Session Management for
Collaborative Applications

W. Keith Edwards

Graphics, Visualization & Usability Center
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280
+1 (404) 894-6266
keith.edwards@gvu.gatech.edu

ABSTRACT

Currently, developers typically implement subsystems to

Session management systems for collaborative applicatioperform session management on a per-application basis.
have required a great deal of reimplementation work byrhis trend has resulted in three characteristics of current ses-
developers because they have been typically created onsi@n management systems which are problematic:

case-by-case basis. Further, artifacts of this development
process have limited the flexibility of session managemerrt
systems and their ability to cooperate across applications,
resulting in the fairly formalized, heavy-weight session man-

agement found in most collaborative systems today. We
present a model for a light-weight form of session manage-
ment, the theoretical foundation for this model (based on the
sharing of information about user and system activity), and

details of a collaboration support environment which imple-

ments our session management model.

KEYWORDS
Computer-supported cooperative work, collaboration sup-
port environments, session management, Intermezzo.

INTRODUCTION

The primary characteristic of collaborative applications is
that they, by definition, involve the interaction of multiple
users. The manner in which the users of an application join
together into a collaborative session is determined by the
session management system used by the collaborative appli-

Much work as gone toward “reinventing the session man-
agement wheel” in collaborative applications. Applica-
tion developers typically implement subsystems to
perform session management when they build an applica-
tion. There is little cooperation between applications or
code reuse between developers.

Since session management itself is subordinate to the
centerpiece task the application facilitates, the session
management mechanisms in a particular collaborative
application are often not very robust, flexible, or power-

ful. Usually the session management facilities provide
the minimal level of functionality to allow the application

to perform in a collaborative setting.

Per-application reimplementation of session management
typically means that there are no facilities for altering
session management behavior on a global (across-appli-
cation) scale. For example, it may be difficult to turn off
incoming requests for collaboration acradiscollabora-

tive applications running on a user’s desktop.

cation. Early in the development of a new class of software, imple-
mentation mechanisms tend todmplication-centeredThat

The termsession managemergfers to the process of start- is, solutions are implemented at a very low level in the appli-

ing, stopping, joining, leaving, and browsing collaborativecations themselves. As the problem field matures, and more

situations across the network [12]. Examples of collaborativexperience is acquired about the needs of applications, solu-

situations include a group of users editing a text document itions tend to be morenvironment-centeredrhat is, com-

a shared editor, or a video conference among a number gion APIs and run-time facilities are developed which are

participants. shared by all applications. We have seen the trend toward
more environment-centered approaches recently in the litera-
ture of software support for collaboration[2][4][7][12][13].

In this light, we can see that the characteristics of current
session management systems described above are a result of
the application-centered approaches taken to developing
these systems. All of these problems are similar to those
encountered by early applications before the advent of com-
mon programming interfaces for developing, for example,

Copyright © 1994, Association for Comput-

ing Machinery. Published in Proceedings
of the ACM Conference on Computer-Sup-

ported Cooperative Work (CSCW’94) .
Chapel Hill, NC. October 22-26, 1994.

graphical applications. Common APIs (whether for GUIMODELS OF SESSION MANAGEMENT

development, systems programming, or some other domaifip motivate our model of session management, we must first
enable applications built on those APIs to be developed moexplore how session management systems typically operate
quickly and with greater standardization than would be posn current applications, and introduce some terminology.

sible otherwise. Further, APIs which “talk” to a shared run-

time facility (such as a window server or an OS kernel) allowMost collaborative applications built to date have taken a
coordinated control over the applications built on thoséheavy weight” approach to session management. Two of
APIs; policy can be implemented at the shared entity téhese heavy weight approaches are common:

affect all of the clients of that entity. N)
« Initiator-based. Through some sequence of dialogs the

