
Security Automation Considered Harmful?
W. Keith Edwards Erika Shehan Poole Jennifer Stoll

School of Interactive Computing and GVU Center
Georgia Institute of Technology

85 Fifth Street NW, Atlanta, GA 30332-0280

{keith, erika}@cc.gatech.edu, jstoll@gatech.edu

ABSTRACT
End-users are often perceived as the weakest link in information
security. Because of this perception, a growing body of research
and commercial activity is focused on automated approaches to
security. With these approaches, security decisions are removed
from the hands of the users, and are placed instead in systems
themselves, or in remote services or organizations that establish
policies that are automatically enforced. We contend that
although security automation is potentially beneficial in theory, in
practice it is not a panacea for end-user information security. A
number of technical and social factors mitigate against the
acceptance and efficacy of automated end-user security solutions
in many cases. In this paper, we present a discussion of the
inherent limitations of automating security for end-users. We then
discuss a set of design guidelines for choosing whether to
automate end-user security systems. We conclude with a set of
research directions focused on increasing the acceptance and
efficacy of security solutions for end-users.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—access
controls, information flow controls; H.5.2 [Information
Interfaces and Presentation]: User Interfaces— interaction
styles, user-centered design.

General Terms
Design, Security, Human Factors.

Keywords
Usable security, security policy, automation, design guidelines.

1. INTRODUCTION
In 2001 and 2004, Hannu Kari of the Helsinki University of
Technology provocatively predicted that the Internet would
collapse by 2006 due to being completely overrun by malicious
users [19]. In other words, users’ dissatisfaction with the state of
security on the Internet would be so high such that they would

abandon it [6]. Though Kari’s prediction proved incorrect, it rings
true in that many users have indeed been unhappy with their
online experience. The Pew Foundation reports that 77% of email
users labeled the act of being online as “unpleasant and annoying”
[37].
Paradoxically, despite such intense user dissatisfaction with a
range of security-related issues in the online experience, users
themselves are often perceived as being the “weak link” in the
information security chain, as many neglect to adopt or correctly
use even the most basic security measures [41]. A growing
number of researchers (see, for example, [16, 38, 39, 44, 47, 52])
have noted that this apparent neglect is a natural outcome of the
orientation users have toward security vis-à-vis the other tasks that
they must accomplish. For most users, security is not a task in
itself. That is, managing their security is not a goal for users, and
is often only incidental to their task at hand; consequently, their
motivation to actively manage their security may be low at best.
From this perspective, the absence of users’ motivation to take
charge of their own online security would seem to suggest that the
logical course of action is to completely remove such security
decisions from the hands of users—in other words, to automate
security for them by moving policy decisions to systems or expert
administrators. Such automation promises not only to protect
individuals’ security, but also to serve the greater good by more
easily preventing threats that can lead to botnet infections or
distributed denial-of-service attacks.
The appeal of this thinking can be seen across both the
commercial and research landscapes. For example, according to a
guide for IT executives produced by NetworkWorld, “Security
automation has clearly become an IT mandate, with anti-virus
protection, intrusion detection and prevention, and patch
management as the primary concerns” [30]. In fact some go so far
as to recommend automation to the extent that all end-user
devices be made non-programmable [6]. Trends such as the move
toward automated identity management [23] and service-oriented
security architectures (in which a paid network service provider is
responsible for the security of end-user nodes) also highlight the
appeal of automation. Similar support for security automation is
seen in the human-computer interaction (HCI) community. Jakob
Nielsen, a well known figure in the HCI community, has stated
that attacks “cannot be thwarted by placing the burden on users to
defend themselves at all times. Beleaguered users need protection,
and the technology must change to provide this” [32].
These trends illustrate the perceived promise of automating
security for end-users. In this view, security experts and systems
designers have already made the security choices for end-users.
Thus, by making end-user security invisible, users can pursue
their primary tasks without the annoying disruption of dealing
with purportedly “secondary” security tasks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
NSPW’07, September 18–21, 2007, North Conway, NH, USA.
Copyright 2007 ACM 978-1-60558-080-7/07/09…$5.00.

We agree that relieving end-users of the burden of security
management through automation may be desirable. However, we
also believe the automation approach is predicated on a set of
(sometimes incorrect) assumptions about technical, social, and
environmental contexts in which security decision making takes
place. We therefore contend that there are inherent limitations to
how well automation can succeed in practice even if the
technology behind it is faultless. These limitations can lead to
“failures” of automation that are not only technical (i.e., when the
automation system simply stops working, for example), but are
also failures of meeting the actual needs of the users. We further
contend that such failures to meet users’ needs are not simply
annoying nuisances, but rather are at the heart of many of the
problems described under the rubric of “usable security” [53]. We
therefore ask, “To what extent is it appropriate to automate
security for end-users? And in what cases does automation
actually create more problems than it promises to solve?”
Our intent is not to cast stones at current or past research on
automated approaches to system security, and acknowledge that
automation does have a role to play. Rather, we seek to illuminate
the design space of security solutions by exploring when
automation may (or may not) be appropriate for end-users. While
there is undoubtedly a role for automation in ensuring that
security is both more usable and more effective for end users, we
believe that the appropriate place of automation may necessarily
be more limited than is commonly anticipated.
In this paper, we explore what researchers can do to shift the
balance either toward or away from automation in order to yield
systems that successfully negotiate the tensions between usability
for end-users and security. Our approach in exploring the
limitations of security automation is grounded in perspectives
from the social sciences, human-computer interaction, and
economic, historical and policy traditions. Automation has been
studied extensively in domains other than information security,
and we believe that this knowledge has applications to the design
of security systems.
In the following sections, we define more precisely what we mean
by “security automation,” explore the different forms that
automation may take, and identify innate limitations to automated
security approaches for end-users. We then explore the situations
for which security automation may be a workable approach as
well as situations for which it seems inappropriate. The factors for
determining appropriateness are based on: 1) contextual and social
dependencies of use, 2) the interaction costs of automation and its
failures, 3) end-users’ ability to understand the underlying
security systems infrastructure, and 4) the inappropriateness of
rigid policy definitions for inter-personal communication and
sharing. These factors are based on arguments derived from the
literature of human-computer interaction, sociology, usable
security and the history of science and technology. We then use
these arguments to explore guidelines for determining how
security decision making and policy setting can be automated
appropriately for end-users. We posit that specific design choices
regarding the appropriate automation of security technology can
lead to greater acceptance by users, and suggest several
corresponding research directions related to improving end-user
security.

