
Session Management for
Collaborative Applications

W. Keith Edwards

Graphics, Visualization & Usability Center
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

+1 (404) 894-6266
keith.edwards@gvu.gatech.edu

Currently, developers typically implement subsystems to
perform session management on a per-application basis.
This trend has resulted in three characteristics of current ses-
sion management systems which are problematic:

• Much work as gone toward “reinventing the session man-
agement wheel” in collaborative applications. Applica-
tion developers typically implement subsystems to
perform session management when they build an applica-
tion. There is little cooperation between applications or
code reuse between developers.

• Since session management itself is subordinate to the
centerpiece task the application facilitates, the session
management mechanisms in a particular collaborative
application are often not very robust, flexible, or power-
ful. Usually the session management facilities provide
the minimal level of functionality to allow the application
to perform in a collaborative setting.

• Per-application reimplementation of session management
typically means that there are no facilities for altering
session management behavior on a global (across-appli-
cation) scale. For example, it may be difficult to turn off
incoming requests for collaboration acrossall collabora-
tive applications running on a user’s desktop.

Early in the development of a new class of software, imple-
mentation mechanisms tend to beapplication-centered. That
is, solutions are implemented at a very low level in the appli-
cations themselves. As the problem field matures, and more
experience is acquired about the needs of applications, solu-
tions tend to be moreenvironment-centered. That is, com-
mon APIs and run-time facilities are developed which are
shared by all applications. We have seen the trend toward
more environment-centered approaches recently in the litera-
ture of software support for collaboration[2][4][7][12][13].

In this light, we can see that the characteristics of current
session management systems described above are a result of
the application-centered approaches taken to developing
these systems. All of these problems are similar to those
encountered by early applications before the advent of com-
mon programming interfaces for developing, for example,

ABSTRACT
Session management systems for collaborative applications
have required a great deal of reimplementation work by
developers because they have been typically created on a
case-by-case basis. Further, artifacts of this development
process have limited the flexibility of session management
systems and their ability to cooperate across applications,
resulting in the fairly formalized, heavy-weight session man-
agement found in most collaborative systems today. We
present a model for a light-weight form of session manage-
ment, the theoretical foundation for this model (based on the
sharing of information about user and system activity), and
details of a collaboration support environment which imple-
ments our session management model.

KEYWORDS
Computer-supported cooperative work, collaboration sup-
port environments, session management, Intermezzo.

INTRODUCTION
The primary characteristic of collaborative applications is
that they, by definition, involve the interaction of multiple
users. The manner in which the users of an application join
together into a collaborative session is determined by the
session management system used by the collaborative appli-
cation.

The termsession management refers to the process of start-
ing, stopping, joining, leaving, and browsing collaborative
situations across the network [12]. Examples of collaborative
situations include a group of users editing a text document in
a shared editor, or a video conference among a number of
participants.

Copyright © 1994, Association for Comput-
ing Machinery. Published in Proceedings
of the ACM Conference on Computer-Sup-
ported Cooperative Work (CSCW’94) ,
Chapel Hill, NC. October 22-26, 1994.

graphical applications. Common APIs (whether for GUI
development, systems programming, or some other domain)
enable applications built on those APIs to be developed more
quickly and with greater standardization than would be pos-
sible otherwise. Further, APIs which “talk” to a shared run-
time facility (such as a window server or an OS kernel) allow
coordinated control over the applications built on those
APIs; policy can be implemented at the shared entity to
affect all of the clients of that entity.

Artifacts of the current application-centered practice have
limited the flexibility of session management systems in
some non-obvious ways, however. Since application-cen-
tered approaches, by definition, tend to limit cooperation
between applications (since there are no common facilities to
build upon), it is very difficult to build session management
systems which permit the easy flow of information between
applications using these approaches. Put more directly, the
types of session management systems that are easy to build
in an application-centered approach may not always be the
“best” from the perspective of the user. Building collabora-
tive systems around non-cooperating session management
facilities restricts the options available to us as developers of
collaborative applications: the tools influence the resulting
system. As the state of the practice has influenced session
management systems, session management systems have in
turn affected the characteristics of applications built using
these systems.

This application-centered development model has forced a
mode of operation on collaborative applications. Since the
session management services typically haven’t provided a
great deal of coordination between applications, users have
been tasked with performing much of the coordination
required to begin a collaboration themselves. We shall look
more closely at the current models of session management
used by most applications, and at new models which can be
created when more environment-centered development
approaches are used.