Artifacts of the current application-centered practice have initiating user invites other users to the collaborative ses-
limited the flexibility of session management systems in sion. The number of invitations issued can be potentially
some non-obvious ways, however. Since application-cen- large, depending on the application and the context of the
tered approaches, by definition, tend to limit cooperation task. Invited users can accept or reject the invitation.
between applications (since there are no common facilities to Examples of such a system include MMConf [2] and
build upon), it is very difficult to build session management RTCAL [8]. Initiator-based session management systems
systems which permit the easy flow of information between fulfill two goals: to notify users of the existence of the
applications using these approaches. Put more directly, the collaboration, and to provide a means for rendezvous
types of session management systems that are easy to buildwith the others in the session.

in an application-centered approach may not always be the
“best” from the perspective of the user. Building collabora-
tive systems around non-cooperating session management
facilities restricts the options available to us as developers of ;1o taking place). Once they know the session handle
collaborative applications: the tools influence the resulting

: . 2 they can attempt to join the session. Examples of systems
system. As the state of the practice has influenced Session bieh follow this model include Collage [10]. Joiner-

management systems, session management systems have "hased systems typically only provide rendezvous facili-
turn affected the characteristics of applications built using ties. The participants use some other means to notify

these systems. each other that a collaboration is in progress.

Joiner-based.The initiating user creates a new session;
users must find the session by browsing the list of cur-
rently active sessions (or knaavpriori that the session

This application-centered development model has forced Both of these approaches are somewhat awkward because
mode of operation on collaborative applications. Since théney forcesomeondeither the initiator or the participants) to
session management services typically haven't provided @o a significant amount of overhead work. In the case of ini-
great deal of coordination between applications, users hav@tor-based session management, the initiator must explic-
been tasked with performing much of the coordinatioritly invite all participants to the session. In the second joiner-
required to begin a collaboration themselves. We shall lookased case, the joiners are required to find the session handle
more closely at the current models of session managemefol themselves. If they do not remember that they are sup-
used by most applications, and at new models which can @sed to be taking part in a collaboration, it again falls to the
created when more environment-centered developmeniitiator to invite the participants to the session (typically via
approaches are used. a “low-tech” solution: a telephone call).

There are two goals of this paper. First, we introduce a newe can call these two approaches instancesxplicit ses-
model for session management, callaglicit session man- sion managemente use the term explicit because the par-
agement which provides a more light-weight approach toticipants in the collaboration are required to take some action
session management than has been found in typical syste(pgrhaps time consuming) to join the session. This joining
to date. We believe that this approach is useful in a numbeiction is often only peripherally-related to the task on which
of situations. We also present a theoretical foundation of thiae participants are trying to collaborate. For example, for a
requirements of this type of session management. group of users who wish to work together on a text docu-
) o ment, editing the document is the primary focus of the activ-
Second, we introduce a system which implements our newy. The peripheral task of either inviting group members, or
model of session management and provides general sessighsearching for a “conference” is an artifact of the imple-

management services to applications. Our implementation @hentation of the session management facilities offered by
this model, calledntermezzpis built using a more environ- the collaborative applications being used.

ment-centered approach than has typically been found in

existing systems. In the process of building a session magxplicit session management seems to be useful in situations
agement service which is flexible enough to implement ouwhere there is a high degree of formality or where there is a
model of session management, we will implicitly address th@atural name for the activity. An analogous “real-world” sit-
three problem areas of session management services whigétion might be, “Faculty meeting Wednesday at 2:00PM in
have resulted from the application-centered developmembom 302.” The task is widely known to the participants, is at
strategies used to date. a well-known location, and embodies a degree of formality.

It is important to realize that explicit session managemer
(and indeed, any form of session management) can affect t
way people collaborate. Because starting a collaboration
expensive, informal collaborations are less likely to take
place when using an explicit system. Perhaps because of t
formal nature of explicit session management systems, cc
laborative applications based on this technique tend t
resemble meetings.