2. DEFINING SECURITY AUTOMATION
We define “security automation” as any system or technology that
effectively removes the security decision process from the user.

In this paper, we are agnostic to the specific domain of security in
which automation may be implemented. We include in our
discussion a number of systems, including end-user firewalls,
spyware detection and removal tools, intrusion prevention
systems, spam filters, and access control mechanisms.
Across these domains, there are a range of strategies for how
security automation for the end-user can be implemented. Figure 1
illustrates these along a spectrum of rigidity, with more rigid
automation strategies on the left and the more flexible strategies
on the right.

Figure 1. The spectrum of automation approaches

2.1 Fixed policy
At the far left is the case where security decision policies are
explicitly embedded directly in the code of a particular tool or
application. Examples of such systems include security kernel
implementations, Kerberos servers, and virtual private networks
(which, for example, allow or deny connections based on a key
verification). Often, these “decisions” are so straightforward that
they may be rarely though of as policies at all: because they are
expressed in the code of the system, there is little ability or need
to change them. The rationale for this approach is that such
systems embed mechanisms to protect against known malicious
behavior or to enable known benign system behavior, in cases
where the decision to be made is relatively unambiguous.

2.2 Customizable policy
Next are systems that allow customization of security policies,
many of which rely on system-wide defaults configured by a
system administrator. Examples include network firewalls,
intrusion detection and prevention systems, and patch
management systems. In some systems these policies can be
dictated enterprise-wide by a centralized corporate network and
system management organization; individual hosts then
automatically enforce these policies. Examples of such systems
include Consul’s Insight Security Manager [11], BMC’s Marimba
[29] and IBM Proventia Management SiteProtector [26]. One
distinguishing characteristic of this class of systems is that some
entity other than the end-user—a more expert user, an
administrator with responsibility for defining and enforcing
policy, or even a paid “outsourced” security service such as
VeriSign—has responsibility over the end-user’s security policy.
Once defined, these policies are enforced automatically and are
generally not customized (or even seen) by end-users.
Much research has centered on increasing the power of
customizable policy systems. Examples include “policy language”
systems that express security policies in machine-parseable and
enforceable forms (e.g. SPARCLE [9]). Other approaches
leverage community knowledge rather than relying on a particular
individual or administrative organization (e.g. the Acumen system
for cookie management [25]).

Fixed
Policy

Customizable
Policy

Dynamic
Policy

Security Automation Rigidity more less

Yet another class of systems in this category is that in which the
user explicitly sets (and often forgets) the policy. This is perhaps
the most common form of security automation for end-users,
including standard system file permissions (users set permissions
on files and folders, which are then enforced by the system until
the user changes them) and most consumer firewalls (the end-user
chooses to allow access to a given host by a given program, and
the firewalls rules are configured to allow this in the future).
Although these tools allow end-user configuration, after this
configuration step they essentially become fully automated. Thus,
we consider them to be in the “customizable automation” class of
systems, albeit with end-user control over the customization. The
defining property of all of these systems is that there is some
degree of adaptability compared to the hard-coded, “fixed policy”
approach, independent of whether the policies are set by the users
themselves or by another entity.

2.3 Dynamic policy
Finally, the most flexible form of security automation includes
systems that are designed to provide dynamic policy adaptation.
In contrast to the center of the spectrum, in which adaptation
generally occurs infrequently, these systems are designed to be
more-or-less continually adaptive. Moreover, unlike systems in
which a security service or a systems administration organization
sets policies for entire groups of users, these systems often allow
personalized tailoring of the security environment to individual
users. Some examples include Bayesian spam filters [43] and a
range of dynamic access control systems that attempt to adapt to
the context of the given situation (including [8, 17, 28, 49, 50]).
Defining security automation for end-users along this spectrum of
policy rigidity highlights several issues. First, it shows the extent
to which end-users are (or are not) involved in their security, that
is, the extent to which so many security decisions have been made
for them. Note that this spectrum encompasses automation at all
levels of the stack—from low-level hardware to end-user
applications. Second, this spectrum begins to highlight some of
the tensions of security automation, especially around how well
either rigid or adaptable policies accommodate the needs of their
users. In the next section, we explore elements of the automation
approach, and the contexts in which it is used, to uncover limits to
the power of automating security.

3. LIMITS OF AUTOMATION
In this section, we discuss why security automation may be
neither feasible nor desirable from an end-user perspective, even
in situations in which it is technically possible to automate. Note
that factors mitigating against automation do not necessarily
prevent designers from pursuing an automation approach, but may
make it more difficult for them to create an effective automated
system for end-users, or may make it more problematic for such a
system to find acceptance and use among a particular user
community.

3.1 Social and environmental contexts of
security
Along the spectrum of security automation, the more rigid the
security policy is, the more it assumes a “one-size-fits-all”
strategy. The fixed policy approach assumes that the security
decisions embedded in the design are a fit for the widest range of
users; in contrast, the dynamic policy approach assumes a fit for
individual users. In other words, the extent to which a security