There are two goals of this paper. First, we introduce a new
model for session management, calledimplicit session man-
agement, which provides a more light-weight approach to
session management than has been found in typical systems
to date. We believe that this approach is useful in a number
of situations. We also present a theoretical foundation of the
requirements of this type of session management.

Second, we introduce a system which implements our new
model of session management and provides general session
management services to applications. Our implementation of
this model, calledIntermezzo, is built using a more environ-
ment-centered approach than has typically been found in
existing systems. In the process of building a session man-
agement service which is flexible enough to implement our
model of session management, we will implicitly address the
three problem areas of session management services which
have resulted from the application-centered development
strategies used to date.

MODELS OF SESSION MANAGEMENT
To motivate our model of session management, we must first
explore how session management systems typically operate
in current applications, and introduce some terminology.

Most collaborative applications built to date have taken a
“heavy weight” approach to session management. Two of
these heavy weight approaches are common:

• Initiator-based. Through some sequence of dialogs the
initiating user invites other users to the collaborative ses-
sion. The number of invitations issued can be potentially
large, depending on the application and the context of the
task. Invited users can accept or reject the invitation.
Examples of such a system include MMConf [2] and
RTCAL [8]. Initiator-based session management systems
fulfill two goals: to notify users of the existence of the
collaboration, and to provide a means for rendezvous
with the others in the session.

• Joiner-based.The initiating user creates a new session;
users must find the session by browsing the list of cur-
rently active sessions (or knowa priori that the session
will be taking place). Once they know the session handle
they can attempt to join the session. Examples of systems
which follow this model include Collage [10]. Joiner-
based systems typically only provide rendezvous facili-
ties. The participants use some other means to notify
each other that a collaboration is in progress.

Both of these approaches are somewhat awkward because
they forcesomeone (either the initiator or the participants) to
do a significant amount of overhead work. In the case of ini-
tiator-based session management, the initiator must explic-
itly invite all participants to the session. In the second joiner-
based case, the joiners are required to find the session handle
for themselves. If they do not remember that they are sup-
posed to be taking part in a collaboration, it again falls to the
initiator to invite the participants to the session (typically via
a “low-tech” solution: a telephone call).

We can call these two approaches instances ofexplicit ses-
sion management. We use the term explicit because the par-
ticipants in the collaboration are required to take some action
(perhaps time consuming) to join the session. This joining
action is often only peripherally-related to the task on which
the participants are trying to collaborate. For example, for a
group of users who wish to work together on a text docu-
ment, editing the document is the primary focus of the activ-
ity. The peripheral task of either inviting group members, or
of searching for a “conference” is an artifact of the imple-
mentation of the session management facilities offered by
the collaborative applications being used.

Explicit session management seems to be useful in situations
where there is a high degree of formality or where there is a
natural name for the activity. An analogous “real-world” sit-
uation might be, “Faculty meeting Wednesday at 2:00PM in
room 302.” The task is widely known to the participants, is at
a well-known location, and embodies a degree of formality.

It is important to realize that explicit session management
(and indeed, any form of session management) can affect the
way people collaborate. Because starting a collaboration is
expensive, informal collaborations are less likely to take
place when using an explicit system. Perhaps because of the
formal nature of explicit session management systems, col-
laborative applications based on this technique tend to
resemble meetings.

Unfortunately, more spontaneous collaboration is not likely
to fit well into this model. Rather than the faculty meeting
form of collaboration, what about serendipitous meetings in
a hallway or in a breakroom? Some systems have been built
to support this form of “chance meeting,” although they have
typically been communication-oriented “mediaspace” appli-
cations [1][5], rather than, say, shared editors. Mediaspace
applications usually bypass the entire issue of session man-
agement by leaving users connected to each other all the
time. This approach seems appropriate for communication-
oriented systems, but may be less useful for other types of
applications (we do not wish to require users to leave one of
every potential collaborative application on their screens in
the chance that someone may wish to collaborate with them
using that application). We would like to build a framework
for session management that works for non-communication-
oriented applications but is still lightweight, supports seren-
dipitous meetings, and is as transparent as possible to the
user.

Such a system would not necessarily supplant the explicit
forms of session management, but would instead serve as a
complementing mode of operation which might be useful for
a variety of tasks which explicit session management may
hinder.