Unfortunately, more spontaneous collaboration is not likely
to fit well into this model. Rather than the faculty meeting
form of collaboration, what about serendipitous meetings ii
a hallway or in a breakroom? Some systems have been bt
to support this form of “chance meeting,” although they haw
typically been communication-oriented “mediaspace” appli- Table 1: Session Management vs. Types of Collaboration

cations [1][5], rather than, say, shared editors. Mediaspa . . ' . .
applications usually bypass the entire issue of session m:ﬁju:értr?ecmléa?rﬂgtls\gfes?eﬁ]d&/(?u]lcge(’jeL;Zi:sthvéopl)Jcl)(tjeiltrig\FI)% regcl)tl-

agement by leaving users connected to each other all tﬁlég co X ; ;
time. This approach seems appropriate for communicatio aboration inherent in the fact that multiple users are working

oriented systems, but may be less useful for other types Bf! e same object, without the need for naming sessions or
applications (we do not wish to require users to leave one QfOWsing lists of sessions to accomplish rendezvous. We call
every potential collaborative application on their screens if{"'S prock?ssmplllcnhsessml).n.managemehECquse it a\(0|ds

the chance that someone may wish to collaborate with thefl® ©verhead of the explicit session creation, naming, and
using that application). We would like to build a framework PrOWsing phase. In contrast to the explicit forms of session

for session management that works for non-communicatioflanagement (initiator-based and joiner-based), this form of

oriented applications but is still lightweight, supports seren!MPliCit session managementasifact-based

dipitous meetings, and is as transparent as possible to t

user l’Ilﬁere are physical analogs for this type of collaboration:

; .« In “old fashioned” libraries with paper card catalogs, a
Such a system would not necessarily supplant the explicit person would know if another individual was interested

forms of session management, but would instead serve as a i similar subiect matter by the proximitv to them when
complementing mode of operation which might be useful for J y P Y

a variety of tasks which explicit session management may Prowsing the card catalog. A potential (although not
hinder. required) collaboration exists (“I see you're interested in

sailing as well.”). (Thanks to David Gedye for this exam-

A Light-Weight Model of Session Management ple.))) _
There are a number of situations in which a more lights In a medical office, one worker may know that another is
weight,implicit form of session management which requires updating a patient file because the file is not in its place in
less initial overhead may be useful. We can see that in many the cabinet (in many offices a paper slip is left in its place
situations invitations are not needed. For example, explicit denoting who has the file in question). If desired, the
computer-based invitations are often not needed if the col- Worker searching for the file may go to the one who has it
laboration is within a small group of people who know that to share information.

they are supposed to be working on some collective task, o, of these cases, participants know that they're work-
Often, social pressures will serve to keep uninvited partiCiz,g on the same or similar tasks because they are interacting
pants out of the collaboration, without the need for stricl;ih the same physical object. Rendezvous is based on the
machine-enforced invitation protocols. And of course, Seréfsparing of this common object. Collaboration is trivially
dipitous collaboration doesn't require invitations by itSgagy although not required. Table 1 lists some characteristics
nature. of collaboration which may make explicit or implicit session

But what about rendezvous? What can we do to make thmeanagement more effective.

process of joining the collaboration as light-weight as possiye have described how implicit session management would

ble? In the models we examined earlier, rendezvous Wagay from the user's perspective, but have not yet addressed
accomplished by some mechanism orthogonal to the centrgle jssye of what system-level facilities are required to
task at hand (requiring the user to browse a list of confef, jement such a model. The next section presents a theoret-
ences before being able to enter a shared editor, for exafia| model for a service which can automatically provide
ple). A more direct approach would be to have the act gfyjicit (as well as explicit) session management facilities to
opening the object of the collaboration provide the potenti

