, history, planning, or project management. For a long time, visual methods have been successfully applied to analyze such data. A wide repertoire of interactive techniques for visualizing data sets with temporal dependencies is available. However, many curren Fall 2017

- visualization,
- analysis, and
- user.

In Section 2, we focus on visualization methods for timeoriented data. We will show that the term time-oriented data comprises several types of data with different meanings and applications. Designing or applying visual representa types. This will be successful if one is aware of these differen visualization techniques that stem from our ewm work of are available in the literatureUsually, time rierture Usually, time-oriented data are large-not only in term CS 4460

64

Visualization of
Time-Oriented Data

Bigger

overview

Springer

Useful Widgets

Timeline

Simile project

Conclusions

- Think about the data

What characteristics?

- Can InfoVis help?
- Maybe not needed
- Think about the visualization techniques
- Which technique(s) work best for your problem?

Learning Objectives

- Identify different types of temporal data
discrete, interval, linear, cyclic, continuous, ordinal, branching
- List potential tasks for temporal data analysis
- Familiarity with basic temporal representations

Line graph, stacked graph, stream graph, bubble tracks, connected scatterplot

- Familiarity with specific temporal representation techniques and systems

Lifelines 1-2 \& EventFlow, ThemeRiver, Cluster/calendar view, MieLog, LiveRAC,

- Discuss the benefits \& limitations of all the techniques
- Be able to apply learned knowledge and examples to the design of visualizations for new data and problems

Upcoming

- Visual Analytics
- Prep: VisMaster video
- Lab: Maps and geo-data
- Review

References

- Spence and CMS books
- All referred to articles