A Light-Weight Model of Session Management
There are a number of situations in which a more light-
weight,implicit form of session management which requires
less initial overhead may be useful. We can see that in many
situations invitations are not needed. For example, explicit
computer-based invitations are often not needed if the col-
laboration is within a small group of people who know that
they are supposed to be working on some collective task.
Often, social pressures will serve to keep uninvited partici-
pants out of the collaboration, without the need for strict
machine-enforced invitation protocols. And of course, seren-
dipitous collaboration doesn’t require invitations by its
nature.

But what about rendezvous? What can we do to make the
process of joining the collaboration as light-weight as possi-
ble? In the models we examined earlier, rendezvous was
accomplished by some mechanism orthogonal to the central
task at hand (requiring the user to browse a list of confer-
ences before being able to enter a shared editor, for exam-
ple). A more direct approach would be to have the act of
opening the object of the collaboration provide the potential
for collaborative activity itself.

Thus, to collaboratively edit a file, users would simply edit
the same file. The system would detect the potential for col-
laboration inherent in the fact that multiple users are working
on the same object, without the need for naming sessions or
browsing lists of sessions to accomplish rendezvous. We call
this processimplicit session management because it avoids
the overhead of the explicit session creation, naming, and
browsing phase. In contrast to the explicit forms of session
management (initiator-based and joiner-based), this form of
implicit session management isartifact-based.

There are physical analogs for this type of collaboration:

• In “old fashioned” libraries with paper card catalogs, a
person would know if another individual was interested
in similar subject matter by the proximity to them when
browsing the card catalog. A potential (although not
required) collaboration exists (“I see you’re interested in
sailing as well.”). (Thanks to David Gedye for this exam-
ple.)

• In a medical office, one worker may know that another is
updating a patient file because the file is not in its place in
the cabinet (in many offices a paper slip is left in its place
denoting who has the file in question). If desired, the
worker searching for the file may go to the one who has it
to share information.

In both of these cases, participants know that they’re work-
ing on the same or similar tasks because they are interacting
with the same physical object. Rendezvous is based on the
sharing of this common object. Collaboration is trivially
easy, although not required. Table 1 lists some characteristics
of collaboration which may make explicit or implicit session
management more effective.

We have described how implicit session management would
look from the user’s perspective, but have not yet addressed
the issue of what system-level facilities are required to
implement such a model. The next section presents a theoret-
ical model for a service which can automatically provide
implicit (as well as explicit) session management facilities to
applications.

Table 1: Session Management vs. Types of Collaboration

ACTIVITY INFORMATION AS A FOUNDATION FOR
SESSION MANAGEMENT
It is our thesis thatactivity information can serve as a foun-
dation for building a powerful and flexible session manage-
ment service, with application beyond that of implicit
session management only. Activity information is informa-
tion which contains details of the current tasks which are
being run across the network: the users on the systems, the
applications or tasks they are currently engaged in, and the
objects of those tasks (that is, the data on which the applica-
tions are operating).

At any given point in time there are a number of activities
which exist across the network. We can think of an activity
as a tuple:

WhereAn represents thenth activity. This activity is com-
prised ofUn, Tn, andOn which respectively represent thenth
user, task (application), and object (data).

For the purposes of session management,Un andTn can be
thought of as simply tokens which uniquely identify the user
and the application he or she is working with. The mappings
between users and applications, and their tokens Un and Tn,
must be one-to-one.

Objects are somewhat more complicated, since different
applications may operate on different data domains. For
example, an editor may operate on a text file, while a calen-
daring program may operate on a section of an appointment
database. Each of these data sets possess fundamentally dif-
ferent semantics of use and representation.

Thus theOn token consists of anamespace identifier and a
name which is valid within that namespace. The namespace
defines the type of the data set the application is operating
on. Examples of namespaces include files, database selec-
tions, and so forth. Each namespace defines a set of names
which have a one-to-one correspondence with the objects
they represent. For example, a particular file is represented
by a unique name within the namespacefile.

Implicit Session Management
Applications that wish to participate in implicit session man-
agement must publish activity information so that it can be
made visible to the session management service. When per-
forming implicit session management, the session manage-
ment service will automatically detect potential collaborative
situations and take “appropriate” action (as described to it by
applications or user preferences). There is no need for users
to explicitly issue invitations or create sessions.

The session management service detects potential collabora-
tive situations by looking for overlaps or confluences in the
activity information published by applications across the net-
work. When two activity tuples exist which contain the same
object token (that is, when both the namespace and the name

of two objects match exactly), then the session management
service can take action to allow the users to enter into a col-
laborative situation.