, oL lications.
for collaborative activity itself. PP

ACTIVITY INFORMATION AS A FOUNDATION FOR of two objects match exactly), then the session management
SESSION MANAGEMENT service can take action to allow the users to enter into a col-
It is our thesis thadctivity informationcan serve as a foun- laborative situation.
dation for building a powerful and flexible session manage-
ment service, with application beyond that of implicit For example, if two users edit the same file, the session man-
session management only. Activity information is informa-agement service can notify the users of this fact and allow
tion which contains details of the current tasks which argéhem to easily enter into a “spur of the moment” collabora-
being run across the network: the users on the systems, ttign. The mechanics of joining a collaborative endeavor
applications or tasks they are currently engaged in, and tietosely match the human dynamics of collaboration. When
objects of those tasks (that is, the data on which the applicewo coworkers wish to work on a paper together, one will
tions are operating). typically say, “Let's get together sometime after lunch and
finish up the budget.” Néormal invitations are issued, and
At any given point in time there are a number of activitieno name is given to the activity. Instead, the coworkers sim-
which exist across the network. We can think of an activityply begin working on the budget at or about the same time.
as a tuple: The action of working on the same budget implicitly carries
with it the notion of collaboration. Whereas in the explicit
An = (Un, Tn, On) forms of session management the burden of labor is on the
users of the system, in implicit session management the sys-
WhereA,, represents theth activity. This activity is com- tem itself can assume the task of detecting and handling
prised ofUy, T,, andO, which respectively represent thélh potential collaboration.
user, task (application), and object (data).
Note that this form of implicit session management, because
For the purposes of session managenmigp&andT, can be it is so transparent, requires applications or the collaboration
thought of as simply tokens which uniquely identify the usesupport environment to provide powerful mechanisms for
and the application he or she is working with. The mappinggolicy controls to allow users to enable, disable, or otherwise
between users and applications, and their tokenarld T, alter the behavior of the session management service. Obvi-
must be one-to-one. ously we don’t want to automatically be thrown into a shared

)])) editor anytime we happen to open a file that another person
Objects are somewhat more complicated, since differemtas open.

applications may operate on different data domains. For
example, an editor may operate on a text file, while a calerrhe mechanisms for publishing and retrieving activity infor-
daring program may operate on a section of an appointmentation, for generating unique object names within a
database. Each of these data sets possess fundamentally difmespace, and for taking appropriate action upon detection
ferent semantics of use and representation. of potential collaboration are defined by particular imple-

. . B mentations of this model. We now describe our system
Thus theO, token consists of aEamespace identifie@nd a which implements implicit, artifact-based session manage-

namewhich is valid within that namespace. The namespacgent using the model of activity information described
defines the type of the data set the application is operatinghove.

on. Examples of namespaces include files, database selec-
tions, and so forth. Each namespace defines a set of nam

e . d e ob kﬁ?ERMEZZO IMPLEMENTATION
boltiiasdiielideiladagtinlaamisefig € objec gtermezzo is a collaboration support environment [3] which

Lhyeg Li?c;ﬁzer?;h Feo\:vi?%ﬁn:rﬁ)leeﬁ:mpeagggélear file is represente addressing issues related to session management and other
collaborative activities. The goal of the system is to facilitate
o . the sharing of “coordinating” information to link multiple
Implicit Session Management o . collaborative applications into a more holistic environment.
Applications that wish to participate in implicit session man-Session management is one form of coordinating informa-
agement must publish activity information so that it can bgjon which Intermezzo makes available to applications.
made visible to the session management service. When per-
forming implicit session management, the session managitermezzo provides a set of run-time services, programming
ment service will automatically detect potential collaborativelibraries, and conventions that applications can use to partic-
situations and take “appropriate” action (as described to it bipate in a session management service, among other things.
applications or user preferences). There is no need for usargermezzo uses a publish/subscribe model to make informa-
to explicitly issue invitations or create sessions. tion available across the network. A simple object database

])) manages the information published by applications and
The session management service detects potential collabofgakes it available to interested parties [6].

tive situations by looking for overlaps or confluences in the

activity information published by applications across the netThere are three main abstractions used in the Intermezzo
work. When two activity tuples exist which contain the samémplementation: Threads (abstraction for computation),
object token (that is, when both the namespace and the namerts (abstraction for communication), afksources

