Network data streaming: a computer scientist’s journey in signal processing

Jun (Jim) Xu
Networking and Telecommunications Group
College of Computing
Georgia Institute of Technology

joint work with Abhishek Kumar, Min-Ho Sung, Qi Zhao, Zhen Liu (IBM), Mitsu Oghihara (Rochester), Haixun Wang (IBM), Jia Wang (AT&T), and Ellen Zegura
Outline

- Motivation and introduction
- Our representative data streaming works
 - Single-stream single-goal (like SISD)
 - Multiple-stream single-goal (like SIMD)
 - Multiple-stream multiple-goal (like MIMD)
- A fundamental hardware primitive for network data streaming
- A sampler of MSSG
Motivation for new network monitoring algorithms

Problem: we often need to monitor network links for quantities such as

- Elephant flows (traffic engineering, billing)
- Number of distinct flows, average flow size (queue management)
- Flow size distribution (anomaly detection)
- Per-flow traffic volume (anomaly detection)
- Entropy of the traffic (anomaly detection)
- Other “unlikely” applications: traffic matrix estimation, P2P routing, IP traceback
The challenge of high-speed network monitoring

- Network monitoring at high speed is challenging
 - packets arrive every 25ns on a 40 Gbps (OC-768) link
 - has to use SRAM for per-packet processing
 - per-flow state too large to fit into SRAM

- Traditional solution using sampling:
 - Sample a small percentage of packets
 - Process these packets using per-flow state stored in slow memory (DRAM)
 - Using some type of scaling to recover the original statistics, hence high inaccuracy with low sampling rate
 - Fighting a losing cause: higher link speed requires lower sampling rate
Network data streaming – a smarter solution

- **Computational model:** process a long stream of data (packets) in one pass using a small (yet fast) memory

- **Problem to solve:** need to answer some queries about the stream at the end or continuously

- **Trick:** try to remember the most important information about the stream *pertinent to the queries* – learn to forget unimportant things

- **Comparison with sampling:** streaming peruses every piece of data for most important information while sampling digests a small percentage of data and absorbs all information therein.
The “hello world” data streaming problem

• Given a long stream of data (say packets), count the number of distinct elements (F_0) in it
• Say in a, b, c, a, c, b, d, a – this number is 4
• Think about trillions of packets belonging to billions of flows ...

• A simple algorithm: choose a hash function h with range (0,1)
• $\hat{X} := \min(h(d_1), h(d_2), ...)$
• We can prove $E[\hat{X}] = 1/(F_0 + 1)$ and then estimate F_0 using method of moments
• Then averaging hundreds of estimations of F_0 up to get an accurate result
Data Streaming Algorithm for Estimating Flow Size Distribution [Sigmetrics04]

- **Problem:** To estimate the probability distribution of flow sizes. In other words, for each positive integer \(i \), estimate \(n_i \), the number of flows of size \(i \).

- **Applications:** Traffic characterization and engineering, network billing/accounting, anomaly detection, etc.

- **Importance:** The mother of many other flow statistics such as average flow size (first moment) and flow entropy.

- **Definition of a flow:** All packets with the same flow-label. The flow-label can be defined as any combination of fields from the IP header, e.g., \(<\text{Source IP}, \text{source Port}, \text{Dest. IP}, \text{Dest. Port}, \text{Protocol}>\).
Our approach: network data streaming

- **Design philosophy:** “Lossy data structure + Bayesian statistics = Accurate streaming”

 - Information loss is unavoidable: (1) memory very small compared to the data stream (2) too little time to put data into the “right place”

 - Control the loss so that Bayesian statistical techniques such as Maximum Likelihood Estimation can still recover a decent amount of information.
Architecture of our Solution — Lossy data structure

- Maintain an array of counters in fast memory (SRAM).
- For each packet, a counter is chosen via hashing, and incremented.
- No attempt to detect or resolve collisions.
- Each 64-bit counter only uses 4-bit of SRAM (due to [Zhao, Xu, and Liu 2006])
- Data collection is lossy (erroneous), but very fast.
Counting Sketch: Array of counters

Array of Counters

Processor
Counting Sketch: Array of counters

Array of Counters

Processor

Packet arrival
Counting Sketch: Array of counters

Array of Counters

Choose location by hashing flow label

Processor
Counting Sketch: Array of counters

Array of Counters

Processor

Increment counter

1
Counting Sketch: Array of counters

Array of Counters

Processor

1

1
Counting Sketch: Array of counters

Array of Counters

Processor
Counting Sketch: Array of counters

Array of Counters

Processor
Counting Sketch: Array of counters

Array of Counters

Processor

1

2
Counting Sketch: Array of counters

Array of Counters

Processor
Counting Sketch: Array of counters

Array of Counters

Collision !!