policy is predefined depends on where it lies on the spectrum of
policy rigidity.
Predefining security policy or decisions can have significant
limitations. In the extreme case, such predefined security policy
can become a “one-size-fits-none” strategy to end-user security,
because many security decisions are contextually dependent [39].
That is, they are difficult to describe ahead of time, for all cases,
and all possible situations for end-users. Although some security
decisions almost never change (e.g. blocking the execution of
known malicious code), there are a number of cases where
security decision-making is not as clear cut. For example, in
online transactions, making decisions about which vendors to trust
for certain actions cannot be predetermined in many cases [36].
Common firewalls also illuminate problems with flexibility—
while firewall configuration policies can perhaps be more easily
set for applications such as email clients, similar rules do not
easily apply to user browsing activities, in which the system may
not be able to make a priori determination of a user’s intent or
level of trust in a site.
Automation failures resulting from overly rigid, predefined
security policies can become especially apparent in social (person-
to-person) interactions. This is because many security decisions
are necessarily socially (not just contextually) dependent, and
social activity is fluid and nuanced. This mismatch between the
fluidity of social activity and the rigidity and formalization of
technical systems has been referred to as the “social-technical
gap” by Ackerman, and arises in a range of contexts in which
technical systems mediate human communication [1]. For
instance, Gaw et al. note that choosing whether or not to encrypt
an email message may have nothing to do with the technical
capabilities or usability of encryption functions in email software.
Rather, the people in the organization they studied at times
refrained from using email encryption due to perceptions of a
message’s unimportance or a fear of being perceived by co-
workers as being “paranoid” [24].
One can argue that this case illustrates not only the importance of
social factors in users’ decisions with regard to security, but also
serves as an example of how automation “done right” may be
effective here. In the email system used in Gaw’s study, both the
act of encryption and its effects were visible to users; if these were
hidden, it is arguable whether these social factors would have
come into play. Of course, for many security situations it may be
impossible to automate to the point that the user is completely
removed, which may be necessary in order to eliminate such
effects. This is a point we return to in the section “Effects of
Automation on User Experience.”
In some cases, such as access control for human principals,
security decisions are inherently social. Palen and Dourish [35],
point to problems driven by social requirements, particularly
relating to the need for selective variation of policies over time,
and the negotiated, progressively revealed nature of social
disclosure.
All of these social effects make security automation policies hard
to define a priori. Ackerman, for example, points to the example
of the Platform for Privacy Preferences Project (P3P), which
allows users to specify preferences about disclosure of personal
information while browsing the web: users formulate an a priori
policy description which is then applied automatically while they
surf. As Ackerman points out, this is essentially an intractable
problem from a human perspective: the P3P model does not

support basic principles of progressive social disclosure, presents
an essentially infinite decision space to users, and fails to handle
the inevitable exceptions to the pre-formulated policy [1].
Some systems have attempted to better support interpersonal
activities by grouping users into a set of pre-defined roles that
dictate their access rights and abilities, in effect, attempting to
mirror social relationships in the access control system. Some of
these provide formalized role-based access control (RBAC)
mechanisms (such as [18]), which generalize security decisions by
grouping principals into a (possibly extensible) set of roles with
certain defined privileges. However, studies of these systems in
practice seem to indicate that even they do not provide the
necessary flexibility for day-to-day social practice. For example,
in a study of a networked video conferencing and awareness
system, Dourish and Bellotti [14] note that the predefined policies
embedded in roles tend to be relatively static and are not a
workable solution for many real-world uses. Neuwirth, et al., [31]
describing a role-based collaborative writing tool, note how the
cost of setting up and maintaining the constantly shifting role
relationships quickly outweighs any potential benefit to be had
from the access control system. Smetters and Grinter [44] and
others have noted similarly problematic experiences of assigning
and using roles for access control mechanisms that govern the
interaction of human principals.
These examples demonstrate that the more rigid a set of
predefined security policy is, the less it is able to accommodate
contextual and social dependencies: when the technology is not
able to adapt to users’ needs at the moment, it is easy to envision
situations in which users will work around or actively subvert the
technology. So how can the security community cope with the
problems of social and contextual dependence? Researchers,
designers, and developers have attempted to overcome these
problems by pushing automation closer to the dynamic end of the
spectrum as shown in Figure 1, making them more adaptable to
the situation at hand. These automation systems are necessarily
more complex than the static solutions: they attempt to provide
more descriptive power, through more fine-grained rules, and
through inference mechanisms to adapt to situational demands
(see, for example, a number of systems that provide more
dynamic approaches to policy setting, including [8, 17, 28, 49,
50]).
However, these highly dynamic systems can themselves be
problematic, sometimes producing policy settings that are a poor
fit for the social or environmental situation at hand. Systems that
use extensive inferencing have been heavily studied in the domain
of context-aware computing (see, for example, [4, 27]); these
systems can cause usability issues when the inferencing
mechanisms fail, leaving users with little understanding of the
inner workings of the system, and possibly exposed to risks due to
incorrect threat assessment (an issue we shall return to in the
section “Effects of Automation on User Experience”). For the
most part, security systems in this class remain untested from a
user perspective. We do not know whether such fine-grained
policy or role definitions will “solve” the limitations caused by
overly rigid automation, or whether they simply produce more
boundary conditions, as seems to be the case in other domains.

3.2 Whose values are valued?
When security decisions are automated, the values behind these
decisions are those of “empowered” sources rather than the users
who will themselves be affected by, and must ultimately live with,

these policies. By values we mean assumptions about intended or
proper use that have been embedded into the security automation
system—for example, whether the ability to be anonymous is
acceptable, or whether individuals in an online system must be
accountable and identifiable; whether digital rights management
systems are an acceptable form of control, or whether such control
is best left to the policy, economic, or legal spheres; and the
degree to which governments (or other bodies) can and should be
allowed to observe communications. Problems arising from
embedded values can range from subtle distinctions around
perceptions of proper use, up to flagrant abuse of power.
A key property of security automation systems is that an innate
power differential exists between the person who sets or defines
the security automation and the end-user who has to live with this
decision; problems may arise when the values of these two
stakeholder parties do not align. Recent examples from the
service-provider domain dramatically illustrate such mismatches
of stakeholder values, and how easily such mismatches can be
abused. As an example, an action by Canada’s second largest
telecommunications provider prevented its subscribers and
downstream ISPs from accessing the website of the
Telecommunications Workers Union [5]. In this case, as well as
others such as the so-called “Great Firewall of China,” the
policies of the network were used to further and support the
values of the providers rather than those of the end-users. These
examples demonstrate how easily the goals and intentions of end-
users can be trampled by automation shaped by the policy of
another entity; again, the loss of trust prompted by such a values
mismatch may cause users to work around the security system in
order to accomplish their goals.
These embedded values can reach into the deepest levels of
security technologies. For example, cryptographic protocols
designed to allow key recovery implicitly make statements about
the legitimacy of outside parties to be able to read encrypted
communications (modulo possible legal considerations) [12].
Other technologies—such as digital rights management systems,
identity management systems, and others—may similarly embed
certain values that may be at odds with those who must use them.
These effects are not unique to security automation; the
embedding of values into other technologies has been extensively
studied in other domains (see [22, 48] for example), Once
embedded, the values represented by these technologies
sometimes become “invisible” in the sense that they may appear
to be a natural consequence of other, more “value-neutral” design
choices.