(abstraction for data). These abstractions are used through-
out Intermezzo: both in the run-time component, and in th
programming interfaces used by application developers. App 1 (c\

Communication between threads is handledPyts . A
Port is an abstraction for a half-duplex communication chan-
nel. Port subclasses can implement particular transports an= ~

r (3

semantics. Some types of Ports can only transfer dat
between threads in a single address space (sutfess
sageQueue ports, which connect the threads which make
up the Intermezzo run-time service), while others can be
used for communication between threads in different addreg App 3 (C\
/

spaces (such &emoteProcedureCall ports, which are
used to connect client applications to the Intermezzo server

The data objects that Intermezzo manages are called

Resources . Resources are essentially objects which con-

tain lists of attributes (key-value pairs) and have types and

unique IDs.Resources maintain notions of ownership —® Port
(the application which created a given resource) and permis- () Thread
sions (who is allowed to view and update given resources). [] Process
All resources can “pack” and “unpack” themselves in a num-

ber of data interchange formats for transmission over the net-) . .
work into another address space Figure 1: The Intermezzo Run-time Architecture

Intermezzo Server Process

* Notify the server about any policy constraints desired by

Intermezzo Programming Interface the user or the application itself.

Intermezzo provides a client-side library which application
developers can use to interact with the Intermezzo run-timEurther, applications are free to use the resources they have
service. This library uses the same abstractions used intgrublished for other purposes, such as storing user prefer-

nally by the run-time serviceThreads , Ports , and ences or application defaults. Applications can update and

Resources). A Client thread is automatically instanti- access the information stored in these resources as long as
ated by the library to handle communication to the servethey have the appropriate permissions.

process. The components of the activity information model

presented above map directly into resources in Intermezzgitermezzo Run-time Architecture

users, tasks, and objects are all resources. A special “Cofine |ntermezzo run-time system is built as a multi-threaded

tainer resource” called ahctivityRecord ~ holds refer- gserver (see Figure 1). 8erver thread is instantiated once
ences toUser, Task, and Object resources which for every connection to a client, and handles servicing
together represent one activity. requests and replies to and from the client application. Other

. I . threads in Intermezzo includeMain thread (responsible
Object resources maintain their namespace and name aSr creating other threads as needed), anCheck-

attributes. The client-side code in Intermezzo is responsibl§q;yier thread (which can periodically flush the database
for generating unique, network-wide names for any give

. e X o stable storage).
object within a particular namespace.

.The Intermezzo run-time service stores resources in a simple
'Bbject database. Whenever the database is updated, Inter-
mezzo searches fdxctivityRecords containing refer-

Whenever an “Intermezzo-aware” application is started,
publishes anActivityRecord resource representing

itself, its user, and the data it is operating on. Essentiallynceg g objects which have the same namespace and name.
enabling this behavior requires the insertion of one line ofhis search process is implementedtiggers a technique

code into the application’s start-up routine. This is all that igjeye|oped iraccess-orientegrogramming [14] that allows
required to generate activity information which may be used,,jiications of a data value to automatically cause some

by other applications, and by the Intermezzo session Malion to take place.
agement facilities.

The particular actions that Intermezzo takes when it detects a
potential for collaboration depend on the “intelligence” of
the application, and the desires and preferences of the users.