Processor

Values:
- 3
- 1
The shape of the “Counter Value Distribution”

The distribution of flow sizes and raw counter values (both x and y axes are in log-scale). $m =$ number of counters.
Estimating n and n_1

- Let total number of counters be m.
- Let the number of value-0 counters be m_0.
- Then $\hat{n} = m \ast \ln(m/m_0)$.
- Let the number of value-1 counters be y_1.
- Then $\hat{n}_1 = y_1 e^{\hat{n}/m}$.
- Generalizing this process to estimate n_2, n_3, and the whole flow size distribution will not work.
- Solution: joint estimation using Expectation Maximization.
Estimating the entire distribution, ϕ, using EM

- Begin with a guess of the flow distribution, ϕ^{ini}.
- Based on this ϕ^{ini}, compute the various possible ways of “splitting” a particular counter value and the respective probabilities of such events.
- This allows us to compute a refined estimate of the flow distribution ϕ^{new}.
- Repeating this multiple times allows the estimate to converge to a local maximum.
- This is an instance of Expectation maximization.
Estimating the entire flow distribution — an example

- For example, a counter value of 3 could be caused by three events:
 - $3 = 3$ (no hash collision);
 - $3 = 1 + 2$ (a flow of size 1 colliding with a flow of size 2);
 - $3 = 1 + 1 + 1$ (three flows of size 1 hashed to the same location)

- Suppose the respective probabilities of these three events are 0.5, 0.3, and 0.2 respectively, and there are 1000 counters with value 3.
- Then we estimate that 500, 300, and 200 counters split in the three above ways, respectively.
- So we credit $300 \times 1 + 200 \times 3 = 900$ to n_1, the count of size 1 flows, and credit 300 and 500 to n_2 and n_3, respectively.
How to compute these probabilities

• Fix an arbitrary index ind. Let β be the event that f_1 flows of size s_1, f_2 flows of size s_2, ..., f_q flows of size s_q collide into slot ind, where $1 \leq s_1 < s_2 < ... < s_q \leq z$, let λ_i be n_i/m and λ be their total.

• Then, the a priori (i.e., before observing the value v at ind) probability that event β happens is

$$p(\beta|\phi, n) = e^{-\lambda} \prod_{i=1}^{q} \frac{\lambda_{s_i}^{f_i}}{f_i!}.$$

• Let Ω_v be the set of all collision patterns that add up to v. Then by Bayes’ rule, $p(\beta|\phi, n, v) = \frac{p(\beta|\phi, n)}{\sum_{\alpha \in \Omega_v} p(\alpha|\phi, n)}$, where $p(\beta|\phi, n)$ and $p(\alpha|\phi, n)$ can be computed as above.
Evaluation — Before and after running the Estimation algorithm

![Graph showing actual flow distribution, raw counter values, and estimation using our algorithm. The x-axis represents flow size and the y-axis represents frequency. The graph indicates a logarithmic scale for both axes. The lines represent different data sets: solid for actual flow distribution, dashed for raw counter values, and dotted for estimation using our algorithm.](image-url)
Sampling vs. array of counters – Web traffic.
Sampling vs. array of counters – DNS traffic.
Extending the work to estimating subpopulation FSD [Sigmetrics 2005]

• Motivation: there is often a need to estimate the FSD of a sub-population (e.g., “what is FSD of all the DNS traffic”).
• Definitions of subpopulation not known in advance and there can be a large number of potential subpopulations.
• Our scheme can estimate the FSD of any subpopulation defined after data collection.
• Main idea: perform both data streaming and sampling, and then correlate these two outputs (using EM).
Streaming-guided sampling [Infocom 2006]
Estimating the Flow-size Distribution: Results

Figure 1: Estimates of FSD of https flows using various data sources.

(a) Complete distribution.
(b) Zoom in to show impact on small flows.
Problem statement: To maintain a large array (say millions) of counters that need to be incremented (by 1) in an arbitrary fashion (i.e., $A[i_1]++$, $A[i_2]++$, ...)

Increments may happen at very high speed (say one increment every 10ns) – has to use high-speed memory (SRAM)

Values of some counters can be very large

Fitting everything in an array of “long” (say 64-bit) SRAM counters can be expensive

Possibly lack of locality in the index sequence (i.e., i_1, i_2, ...) – forget about caching
Motivations

- A key operation in many network data streaming algorithms is to “hash and increment”
- Routers may need to keep track of many different counts (say for different source/destination IP prefix pairs)
- To implement millions of token/leaky buckets on a router
- Extensible to other non-CS applications such as sewage management
- Our work is able to make 16 SRAM bits out of 1 (Alchemy of the 21st century)

Figure 2: Hybrid SRAM/DRAM counter architecture
CMA used in [SIPM:2001]

- Implemented as a priority queue (fullest counter first)
- Need $28 = 8 + 20$ bits per counter (when S/D is 12) – the theoretical minimum is 4
- Need pipelined hardware implementation of a heap.
CMA used in [RV:2003]

- S. Ramabhadran and G. Varghese, “Efficient implementation of a statistics counter architecture”, *ACM SIGMETRICS 2003*
- SRAM counters are tagged when they are at least half full (implemented as a bitmap)
- Scan the bitmap clockwise (for the next “1”) to flush (half-full) SRAM counters, and pipelined hierarchical data structure to “jump to the next 1” in O(1) time
- Maintain a small priority queue to preemptively flush the SRAM counters that rapidly become completely full
- 8 SRAM bits per counter for storage and 2 bits per counter for the bitmap control logic, when S/D is 12.
Our scheme only needs 4 SRAM bits when S/D is 12.