3.3 Effects of automation on user experience
There are a range of subtle problems arising from automation
systems that are only “mostly accurate.” Here, by accuracy we
mean the degree to which a security automation system makes the
“correct” choice (in determining that a potential threat is, indeed,
malicious and should be prevented, or in assessing a user’s intent
in wishing to provide access to some resource). Problems arising
from lack of accuracy—the costs of having to deal with
automation when it “fails”—exist all along the rigidity spectrum
of automation.
Some of these problems are due simply to the poor accuracy of
some security tools. For example, work by Axelsson has pointed
to the difficulty of creating effective intrusion detection systems
because of theoretical limits on these systems’ abilities to
suppress false alarms [2]; a human generally must attend to these

alarms to ascertain whether the threat is valid, of course. In other
cases poor accuracy may arise because of the difficulty in keeping
security technologies current with the threats that may arise. For
example, new “stealth” techniques by malware authors create
difficulties for generic tools such as stateless, signature-based
spyware detection and removal systems [20, 51]. Note that we are
not suggesting here that anti-malware tools not be used; rather,
that accuracy problems with such tools impact users’ experience
of them, and may lead to circumvention on the part of users.
However, merely increasing accuracy is not a complete solution to
the problem, since even automation systems that only fail rarely
must still contend with what to do when one of those rare failures
does occur. Generally speaking, there are two options available to
system designers when automation fails. The first option is to ask
the user to disambiguate the decision that must be made; the
second is to simply continue as normal. Both options have user
experience implications, as we describe here.
The first option of deferring to the user to resolve an ambiguous
decision that the system cannot make for itself has obvious user
experience costs. The classic examples of this sort of approach are
current firewalls, which ask users to indicate whether or not
access should be granted to or from a particular remote host. Such
notifications are intrusive and disruptive; further, if they are not
directly tied to an action the user is doing (trying to play a game,
connect to a website, or send an email), these notifications
seemingly pop up at random, with no connection to the users’ task
at hand. This is one of the classic usable security problems, which
leads to users ignoring, misusing, or even subverting the security
warnings.
However, there are other, and more subtle, problems that result
from automation failures in which users must be responsible for
deciding the correct course of action. By shielding users from
having to make most of the underlying security choices, these
systems do not provide good models for correct behavior when
automation fails. The sudden “foregrounding” of the underlying
system and security infrastructure becomes problematic when
users are suddenly asked to cope with and understand this
substrate [33, 34]. Sociologist Susan Leigh Star has noted similar
issues in her work on the interaction implications of infrastructure
[46]. When security automation fails, these decisions will
necessarily fall into the hands of users. Hence the system must
provide mechanisms for dealing with the exception cases where
automation makes incorrect security decisions for end-users [33,
34]. In the spyware case, for example, end-users are not provided
with mechanisms that could help them make informed decisions
when confronted by a choice from their spyware detection system:
what happens if I allow this program to continue? Is this program
actually spyware? Paradoxically, the very success of automation
systems in shielding users from having to make security decisions
means that they are even more ill-equipped to understand and
cope with these decisions in the rare times they are faced with
them.
The second strategy available to security automation designers is
to simply continue as if the automation system had not failed.
Indeed, in many cases, this may be the only option, as a failure of
automation may not be detectable by the automation system itself.
Some systems, such as spam classifiers, for example, may simply
set a cut-off threshold at a certain confidence value; without user
feedback, these systems may have no way to tell that the
automation failed.

These systems raise huge concerns from a user experience
perspective. For example, if the action the system takes is
irreversible, users may come to mistrust (or even fear) the
automation system, even though it may fail in only a rare
percentage of cases. A spam filtering system that irreplaceably
deletes messages will be turned off by many users the first time an
important message is lost. Further, if users cannot easily perceive
the actions of the system, they may lose trust in it. Obviously,
there is a trade-off here: if we require users to monitor the system,
we lose many of the benefits of automation. But we do need to
ensure that the activities of the system are available and
intelligible to users, so that they can determine if it is indeed
performing correctly, and possibly to allow them to recover from
automation failures. In the next section, we explore some of these
user experience tradeoffs resulting from accuracy in more detail,
and describe strategies for negotiating these tensions.

4. GUIDELINES FOR AUTOMATING
APPROPRIATELY
The limits of automation discussed in the previous section and the
understanding that not all end-user security can or should be
automated underscore a caveat from Bainbridge: “…the designer
who tries to eliminate the [user] still leaves the [user] to do the
tasks which the designer cannot think how to automate…[this]
means that the [user] can be left with an arbitrary collection of
tasks, and little thought may have been given to providing support
for them” [3].
To avoid burdening users with such unsupported, arbitrary tasks
that may result from improper automation, we present here a set
of guidelines that researchers and systems developers can use to
decide whether or not to automate aspects of end-user security
decision making and policy setting.
(1) How accurate is the system?
If, for any given situation, an automation technology can be made
100% accurate, and if the system is sufficiently flexible to cope
with the nuances of any contextual and social dependencies that
may be present, then automation may be appropriate.
Additionally, a system may also be a candidate for automation if
its accuracy is less than perfect, but the benefit of the automation
exceeds the risk of failure. For example, in some contexts, spam
filters that occasionally improperly classify which messages are
spam have benefits that exceed the risks of misclassification
(assuming, of course, that the user is equipped to be able to
identify and correct any mistakes the automated system makes;
this places user interface requirements on the system, that its
actions must be intelligible to users, and it must provide the
proper affordances for users to be able to tell what it is doing, and
correct bad behaviors as necessary).
(2) How are stakeholder values embodied in the system? What
roles do social and environmental contexts have in this
particular application?
There may be tension between the values of the various
stakeholders of a system that automates end-user security decision
making. For example, a systems administrator who has to “clean
up the mess” after a security break-in may prefer more rigid
security controls, whereas an end user may find the same controls
chafing. In order to understand the values of stakeholders and
subsequently design appropriate end-user interfaces, system
designers should perform a stakeholder analysis to assess values,
and analyze how these values are or may be embedded into the