For example, if two users edit the same file, the session man-
agement service can notify the users of this fact and allow
them to easily enter into a “spur of the moment” collabora-
tion. The mechanics of joining a collaborative endeavor
closely match the human dynamics of collaboration. When
two coworkers wish to work on a paper together, one will
typically say, “Let’s get together sometime after lunch and
finish up the budget.” Noformal invitations are issued, and
no name is given to the activity. Instead, the coworkers sim-
ply begin working on the budget at or about the same time.
The action of working on the same budget implicitly carries
with it the notion of collaboration. Whereas in the explicit
forms of session management the burden of labor is on the
users of the system, in implicit session management the sys-
tem itself can assume the task of detecting and handling
potential collaboration.

Note that this form of implicit session management, because
it is so transparent, requires applications or the collaboration
support environment to provide powerful mechanisms for
policy controls to allow users to enable, disable, or otherwise
alter the behavior of the session management service. Obvi-
ously we don’t want to automatically be thrown into a shared
editor anytime we happen to open a file that another person
has open.

The mechanisms for publishing and retrieving activity infor-
mation, for generating unique object names within a
namespace, and for taking appropriate action upon detection
of potential collaboration are defined by particular imple-
mentations of this model. We now describe our system
which implements implicit, artifact-based session manage-
ment using the model of activity information described
above.

INTERMEZZO IMPLEMENTATION
Intermezzo is a collaboration support environment [3] which
is addressing issues related to session management and other
collaborative activities. The goal of the system is to facilitate
the sharing of “coordinating” information to link multiple
collaborative applications into a more holistic environment.
Session management is one form of coordinating informa-
tion which Intermezzo makes available to applications.

Intermezzo provides a set of run-time services, programming
libraries, and conventions that applications can use to partic-
ipate in a session management service, among other things.
Intermezzo uses a publish/subscribe model to make informa-
tion available across the network. A simple object database
manages the information published by applications and
makes it available to interested parties [6].

There are three main abstractions used in the Intermezzo
implementation:Threads (abstraction for computation),
Ports (abstraction for communication), andResources

An Un Tn On, ,()=

(abstraction for data). These abstractions are used through-
out Intermezzo: both in the run-time component, and in the
programming interfaces used by application developers.

Communication between threads is handled byPorts . A
Port is an abstraction for a half-duplex communication chan-
nel. Port subclasses can implement particular transports and
semantics. Some types of Ports can only transfer data
between threads in a single address space (such asMes-
sageQueue ports, which connect the threads which make
up the Intermezzo run-time service), while others can be
used for communication between threads in different address
spaces (such asRemoteProcedureCall ports, which are
used to connect client applications to the Intermezzo server).

The data objects that Intermezzo manages are called
Resources . Resources are essentially objects which con-
tain lists of attributes (key-value pairs) and have types and
unique IDs.Resources maintain notions of ownership
(the application which created a given resource) and permis-
sions (who is allowed to view and update given resources).
All resources can “pack” and “unpack” themselves in a num-
ber of data interchange formats for transmission over the net-
work into another address space

Intermezzo Programming Interface
Intermezzo provides a client-side library which application
developers can use to interact with the Intermezzo run-time
service. This library uses the same abstractions used inter-
nally by the run-time service (Threads , Ports , and
Resources). A Client thread is automatically instanti-
ated by the library to handle communication to the server
process. The components of the activity information model
presented above map directly into resources in Intermezzo:
users, tasks, and objects are all resources. A special “con-
tainer resource” called anActivityRecord holds refer-
ences to User , Task , and Object resources which
together represent one activity.

Object resources maintain their namespace and name as
attributes. The client-side code in Intermezzo is responsible
for generating unique, network-wide names for any given
object within a particular namespace.

Whenever an “Intermezzo-aware” application is started, it
publishes anActivityRecord resource representing
itself, its user, and the data it is operating on. Essentially,
enabling this behavior requires the insertion of one line of
code into the application’s start-up routine. This is all that is
required to generate activity information which may be used
by other applications, and by the Intermezzo session man-
agement facilities.

Applications which wish to be “better behaved” under Inter-
mezzo should take several more actions, however:

• Request and handle notification from the server whenever
a potential collaboration exists.

• Notify the server about any policy constraints desired by
the user or the application itself.