* Request alnd nakr;dle notification from the server whenevgy, (e case of collaboration-aware applications, Intermezzo
a potential collaboration exists. may be configured to generate events to the applications

Applications which wish to be “better behaved” under Inter
mezzo should take several more actions, however:

(say, the text editors being used to work on a budget). Thin Example: File Objects

applications receive these events and go into “shared” modé&n example may help clarify how object resources are gen-
erated and used for session management. The most common

In the case of collaboration-naive applications, Intermezzgype of object which is used by applications is the simple

can generate a sequence of messages to a shared windip

system to instruct it to begin sharing the applications, even

though they may have been written as single-user tools. When an application which operates on files (say, a shared
editor) is started, Intermezzo publishes Activity-

The Intermezzo server is capable of dynamically loadingRecord which represents the user of the application, the

new thread objects into its address space at run-time. Thépplication itself, and the file the application is operating on.

feature makes the server extensible to new behaviors without

the need to recompile the entire system. The Object resource is constructed with a namespace of
File . A name is generated which can be used to uniquely

Of course, applications can implement their own policies on _ _ L . .
top of the information provided to them by Intermezzo. Everig our implementation (which is on Unix), the unique name
though an application may receive an event from Intermezz@" & 9iven filef is constructed from the hostnarkeon

indicating a potential collaboration exists, the application jgvhich the filesystem containing the file is mounted, the name

not required to act on it. The application may go directly intd! the filesystent- the file resides on, and the inode nurriber

collaboration mode, ask the user if it should go into collabo®f the file on that filesystem.

ration mode, or ignore the event entirely. .
ame = (H¢, Fy, 1y,

Note that it 'S possible to use the Intermezzo facilities fo[I'his scheme (which is similar to that used by [11]) allows us
implementing more traditional, explicit session manage- y

ment. Applications simply tell Intermezzo to not generateto create an identifier for a file which has the following prop-

collaboration events, or ignore them when they are receive§€s:

The process of browsing users and activity across the net- The Intermezzo names for two different files are guaran-

work simply becomes a select operation on the database to . .
search for the data the application is interested in. teed.to be different, even if the pathnames used to refer to
the files are the same.

Intermezzo adds power to files and other system objects in |t is impossible to generate two distinct names for the
much the same way that graphical user interfaces have: same file, even if different pathnames are used to refer to
clicking on a document in a GUI “magically” launches an the file (or if the file is remote mounted on another
application and loads that file. What had, prior to the advent machine).

of GUIs, been a relatively static, inanimate object suddenl .) . .)
acquired a new property: touching it causes some action t%)hat is, there is a network-wide unique one-to-one mapping
take place in the system. Intermezzo adds another propef§tween Intermezzo file names and actual files.

to files: touching them can potentially place the user into
collaborative situation with the other users who are acces
ing that file.

énce theUser, Task, andObject resources have been
created, they are published as part of a Aetwity-
Record resource which represents one instance of a partic-

By providing mechanisms which allow applications toular activity (a single user working with an application on a

access session management services, Intermezzo addred@dcular data object). The Intermezzo run-time service

several of the problematic characteristics of typical sessioffceives the newctivityRecord and searches its data-
management services: base of resources, looking for a confluence inQbgect

NameandNamespace attributes.

» By providing a library to application developers to imple- — . -
ment session management, Intermezzo keeps developdfdermezzo assumes that applications and users will partici-

from having to rebuild session management facilities on Rate in @ number of conventions that determine the activity
case-by-case basis. which will be taken when a confluence is found. Whenever a

confluence occurs, Intermezzo will retrieve an attribute
* The Intermezzo session management facilities are flexgalled Colab Action on theTask resources associated
ble enough to support a range of applications, and typinith the two overlappingActivityRecords . The
cally provide greater power than the session managemegblab Action attribute is used to tell Intermezzo how to
subsystems provided by current applications. handle the potential collaboration. Possible courses of action
dnclude generating events to the application, or running an
fbitrary program. Application developers can decide how
their applications will handle potential collaborations by
using different values for th@olab Action attribute.

* As a central point of control, Intermezzo allows users t
easily change session management behavior across ap
cations.