system in question. In addition to understanding the concerns of
system stakeholders, system designers should also examine the
potential social and environmental contexts of system use. For all
of these questions, methodologies from human-computer
interaction such as value sensitive design [21] or participatory
design [42] may be particularly helpful, as may design approaches
such as AEGIS [40], which incorporate end-user values and
intentions into the system’s design from its inception.
(3) Does automation reduce end-user information overload or
otherwise simplify the task of security decision making?
Automation may be useful when it would be virtually impossible
for the user to do the work. For example, intrusion prevention
systems inspect packets at a rate which system administrators
would no be able to do. The inspection is necessary but
impossible to perform without the help of automation.
Additionally, automation may be appropriate when an end user is
facing a known malicious entity. For example, the use of
blacklists and signatures can enable a system to automatically
block certain types of attacks an exploits in intrusion prevention
system. Note, however, that there should be workarounds for edge
cases; that is, automated systems for protecting end-user security
should also be flexible enough to allow them to override the
automation if necessary or desired [45].
(4) Are there alternatives to automation that are at least as
appropriate for end-users?
Instead of automating a security task, system designers should
ask, “Is it possible to change the nature of the task so as to avoid
this problem all together?” One way of changing the nature of the
task is to make security “implicit,” as described by Smetters and
Grinter [44]. With implicit security, user security decisions are not
automated per se, yet not left for users to deal with firsthand.
Rather, security decisions made by the system are inferred directly
from actions end users take. If it is not possible to redesign the
task, there are still other alternatives to automation. The nature of
the task could remain the same, but instead the system could
provide end-users with relevant contextual information about the
task at hand and its security implications. The benefit of this
approach is that the user is kept more aware of the system’s state
[33, 34].
(5) If automating, are there mechanisms to “keep the human
in the loop”?
Norman [34] contends that one of the major problems of
automated systems is that improper feedback from the system to
the end-user may lead to errors and difficulties when the
automation is not performing properly. He further contends that
appropriate design assumes that errors will occur, and provides
necessary feedback under this assumption. Keeping the human in
the loop is an essential element of effective control, especially
when the task being automated needs “assistance” from the end-
user, as is the case with many security decisions; the challenge is
doing this without increasing the complexity of the interface to the
point that users turn it off or ignore it [7]. Hence, system designers
should ask the following questions when designing systems that
automate security decision making for end users: Do end-users
understand what the automation is doing? Are there system state
indicators? Are these indicators understandable to end users?
(6) If the automation mechanisms fail, are there user
interfaces for gracefully dealing with these situations?

The user interaction costs of automation failures must be
considered in the overall analysis of the worth of a system, not
simply the benefits to be accrued when it is working perfectly.
This is because when security automation fails, these decisions
will necessarily fall into the hands of users, and hence the system
must provide mechanisms for dealing with the exception cases
where automation makes incorrect security decisions. However,
user interfaces for recovering from automation failures (which
will appear rarely if the automation system is reasonably accurate)
may be disruptive or intrusive since they are likely to be
unexpected; such interfaces may encourage users to simply turn
off the automation system to prevent further disruption. This
behavior is commonly seen in end-user firewall systems, for
example, where many users ignore, or worse, disable these
systems to prevent distracting (and often incomprehensible)
messages from appearing at inappropriate times [39].

5. SUGGESTED RESEARCH DIRECTIONS
The above guidelines are far from complete. Our purpose in
listing them is primarily to point towards a need for further
research. We believe it is at the intersection of security, human-
computer interaction, the social sciences, and public policy where
the understanding for automating security appropriately for end-
users can be more fully developed.
Our perspective on the social and human limits to security
automation suggests a number of research directions for the
security community. Research in these areas may improve the end
user experience of information security by encouraging the use of
automation that better accommodates the contextual and social
constraints of end-users and their values.

5.1 Accounting for system behavior
As noted in our discussion of the implications of automation
accuracy and failure—guidelines (1) and (6) – systems often do
not impart strong models to the user that can be applied when
automation fails. If the underlying security mechanisms and
infrastructure are hidden away most of the time, then users are ill-
equipped to deal effectively with automation exceptions. These
situations when automation cannot determine the correct course of
action are, of course, likely to be the very situations that are rare
or highly complex, and thus require strong knowledge on the part
of users to choose the correct course of action.
We propose that a better design strategy is to not hide away the
security infrastructure in all but the exception cases, but rather to
selectively and artfully expose it to users. Instead of having as our
goal a completely “transparent” or “seamless” experience, in
which the underlying security machinery is always hidden (which,
as we have argued, is unlikely to be achievable in all
circumstances), we propose that exposing these “seams” to the
user can provide better user understanding of the (necessary)
underlying systems concepts that they will need in order to make
better informed decisions.
These design principles have been examined by a number of
researchers in the HCI community. For example, Dourish’s notion
of “system accounts” provides a means by which systems can
“account” for their behavior—in other words, provide a rationale
for their actions and internal state that is intelligible to users [15].
Such accounts may be especially powerful in situations where
policy setting is highly dynamic; for example, when machine
learning approaches are used, and the system has a complex
internal state that governs its selection of actions. Chalmers et al.

have explored a number of ways that underlying infrastructure
“seams” can be exploited in applications that have a user-visible
component. Their approach to “seamful design” shows that, when
properly aligned and appropriated by the interface, such
infrastructure and systems concepts can be exposed as features in
the end-user interface, rather than as “rough edges” to be worked
around or hidden [10].
We are not arguing that users must understand the minute details
of, for example, public key cryptography. Rather, we argue that in
many cases the underlying security infrastructure may suggest
certain metaphors, visible at the user level, which may be
appropriated by users to enhance and further their abilities to work
with the system, even in “exception” cases. In situations where
users must be closely involved in the decision process—in other
words, in situations where the “exception” cases are somewhat
less exceptional—this ability to understand the inner workings of
the system to some degree is even more essential. In such cases, it
may be valuable to try to ensure that the underling systems
abstractions and the user-visible metaphors are as closely aligned
as possible, to minimize the discrepancy between “the interface”
and “the system.”