Further, applications are free to use the resources they have
published for other purposes, such as storing user prefer-
ences or application defaults. Applications can update and
access the information stored in these resources as long as
they have the appropriate permissions.

Intermezzo Run-time Architecture
The Intermezzo run-time system is built as a multi-threaded
server (see Figure 1). AServer thread is instantiated once
for every connection to a client, and handles servicing
requests and replies to and from the client application. Other
threads in Intermezzo include aMain thread (responsible
for creating other threads as needed), and aCheck-
pointer thread (which can periodically flush the database
to stable storage).

The Intermezzo run-time service stores resources in a simple
object database. Whenever the database is updated, Inter-
mezzo searches forActivityRecords containing refer-
ences to objects which have the same namespace and name.
This search process is implemented viatriggers, a technique
developed inaccess-oriented programming [14] that allows
modifications of a data value to automatically cause some
action to take place.

The particular actions that Intermezzo takes when it detects a
potential for collaboration depend on the “intelligence” of
the application, and the desires and preferences of the users.

In the case of collaboration-aware applications, Intermezzo
may be configured to generate events to the applications

App 1

App 2

App 3

Intermezzo Server Process

Resource
Database

C

C

C

S

S

S

CHK

Thread
Process

Port

Figure 1: The Intermezzo Run-time Architecture

(say, the text editors being used to work on a budget). The
applications receive these events and go into “shared” mode.

In the case of collaboration-naive applications, Intermezzo
can generate a sequence of messages to a shared window
system to instruct it to begin sharing the applications, even
though they may have been written as single-user tools.

The Intermezzo server is capable of dynamically loading
new thread objects into its address space at run-time. This
feature makes the server extensible to new behaviors without
the need to recompile the entire system.

Policy in Intermezzo
Of course, applications can implement their own policies on
top of the information provided to them by Intermezzo. Even
though an application may receive an event from Intermezzo
indicating a potential collaboration exists, the application is
not required to act on it. The application may go directly into
collaboration mode, ask the user if it should go into collabo-
ration mode, or ignore the event entirely.

Note that it is possible to use the Intermezzo facilities for
implementing more traditional, explicit session manage-
ment. Applications simply tell Intermezzo to not generate
collaboration events, or ignore them when they are received.
The process of browsing users and activity across the net-
work simply becomes a select operation on the database to
search for the data the application is interested in.

Intermezzo adds power to files and other system objects in
much the same way that graphical user interfaces have:
clicking on a document in a GUI “magically” launches an
application and loads that file. What had, prior to the advent
of GUIs, been a relatively static, inanimate object suddenly
acquired a new property: touching it causes some action to
take place in the system. Intermezzo adds another property
to files: touching them can potentially place the user into a
collaborative situation with the other users who are access-
ing that file.

By providing mechanisms which allow applications to
access session management services, Intermezzo addresses
several of the problematic characteristics of typical session
management services:

• By providing a library to application developers to imple-
ment session management, Intermezzo keeps developers
from having to rebuild session management facilities on a
case-by-case basis.

• The Intermezzo session management facilities are flexi-
ble enough to support a range of applications, and typi-
cally provide greater power than the session management
subsystems provided by current applications.

• As a central point of control, Intermezzo allows users to
easily change session management behavior across appli-
cations.

An Example: File Objects
An example may help clarify how object resources are gen-
erated and used for session management. The most common
type of object which is used by applications is the simple
file.

When an application which operates on files (say, a shared
editor) is started, Intermezzo publishes anActivity-
Record which represents the user of the application, the
application itself, and the file the application is operating on.

The Object resource is constructed with a namespace of
File . A name is generated which can be used to uniquely
identify this file across the network.

In our implementation (which is on Unix), the unique name
for a given file f is constructed from the hostnameH on
which the filesystem containing the file is mounted, the name
of the filesystemF the file resides on, and the inode numberI
of the file on that filesystem.

This scheme (which is similar to that used by [11]) allows us
to create an identifier for a file which has the following prop-
erties:

• The Intermezzo names for two different files are guaran-
teed to be different, even if the pathnames used to refer to
the files are the same.

• It is impossible to generate two distinct names for the
same file, even if different pathnames are used to refer to
the file (or if the file is remote mounted on another
machine).

That is, there is a network-wide unique one-to-one mapping
between Intermezzo file names and actual files.