Intermezzo also examines the value of @wab Allow example, if a user is already engaged in a video conference,
attribute on theUser resources associated with the twoan application may decide to use pop-up natifications to the
overlapping ActivityRecords . By convention, Inter- user, rather than audio notifications which may potentially
mezzo treats th€olab Allow attribute as a list of users disrupt the conference.

with whom collaboration will be initiated whenever a poten-

t|a| fOI’ CO||ab0ratI0n eX'StS If the “Ca”'ng” user |S not II’] the Per-User and Per-App||Cat|On Data Storage

Colab Allow list for the “receiving” user, then Inter- gsince Intermezzo creates objects to represent users and
mezzo takes no action upon detecting the potential collabgppjications, those objects are obvious places to store infor-

ration. Users can exert control over the process Ofation about user preferences, “personal data,” and applica-
collaboration by changing the value @blab Allow on tjon defaults. Intermezzo provides an APl which can be used

theUser resource which represents them. to access this information across a network.

USER PERSPECTIVES Data Interchange

Our implementation provides the desired features at the usghe facilities provided by Intermezzo can be used as a gen-
level. By handling the coordinating of user activity informa-grg|-purpose data interchange facility. While not suitable for
tion internally to the session management service, we do Nafgh-pandwidth transmission, applications which need to
force the users of collaborative applications to perform th@ychange relatively small amounts of data, or have data stor-
coordinating tasks themselves. Further, the system is vefye needs which are closely matched to the services pro-

flexible in the actions it can take when a potential collaboragiged by an object database may find Intermezzo useful.
tion occurs.

Intermezzo satisfies the goals of supporting Iight-weightSTATUS

transparent collaborative rendezvous in which the act dpOth the Intermezzo programming interface and the run-time

accessing an object provides the trigger for collaboratiors€rVice are implemented in C++. The total system is approx-

There is no need for an orthogonal set of session managd@tely 25,000 lines of code. We are currently using Trans-

ment actions which the users must use to enter into a collaBo't-Independent ~ Remote Procedure Calls ~ for
orative task. communication between clients and the server. Our imple-

mentation is based on the Solaris 2.3 operating environment,

Further, Intermezzo supports serendipitous collaboration iAnd runs on Sun SPARCstations.
non-communication-oriented applications. Awareness is
enhanced through the use of serendipitous encounters. ~ SUMMARY AND FUTURE DIRECTIONS

We have presented a model in which activity information
Finally, the facilities available to Intermezzo aren’t limited tomay be used as a basis for session management in collabora-
supporting implicit session management only. Applicationsive applications. The use of activity information allows us to
which need heavy-weight, explicit forms of session manageachieve two goals: we can support very light-weight implicit
ment can also be constructed using Intermezzo. The systefarms of session management, and we can increase the over-
provides a generally useful software substrate which is suffiall flexibility of all forms of session management by using
cient for implementing an array of policies and mechanismsactivity information as an input to both users and applica-

tions.
OTHER APPLICATIONS]
There are a number of applications of the models we hafgur system, Intermezzo, provides a software substrate for
developed for Intermezzo. information storage and retrieval in a network setting, along

with programming interfaces and conventions for informa-
- . tion sharing in collaborative applications. Intermezzo has
Activity Information as Input to Users roven to be a powerful tool for implementing the session
We can use the collected information about activity to prop P P 9

) management model described here.
vide awareness about users across the network. Users can

know if a coworker is working on an important documentc,rrently our work on Intermezzo is focusing on a number
and should not be interrupted. A number of activity monitor,

>0 . . :) . of directions. First, more powerful mechanisms for policy
applications have been built which provide this service. (fOggnro| are needed. We are investigating formalisms to
example, [9]). Used in this way, activity information is an

. hich all h ke iud b express policy constraints in collaborative settings. Second,
Input to users which allows them to make judgments abole 5o investigating implementation issues related to Inter-
whether or not to interact with a colleague.

mezzo. Our publish/subscribe object database approach has
so far proven sufficient. We are investigating how scalable
Activity Information as Input to Applications our approaches are, and what types of implementations
One aspect of activity information which has not been fullymight be needed to support further types of information shar-
addressed is the use of activity information as input to appling.

cations. If activity information is widely available, applica-

tions can be written to take user activity into account. For

Usability studies to determine the impact and applicability of 7]
different forms of session management will be required to
assess how these models of session control can be used
effectively in collaborative systems.