5.2 End-to-end causality and
contextualization
Another research direction (related to guidelines (3), (4) and (5))
can be found in one of the tensions in usable security research: the
fact that security interfaces are often seen as intrusive and
disruptive [7, 52]. In order to “do security” users must take some
action that is orthogonal to the task at hand and use a set of tools
that are unrelated to those that they need in order to get their work
done.
We propose that a solution to this tension is to provide
mechanisms for what we term “end-to-end causality,” and use
these mechanisms to contextualize security decisions within the
framing of user’s applications. To illustrate what we mean by end-
to-end causality and contextualization, we use the case of a
common firewall. When an outbound connection is attempted,
most firewalls—separate tools that are only used to manage
security policy, not to “get work done”—will display a message
requesting that the user decide whether to allow or deny access.
This is an example of exception handling, in that the user must be
involved in telling the system what the correct behavior is, and
which the system will possibly then internalize as a set of
persistent rules for future outbound connections. This interaction
happens outside of the context of the user’s application, forcing
them to stop what they are doing, deal with the security decision,
and then return to their work. This disruption in workflow and
distraction of attention are problematic from a user experience
perspective. Perhaps worse, the messages provided by these tools
are often incomprehensible to users (“winamp.exe is attempt to
contact 128.54.13.122 on port 1222; allow or deny?”) because
neither the benefits nor the potential risks are framed in terms of
the applications that they use day-to-day.
End-to-end causality means tracing operations that require
security decision making back to their root causes in users’
applications and actions. In those cases in which a given operation
is associated with an action taken by the user, we have the
opportunity to embed that decision into the context of the
application that caused the decision event. Since identifying
actions caused by user agency is not enough, we must
contextualize the decision points raised by these actions within the

applications that caused them. In other words, we must frame the
decision that users face in terms of the concepts embodied in that
application. This means that the risks and the benefits of any
given decision must be explained in application-centric terms,
rather than semantically-neutral terms.
Building on our firewall example, this means that an outbound
connection attempt would not cause a separate dialog to appear
from the firewall itself, but rather would cause a decision interface
to be created within the application that shows, where possible,
the root cause of the outbound connection. This interface would
not just be contained within the application, but would ideally
express the decision in terms of the application itself (perhaps:
“You’re connecting to a music store I haven’t seen before. Since I
don’t know this store, please be sure that it’s legitimate, and does
not contain pirated music. Are you sure you want to continue?”)
Our concept of causality and contextualization builds on the work
of Smetters and Grinter, presented at NSPW 2002 [44] on
“implicit security.” Implicit security approaches leverage end-user
actions to create security policy. This notion likewise depends on
causality (being able to correctly identify that a user has taken an
action) and is inherently contextualized in that application. While
this tracing certainly cannot be done in all cases (underlying
systems processes, for example, may connect to the network
periodically without any user action being the root cause), we
believe that it can provide a powerful approach to addressing the
tension between usability and security.
Our framing of causality and contextualization is different from
classic systems and network security. In these classic approaches,
a trusted infrastructure agent is often charged with protecting the
user’s system from intrusion and compromise. We propose that
more of the decision process—even for decisions that have
classically been systems-security level decisions—must move into
the application itself, where system designers can take advantage
of application semantics, and allow their users to make more
informed decisions about what the correct or incorrect choice of
action may be, and what the risks and benefits of that action may
be.

5.3 Toward socially relevant forms of security
A final research direction is suggested by the issues of policy
flexibility in reflecting end-user values as discussed in guideline
(2). As we have argued, many automation approaches suffer from
a “one-size-fits-all” strategy, in which a generalized policy is
called upon in a huge range of specific cases for which it may be
ill-suited.
Many of these problems, we believe, arise purely out of the need
to craft a priori policies that can be easily created (since they are
often generated by humans using, for example, policy
specification languages) and can be reused (security policies
across a corporation or other organization, for instance). In such
situations, the fluidity of human work can collide with the
comparatively brittle and fixed security policies.
One solution may be to allow highly dynamic and personalized
policies for automation; this is, essentially, the space on the far
right of Figure 1. While this approach holds promise to overcome
the “one-size-fits-all” nature of many automation approaches, it
carries with it its own innate drawbacks. For example, such
dynamic policies may be generated using statistical machine
learning or other approaches that are highly complex, and often
unpredictable from the user’s perspective. These systems, in

trying to anticipate users’ needs, are also likely to have more
exception conditions than other automation approaches, and so
still have issues with accuracy as described earlier.
Another approach may be to incorporate notions of identity of
human principals into security infrastructure. While identity
management systems have long promised the ability to flexibly
identify resources (including people) in online systems, the reality
is still short of that promise. As an example, in many online
systems today, we authenticate the identity of a device rather than
a user. Systems such as Bluetooth pairing, for example, rely
heavily on unique device IDs (such as MAC addresses, or on-
device certificates); they do not directly identify the human user
of that device, even though these devices are often treated as
proxies for their users. We propose that, with the increase in
human-to-human communication and applications on the network,
we need to conceive of security—and identity management—
more in terms of its person-centricity rather than simply device-
centricity. Although this communication will, of course, always
be mediated by machines (and is thus always, at some level,
machine-to-machine communication), we believe that device
identification should play a secondary role to human identity
management. One goal of this approach should be to minimize
exception handling (which users will likely have to cope with) by
framing policy decisions in terms of the people with whom a user
interacts, rather than simply the devices those people might be
using.
Framing security decisions in social terms allows social
navigation and social networking structures to be applied to the
challenge of usable security, an avenue that is already being
explored by a number of researchers [13, 25]. Of course, any
system that uses social identity as a key concept must be flexible
in how it defines principals, allowing users to take on a range of
identities to suit various social demands (as suggested by [16]).
While such an approach is not a panacea, and will certainly not
deal with all of the problems of inflexible automation systems, it
does move closer to a world in which the socially-dependent
aspects of security can be more readily expressed—by bringing
social actors into the security infrastructure as first-class
abstractions, rather than simply the devices that they may use.