Once theUser , Task , andObject resources have been
created, they are published as part of a newActivity-
Record resource which represents one instance of a partic-
ular activity (a single user working with an application on a
particular data object). The Intermezzo run-time service
receives the newActivityRecord and searches its data-
base of resources, looking for a confluence in theObject
Name andNamespace attributes.

Intermezzo assumes that applications and users will partici-
pate in a number of conventions that determine the activity
which will be taken when a confluence is found. Whenever a
confluence occurs, Intermezzo will retrieve an attribute
calledColab Action on theTask resources associated
with the two overlapping ActivityRecords . The
Colab Action attribute is used to tell Intermezzo how to
handle the potential collaboration. Possible courses of action
include generating events to the application, or running an
arbitrary program. Application developers can decide how
their applications will handle potential collaborations by
using different values for theColab Action attribute.

namef H f F f I f, ,()=

Intermezzo also examines the value of theColab Allow
attribute on theUser resources associated with the two
overlapping ActivityRecords . By convention, Inter-
mezzo treats theColab Allow attribute as a list of users
with whom collaboration will be initiated whenever a poten-
tial for collaboration exists. If the “calling” user is not in the
Colab Allow list for the “receiving” user, then Inter-
mezzo takes no action upon detecting the potential collabo-
ration. Users can exert control over the process of
collaboration by changing the value ofColab Allow on
theUser resource which represents them.

USER PERSPECTIVES
Our implementation provides the desired features at the user
level. By handling the coordinating of user activity informa-
tion internally to the session management service, we do not
force the users of collaborative applications to perform the
coordinating tasks themselves. Further, the system is very
flexible in the actions it can take when a potential collabora-
tion occurs.

Intermezzo satisfies the goals of supporting light-weight,
transparent collaborative rendezvous in which the act of
accessing an object provides the trigger for collaboration.
There is no need for an orthogonal set of session manage-
ment actions which the users must use to enter into a collab-
orative task.

Further, Intermezzo supports serendipitous collaboration in
non-communication-oriented applications. Awareness is
enhanced through the use of serendipitous encounters.

Finally, the facilities available to Intermezzo aren’t limited to
supporting implicit session management only. Applications
which need heavy-weight, explicit forms of session manage-
ment can also be constructed using Intermezzo. The system
provides a generally useful software substrate which is suffi-
cient for implementing an array of policies and mechanisms.

OTHER APPLICATIONS
There are a number of applications of the models we have
developed for Intermezzo.

Activity Information as Input to Users
We can use the collected information about activity to pro-
vide awareness about users across the network. Users can
know if a coworker is working on an important document
and should not be interrupted. A number of activity monitor
applications have been built which provide this service. (for
example, [9]). Used in this way, activity information is an
input to users which allows them to make judgments about
whether or not to interact with a colleague.

Activity Information as Input to Applications
One aspect of activity information which has not been fully
addressed is the use of activity information as input to appli-
cations. If activity information is widely available, applica-
tions can be written to take user activity into account. For

example, if a user is already engaged in a video conference,
an application may decide to use pop-up notifications to the
user, rather than audio notifications which may potentially
disrupt the conference.

Per-User and Per-Application Data Storage
Since Intermezzo creates objects to represent users and
applications, those objects are obvious places to store infor-
mation about user preferences, “personal data,” and applica-
tion defaults. Intermezzo provides an API which can be used
to access this information across a network.

Data Interchange
The facilities provided by Intermezzo can be used as a gen-
eral-purpose data interchange facility. While not suitable for
high-bandwidth transmission, applications which need to
exchange relatively small amounts of data, or have data stor-
age needs which are closely matched to the services pro-
vided by an object database may find Intermezzo useful.

STATUS
Both the Intermezzo programming interface and the run-time
service are implemented in C++. The total system is approx-
imately 25,000 lines of code. We are currently using Trans-
port-Independent Remote Procedure Calls for
communication between clients and the server. Our imple-
mentation is based on the Solaris 2.3 operating environment,
and runs on Sun SPARCstations.

SUMMARY AND FUTURE DIRECTIONS
We have presented a model in which activity information
may be used as a basis for session management in collabora-
tive applications. The use of activity information allows us to
achieve two goals: we can support very light-weight implicit
forms of session management, and we can increase the over-
all flexibility of all forms of session management by using
activity information as an input to both users and applica-
tions.

Our system, Intermezzo, provides a software substrate for
information storage and retrieval in a network setting, along
with programming interfaces and conventions for informa-
tion sharing in collaborative applications. Intermezzo has
proven to be a powerful tool for implementing the session
management model described here.