We plan on making a public release of Intermezzo once the
code is fully stable and portable, and once we have experiIg]
ence building a number of testbed applications on the sys-
tem.

ACKNOWLEDGEMENTS
This work is sponsored by Sun Microsystems, Inc. We are[®]
grateful for their generous support.

REFERENCES

[1] Ahuja, S.R., Ensor, J.R., Horn, D.N. “The Rap- [10]
port Multimedia Conferencing SystemPro-
ceedings of Conference on Office Information
SystemsPalo Alto, CA: IEEE, 1988, 1-7. [11]

[2] Crowley, T., Milazzo, P., Baker, E., Forsdick, H.,
and Tomlinson, R. “MMConf: An Infrastructure
for Building Shared Multimedia Applications.”
CSCW 90: Proceedings of the Conference on
Computer-Supported Cooperative Workos [12]
Angeles, CA: ACM, 1990, 329-342.

[3] Dewan, P., and Choudhary, R. “Flexible User
Interface Coupling in a Collaborative System.”
Reaching Through Technology, Proceedings of
ACM CHI ‘91: Conference on Human Factors in
Computing Systemd&New Orleans, LA: ACM, [13]
1991, 41-48.

[4] Dewan, P., and Choudhary, R. “Primitives for
Programming Multi-User InterfacesUIST 91:
Proceedings of the ACM Symposium on User
Interface Software and Technologiilton Head,

SC: ACM, 1991, 69-78. [14]

[5] Dourish, P., and Bly, S. “Portholes: Supporting
Awareness in a Distributed Work Groustrik-
ing a Balance, Proceedings of ACM CHI ‘92:
Conference on Human Factors in Computing
SystemsMonterey, CA: ACM, 1992, 541-458.

[6] Edwards, W. KeithIntermezzo Implementation
Notes Georgia Tech GVU Center Technical
Report GIT-GVU-93-42, 1993.

Gibbs, S.J. “LIZA: An Extensible Groupware
Toolkit.” Wings for the Mind, Proceedings of
ACM CHI ‘89: conference on Human Factors in
Computing Systemdustin, TX: ACM, 1989,
29-36.

Grief, I., and Sarin, S. “Data Sharing in Group
Work,” Computer-Supported Cooperative
Work: A Book of Reading#rene Grief, ed. San

Mateo, CA: Morgan Kaufmann, 1988, 477-508.

Manandhar, S. “Activity Server: You Can Run
But You Can’t Hide.”Multimedia for Now and
the Future: Proceedings of the 1991 USENIX
Conference Nashville, TN: USENIX Associa-
tion, 1991, 299-312.

NCSA Collage for the X Window System User’s
Guide National Center for Supercomputing
Applications.

Patel, Dorab, and Kalter, Scott D. “A UNIX
Toolkit for Distributed Synchronous Collabora-
tive Applications.” Computing System®erke-
ley, CA: University of California Press, 1993, p.
105-134.

Patterson, J. F, Hill, R. D., Rohall, S. L., and
Meeks, W. S. “Rendezvous: An Architecture for
Synchronous Multi-user ApplicationsCSCW
90: Proceedings of the Conference on Com-
puter-Supported Cooperative Workos Ange-
les, CA: ACM, 1990, 317-328.

Roseman, M., and Greenberg, S. “GroupKit: A
Groupware Toolkit for Building Real-Time Con-
ferencing Applications,"Sharing Perspectives:
Proceedings of the Conference on Computer-
Supported Cooperative WQrkCSCW'92, Tor-
onto, Ontario: ACM, 43-50.

Stefik, M.J., Bobrow, D.G., and Kahn, K.M.
“Integrating Access-Oriented Programming into
a Multiparadigm EnvironmentIEEE Software
3,1, IEEE Press, January, 1986, 10-18.