6. CONCLUSIONS
In this paper, we have argued that although automation is often
touted as a means to achieving better security by taking the user
out of the security decision process, there are inherent limits to
automation, based on human and social factors. Many of these
factors are independent of the specific security technology being
used. The significance of this is that more or better automation
will not necessarily “fix” the problems, because of inherent
limitations that arise from issues of flexibility and accuracy, as
well as with fundamental mismatches to the social contexts in
which automation may be deployed.
While automation may be useful in some contexts, an
understanding of the non-technical constraints around its use is
essential for effectively applying it. Understanding the inherent
limits to automation suggests research directions that can improve
the efficacy of automation when used appropriately.
Towards this end, we suggest a definition of security automation
for end-users along a spectrum of rigidity. This spectrum provides
a basis for discussing three sources of limits in automation:
situational and social dependencies, accommodation of end-user

values, and user interface costs deriving from automation failures.
We then use these limitations as a basis for discussing six
guidelines to help ensure the appropriate use of security
automation for end-users. These six guidelines serve to highlight
three broad areas for further research: providing accountability to
end-users for system behavior, further incorporation of the
implicit security approach by providing end-to-end causality and
contextualization, and a more socially relevant form of security
for end-users.

7. ACKNOWLEDGEMENTS
We thank our reviewers, as well as our colleagues at Georgia
Tech including Jonathon Giffin, for their insightful feedback,
which has helped us to strengthen this paper. This work was
supported by the National Science Foundation (CNS #062681),
Symantec Corporation, and the US Department of Homeland
Security.

8. REFERENCES
[1] Ackerman, M. 2000. The Intellectual Challenge of CSCW:

The Gap Between Social Requirements and Technical
Feasibility. Human-Computer Interaction Journal, vol. 15,
pp. 179-203.

[2] Axelsson, S. 1999. The Base-Rate Fallacy and its
Implications for the Difficulty of Intrusion Detection. In
Proceedings of the 6th ACM Conference on Computer and
Communications Security, November 1-4, 1999. Singapore,
pp. 1-7.

[3] Bainbridge, L. 1987 Ironies of automation. In New
Technology and Human Error (ed. J. Rasmussen, K. Duncan,
& J. Leplat). New York: Wiley.

[4] Bellotti, V., and Edwards, W.K., “Intelligibility and
Accountability: Human Considerations in Context Aware
Systems,” Journal of Human-Computer Interaction, 16:2-4,
2001. Thomas Moran, ed., Lawrence Erlbaum Associates,
NJ. pp. 193-212.

[5] Benkler, Y. Wealth of Nations. Yale University Press, 2006,
pp. 133-175.

[6] Berinato, S. How to Save the Internet, March 15, 2005, CIO
Magazine.

[7] Bishop, M., “Psychological Acceptability Revisited”. In L.
Cranor & S. Garfinkel (Eds.), Security and Usability:
Designing Secure Systems That People Can Use, O’Reilly &
Associates, 2005.

[8] Blaze, M., Feigenbaum, J., and Lacy, J. “Decentralized Trust
Management.” In Proceedings of the IEEE Symposium on
Security and Privacy. Oakland, CA. May, 1996. pp. 164-173.

[9] Brodie, C. A., Karat, C., and Karat, J. An empirical study of
natural language parsing of privacy policy rules using the
SPARCLE policy workbench. In Proceedings of the Second
Symposium on Usable Privacy and Security, PA, 2006.

[10] Chalmers, M. Dieberger, A., Höök, K., Rudström, A. “Social
Navigation and Seamful Design.” Cognitive Studies: Bulletin
of the Japanese Cognitive Science Society 11(3), pp 171-181,
2004.

[11] Consul: http://www.consul.com/Content.asp?id=58

[12] Denning, D.E., and Branstad, D.K. “A Taxonomy for Key
Escrow Encryption Systems,” Communications of the ACM,
39:3, March 1996.

[13] DiGioia, P., Dourish P. Social Navigation as a Model for
Usable Security. Proceedings of the Symposium On Usable
Privacy and Security (SOUPS), Pittsburgh, PA, 2005.

[14] Dourish, P. and Bellotti, V. 1992. Awareness and
Coordination in Shared Workspaces. Proceedings of the
Conference on Computer-Supported Cooperative Work
(CSCW'92). Toronto, Ontario. pp.107-114. New York: ACM.

[15] Dourish, P. and Button, G. On "Technomethodology":
Foundational Relationships between Ethno-methodology and
System Design. Human-Computer Interaction, 13(4), 1998,
pp. 395-432

[16] Dourish, P. Grinter, R.E., Delgado de la Flor, J., and Joseph,
M. “Security in the Wild: User Strategies for Managing
Security as an Everyday, Practical Problem.” Personal and
Ubiquitous Computing 8, pp. 391-401. Springer Verlag,
2004.

[17] Edwards, W. K. “Policies and Roles in Collaborative
Applications.” Proceedings of the Conference on Computer-
Supported Cooperative Work (CSCW), Boston, MA, 1996.

[18] Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R. and
Chandramouli, R. “Proposed NIST Standard for Role-Based
Access Control,” ACM Transactions on Information and
System Security, vol. 4, no. 3, pp. 222–274, August 2001.

[19] Fisher, K. “Internet about to collapse says Finnish scientist”.
ars technica, Oct. 18, 2004. Also:www.ars
technica.com/news.ars/post/20041018-4318.html

[20] Ford, R. and Allen, W. H. 2007. How Not to Be Seen. IEEE
Security and Privacy 5, 1 (Jan. 2007), 67-69.

[21] Friedman, B., Kahn, P. H., Jr., & Borning, A. (2006). Value
Sensitive Design and information systems. In P. Zhang & D.
Galletta (eds.), Human-computer interaction in management
information systems: Foundations (pp. 348-372). Armonk,
New York; London, England: M.E. Sharpe.

[22] Friedman, B., and Kahn, P.H. Human Values, Ethics, and
Design. The Human-Computer Interaction Handbook:
Fundamentals, Evolving Technologies, and Emerging
Applications. Lawrence Erlbaum Associates, Mahwah, NJ.
pp. 1177-1201.