Flush only when an SRAM counter is “completely full” (e.g., when the SRAM counter value changes from 15 to 16 assuming 4-bit SRAM counters).

Use a small (say hundreds of entries) SRAM FIFO buffer to hold the indices of counters to be flushed to DRAM.

Key innovation: a simple randomized algorithm to ensure that counters do not overflow in a burst large enough to overflow the FIFO buffer, with overwhelming probability.

Our scheme is provably space-optimal.
The randomized algorithm

- Set the initial values of the SRAM counters to independent random variables uniformly distributed in \(0, 1, 2, ..., 15\) (i.e., \(A[i] := \text{uniform}(0, 1, 2, ..., 15)\)).
- Set the initial value of the corresponding DRAM counter to the negative of the initial SRAM counter value (i.e., \(B[i] := -A[i]\)).
- Adversaries know our randomization scheme, but not the initial values of the SRAM counters
- We prove rigorously that a small FIFO queue can ensure that the queue overflows with very small probability
A numeric example

- One million 4-bit SRAM counters (512 KB) and 64-bit DRAM counters with SRAM/DRAM speed difference of 12
- 300 slots (≈ 1 KB) in the FIFO queue for storing indices to be flushed
- After 10^{12} counter increments in an arbitrary fashion (like 8 hours for monitoring 40M packets per second links)
- The probability of overflowing from the FIFO queue: less than 10^{-14} in the worst case (MTBF is about 100 billion years) – proven using minimax analysis and large deviation theory (including a new tail bound theorem)
Finding Global Icebergs over Distributed Data Sets (PODS 2006)

• An **iceberg**: the item whose frequency count is greater than a certain threshold.

• A number of algorithms are proposed to find icebergs at a single node (i.e., local icebergs).

• In many real-life applications, data sets are physically distributed over a large number of nodes. It is often useful to find the icebergs over aggregate data across all the nodes (i.e., **global icebergs**).

• Global iceberg ≠ Local iceberg

• We study the problem of finding global icebergs over distributed nodes and propose two novel solutions.
Motivations: Some Example Applications

• Detection of distributed DoS attacks in a large-scale network
 – The IP address of the victim appears over many ingress points. It may not be a local iceberg at any ingress points since the attacking packets may come from a large number of hosts and Internet paths.

• Finding globally frequently accessed objects/URLs in CDNs (e.g., Akamai) to keep tabs on current “hot spots”

• Detection of system events which happen frequently across the network during a time interval
 – These events are often the indication of some anomalies. For example, finding DLLs which have been modified on a large number of hosts may help detect the spread of some unknown worms or spywares.
Problem statement

- A system or network that consists of N distributed nodes
- The data set S_i at node i contains a set of $\langle x, c_{x,i} \rangle$ pairs.
 - Assume each node has enough capacity to process incoming data stream. Hence each node generates a list of the arriving items and their exact frequency counts.
- The flat communication infrastructure, in which each node only needs to communicate with a central server.
- Objective: Find $\{x | \sum_{i=1}^{N} c_{x,i} \geq T\}$, where $c_{x,i}$ is the frequency count of the item x in the set S_i, with the minimal communication cost.
Our solutions and their impact

• Existing solutions can be viewed as “hard-decision codes” by finding and merging local icebergs

• We are the first to take the “soft-decision coding” approach to this problem: encoding the “potential” of an object to become a global iceberg, which can be decoded with overwhelming probability if indeed a global iceberg

• Equivalent to the minimax problem of “corrupted politician”

• We offered two solution approaches (sampling-based and bloom-filter-based) and discovered the beautiful mathematical structure underneath (discovered a new tail bound theory on the way)

• Sprint, Thompson, and IBM are all very interested in it
A New Tail Bound Theorem

- Given any $\theta > 0$ and $\epsilon > 0$, the following holds: Let $W_j, 1 \leq j \leq m$, m arbitrary, be independent random variables with $\text{EXP}[W_j] = 0$, $|W_j| \leq \theta$ and $\text{VAR}[W_j] = \sigma^2_j$. Let $W = \sum_{j=1}^{m} W_j$ and $\sigma^2 = \sum_{i=1}^{m} \sigma^2_j$ so that $\text{VAR}[W] = \sigma^2$. Let $\delta = \ln(1 + \epsilon)/\theta$. Then for $0 < a \leq \delta \sigma$,

$$\Pr[W > a\sigma] < e^{-\frac{a^2}{2}(1-\frac{\epsilon}{3})}$$

- This theorem is used in both the counter array work and the global iceberg work.
Conclusions

• Data streaming can take the forms of SSSG, MSSG, and MSMG.
• We presented a SSSG data streaming algorithm trio and a hardware primitive to support all of them (and some other algorithms).
• A quick sampler of a MSSG algorithm: distributed iceberg query