Currently our work on Intermezzo is focusing on a number
of directions. First, more powerful mechanisms for policy
control are needed. We are investigating formalisms to
express policy constraints in collaborative settings. Second,
we are investigating implementation issues related to Inter-
mezzo. Our publish/subscribe object database approach has
so far proven sufficient. We are investigating how scalable
our approaches are, and what types of implementations
might be needed to support further types of information shar-
ing.

Usability studies to determine the impact and applicability of
different forms of session management will be required to
assess how these models of session control can be used
effectively in collaborative systems.

We plan on making a public release of Intermezzo once the
code is fully stable and portable, and once we have experi-
ence building a number of testbed applications on the sys-
tem.

ACKNOWLEDGEMENTS
This work is sponsored by Sun Microsystems, Inc. We are
grateful for their generous support.

REFERENCES

[1] Ahuja, S.R., Ensor, J.R., Horn, D.N. “The Rap-
port Multimedia Conferencing System.”Pro-
ceedings of Conference on Office Information
Systems, Palo Alto, CA: IEEE, 1988, 1-7.

[2] Crowley, T., Milazzo, P., Baker, E., Forsdick, H.,
and Tomlinson, R. “MMConf: An Infrastructure
for Building Shared Multimedia Applications.”
CSCW 90: Proceedings of the Conference on
Computer-Supported Cooperative Work, Los
Angeles, CA: ACM, 1990, 329-342.

[3] Dewan, P., and Choudhary, R. “Flexible User
Interface Coupling in a Collaborative System.”
Reaching Through Technology, Proceedings of
ACM CHI ‘91: Conference on Human Factors in
Computing Systems, New Orleans, LA: ACM,
1991, 41-48.

[4] Dewan, P., and Choudhary, R. “Primitives for
Programming Multi-User Interfaces.”UIST 91:
Proceedings of the ACM Symposium on User
Interface Software and Technology, Hilton Head,
SC: ACM, 1991, 69-78.

[5] Dourish, P., and Bly, S. “Portholes: Supporting
Awareness in a Distributed Work Group.” Strik-
ing a Balance, Proceedings of ACM CHI ‘92:
Conference on Human Factors in Computing
Systems, Monterey, CA: ACM, 1992, 541-458.

[6] Edwards, W. Keith.Intermezzo Implementation
Notes. Georgia Tech GVU Center Technical
Report GIT-GVU-93-42, 1993.

[7] Gibbs, S.J. “LIZA: An Extensible Groupware
Toolkit.” Wings for the Mind, Proceedings of
ACM CHI ‘89: conference on Human Factors in
Computing Systems, Austin, TX: ACM, 1989,
29-36.

[8] Grief, I., and Sarin, S. “Data Sharing in Group
Work,” Computer-Supported Cooperative
Work: A Book of Readings, Irene Grief, ed. San
Mateo, CA: Morgan Kaufmann, 1988, 477-508.

[9] Manandhar, S. “Activity Server: You Can Run
But You Can’t Hide.”Multimedia for Now and
the Future: Proceedings of the 1991 USENIX
Conference, Nashville, TN: USENIX Associa-
tion, 1991, 299-312.

[10] NCSA Collage for the X Window System User’s
Guide, National Center for Supercomputing
Applications.

[11] Patel, Dorab, and Kalter, Scott D. “A UNIX
Toolkit for Distributed Synchronous Collabora-
tive Applications.” Computing Systems, Berke-
ley, CA: University of California Press, 1993, p.
105-134.

[12] Patterson, J. F., Hill, R. D., Rohall, S. L., and
Meeks, W. S. “Rendezvous: An Architecture for
Synchronous Multi-user Applications.” CSCW
90: Proceedings of the Conference on Com-
puter-Supported Cooperative Work, Los Ange-
les, CA: ACM, 1990, 317-328.

[13] Roseman, M., and Greenberg, S. “GroupKit: A
Groupware Toolkit for Building Real-Time Con-
ferencing Applications,”Sharing Perspectives:
Proceedings of the Conference on Computer-
Supported Cooperative Work, CSCW’92, Tor-
onto, Ontario: ACM, 43-50.

[14] Stefik, M.J., Bobrow, D.G., and Kahn, K.M.
“Integrating Access-Oriented Programming into
a Multiparadigm Environment.”IEEE Software,
3,1, IEEE Press, January, 1986, 10-18.