[23] Garigue, R. Between Chaos and Order: Managing the Risk
in Organizations, BMO Financial Group,
https://www.expotiperformance.com/Sites/expoIT/Multimedi
as/garigue.pdf

[24] Gaw, S., Felten, E. W., Fernandez-Kelly, P.. Secrecy,
Flagging, and Paranoia: Adoption Criteria in Encrypted E-
Mail. Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI), 2006.

[25] Goecks, J., Mynatt, B. Social Approaches to End-User
Privacy Management. In L. Cranor & S. Garfinkel (Eds.),
Security and Usability: Designing Secure Systems That
People Can Use, O’Reilly & Assoc 2005.

[26] IBM: http://www.iss.net/products/Proventia_Manage
ment_SiteProtector/product_main_page.html

[27] Isbell, C., Pierce, J. Using an IP Continuum for Adaptive
Interface Design. Proceedings of the 11th International
Conference on Human-Computer Interaction, 2005.

[28] Kanawati, R., and Riveill, M. “Access Control Model for
Groupware Applications.” In Proceedings of Human-
Computer Interaction. Huddersfield University, UK. August,
1995. pp. 66-71.

[29] Marimba: www.bmc.com/products/attachments/Marim
baClientManagementSecurity.pdf

[30] NetworkWorld. Executive Guide: Security Evolves. (2004).
Also at:www.enterasys.com/corporate/pr/2006 /060123-
networkworld.pdf

[31] Neuwirth, C., Kaufer, D.S., Chandhok, R., and Morris, J.
1990. “Issues in the desigin of computer support for co-
authoring and commenting,” in Proceedings of the ACM
Conference on Computer Supported Cooperative Work
(CSCW). CA, pp. 183-195

[32] Nielsen, Jakob. User Education is not the Answer to Security
Problems. http://www.useit.com/alertbox/ 20041025.html
(2004).

[33] Norman, D. A. The Design of Everyday Things. Basic
Books, NY, 2002.

[34] Norman, D. A. (1990). The "problem" of automation:
Inappropriate feedback and interaction, not "over-
automation". In D. E. Broadbent, A. Baddeley & J. T.
Reason (Eds.), Human factors in hazardous situations (pp.
585-593). Oxford: Oxford University Press.

[35] Palen and Dourish “Unpacking Privacy for a Networked
World”, Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI), Ft. Lauderdale, FL,
2003.

[36] Patrick, A.S., Briggs, P. & Marsh, S. Designing systems that
people will trust. In L. Cranor & S. Garfinkel (Eds.), Security
and Usability: Designing Secure Systems That People Can
Use, O’Reilly & Associates, 2005.

[37] Rainie, Lee. The CAN-SPAM Act Has Not Helped Most
Users So Far. Pew Internet Life Foundation Report, 2004.

[38] Sasse, M. A., Has Johnny Learnt to Encrypt by Now?
Examining the Troubled Relationship Between a Security
Solution and Its Users. 5th Annual PKI R&D Workshop
(2006). middleware.Internet2.edu/pki06/
proceedings/sassejohnny_usability.ppt

[39] Sasse, M. A., Brostoff, S., Weirich, D. Transforming the
‘weakest link’ – a human/computer interaction approach to
usable and effective security. BT Technol J Vol 19 No 3, July
2001.

[40] Sasse, M.A., Flechais, I., Usable Security: Why do we need
it? How do we get it? In L. Cranor & S. Garfinkel (Eds.),
Security and Usability: Designing Secure Systems That
People Can Use, O’Reilly & Assoc 2005.

[41] Schneier B: Secrets and Lies, John Wiley and Sons, 2000.
[42] Schuler, D., Namioka, A., Participatory Design: Principles

and Practices, Lawrence Erlbaum Associates, Inc., Mahwah,
NJ, 1993

[43] Sehami, M., Dumais, S., Heckerman, D., Horvitz, E. “A
Bayesian Approach to Filtering Junk Email.” AAAI
Workshop on Learning for Text Categorization, 1998.

[44] Smetters, D., Grinter, R. Moving from the Design of Usable
Security Technologies to the Design of Useful Secure
Applications. Proceedings of theNew Security Paradigms
Workshop (NSPW), 2002.

[45] Spiekermann, S., Pallas, F., "Technology Paternalism -Wider
Implications of Ubiquitous Computing." Poiesis & Praxis:
International Journal of Ethics of Science and Technology
Assessment, Vol. 4, 2005

[46] Star, S.L., The Ethnography of Infrastructure. American
Behavioral Scientist 43:3, pp. 377-391. 1999.

[47] Whitten, A., Tygar, J., Why Johnny Can’t Encrypt.
Proceedings of the 8th USENIX Security Symposium (1999).

[48] Winner, L. "Do Artifacts Have Politics?" The Whale and the
Reactor: A Search for Limits in an Age of High Technology.
Chicago: The University of Chicago Press, 1986. pp. 19-39.

[49] Wong, R.K., Chau, H.L., and Lochovsky, F.H. “A Data
Model and Semantics of Objects With Dynamic Roles.” 13th

International Conference on Data Engineering (ICDE).
Birmingham, UK, April 1997. IEEE Computer Society, pp.
402-411.

[50] Woo, T., and Lam, S. “Designing a Distributed
Authorization Service.” In IEEE Computer and
Communications Societies (INFOCOM), CA. 1998.

[51] Wu, M., Huang, Y., Wang, Y., and Kuo, S. 2006. A Stateful
Approach to Spyware Detection and Removal. In
Proceedings of the 12th Pacific Rim international
Symposium on Dependable Computing (December 18 - 20,
2006). PRDC. IEEE Computer Society, Washington, DC,
173-182.

[52] Yee, K. Guidelines and Strategies for Secure Interaction
Design. In L. Cranor & S. Garfinkel (Eds.), Security and
Usability: Designing Secure Systems That People Can Use,
O’Reilly & Associates, 2005.

[53] Zurko, M. User-Centered Security: Stepping Up to the Grand
Challenge. 21st Annual Computer Society Security
Applications Conference, 2005.

