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Abstract1

The peer to peer (P2P) file sharing systems such as Gnutella
have been widely acknowledged as the fastest growing In-
ternet applications ever. The P2P model has many poten-
tial advantages due to the design flexibility of overlay net-
works and the server-less management of cooperative sharing
of information and resources. However, these systems suf-
fer from the well-known performance mismatch between the
randomly constructed overlay network topology and the un-
derlying IP layer topology for packet routing. This paper pro-
poses to structure the P2P overlay topology using a capacity-
aware multi-tier topology to better balance load at peers with
heterogeneous capacities and to prevent low capacity nodes
from downgrading the performance of the system. To study
the benefits and cost of the multi-tier capacity aware topol-
ogy with respect to basic and advanced routing protocols,
we also develop a probabilistic broadening scheme for ef-
ficient routing, which further utilizes capacity-awareness to
enhance the P2P routing performance of the system. We
evaluate our design through simulations. The results show
that our multi-tier topologies alone can provide eight to ten
times improvements in the messaging cost, two to three or-
ders of magnitude improvement in terms of load balancing
characteristics, and seven to eight times lower topology con-
struction and maintenance costs when compared to Gnutellas
random power-law topology.

1 Introduction
With applications such as Gnutella [6], KaZaA [8], and
Freenet [5], the peer-to-peer (P2P) model is quickly emerg-
ing as a significant computing paradigm of the future Inter-
net. Unlike traditional distributed computing, P2P networks
aggregate large number of computers and possibly mobile
or hand-held devices, which join and leave the network fre-
quently. This new breed of systems creates application-level
virtual networks with their own overlay topology and routing
protocols. P2P systems can be broadly classified into two
categories: Structured and Unstructured P2P systems. The
primary focus of structured (distributed hash table based)
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P2P systems is on precisely locating a given object (identified
by some unique ID) within a bounded number of hops. How-
ever, the main focus of unstructured P2P systems (Gnutella
[6], KaZaA [8]) is to support approximate search and par-
tial answers in a typical distributed file sharing application.
Many agree that unstructured P2P systems are more suitable
for mass-market file sharing applications and thus there are
increasing interests for mechanisms that can make unstruc-
tured P2P systems scalable [2].

Most of the decentralized unstructured P2P overlay net-
works, such as Gnutella and KaZaA, share two unique char-
acteristics. First, the topology of the overlay network and
the placement of files within the network are largely uncon-
strained. Second, queries are flooded via a broadcast-styled
routing (bsr) algorithm across the overlay network with lim-
ited scope. Upon receiving a query, each peer sends a list of
all content matching the query to the query originator node.
In the bsr scheme, a query Q is specified by a quadruplet:
〈originator, keywords, ID, TTL〉, where Q.originator is the
query originator, Q.keywords is the list of user supplied
keywords, Q.ID is the unique query identifier and Q.TTL
is the Time-to-Live of the query. The query originator as-
signs the query Q a unique ID (Q.ID) and sets the scope
of the query Q.TTL to initTTL. When a peer p receives
a query Q from any neighbor peer q, peer p checks if it has
seen this query before by checking if it is a duplicate query
(using Q.ID). If so, peer p drops the query Q; else peer p
sends results from its local file index to peer q. If the query
Q’s TTL has not yet expired (Q.TTL > 0) then peer p for-
wards the query Q with its TTL decremented by one to all its
neighbors (except peer q).

There are several serious performance problems with the
use of such a random topology (RT) and its random broad-
cast based routing protocol. First, this approach does not dis-
tinguish peer heterogeneity in terms of their computing and
communication capacity (such as access bandwidth, CPU,
Disk I/O). It has been observed in [11] that peers are highly
diverse in terms of their network resources and their partic-
ipation times. Unfortunately, most decentralized P2P sys-
tems, construct an overlay network randomly resulting in un-
stable and less powerful peers hindering the system’s perfor-
mance. Further, a weak peer on a path between two powerful
peers throttles the throughput between the powerful peers.
Second, the random topology combined with flooding-based
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routing is clearly not scalable since the load on each peer
grows linearly with the total number of queries in the net-
work, which in turn grows with the size of the system.

In this paper, we propose capacity-based techniques to struc-
ture the overlay topology with the aim of improving the over-
all utilization and performance by developing a number of
system-level facilities.

• We propose a overlay network scheme with Multi-Tier
Capacity Aware Topologies, capacity aiming at improv-
ing the network utilization, reducing the search latency,
and improving the fault tolerance of the P2P system.

• We develop An analytical model that enables us to con-
struct multi-tier network-connection aware topologies
such that the number of lookup queries served by a
peer is commensurate with its capacity.

• Capacity guided bootstrap and topology maintenance
service that enables us to efficiently construct and main-
tain the overlay topology.

• A Probabilistic-Selective routing technique, which em-
ploys a capacity-aware routing algorithm.

2 Multi-Tier Overlay Topologies
Unstructured P2P networks such as Gnutella face a common
problem − nodes can quickly become overloaded in the pres-
ence of high aggregate query rate, and the situation may be
aggravated as the number of nodes in the system increases.
As a consequence, the system utilization decreases dramat-
ically. Therefore, our first design objective is to make the
unstructured P2P networks more scalable by promoting the
Capacity-Aware Topologies (CAT), which exploits peer het-
erogeneity with respect to bandwidth connectivity, CPU, and
Disk I/O. Our second design objective is to enable the multi-
tier topologies to scale well with increasing number of nodes
in the system. To achieve such scalability we strive to design
the CAT construction and maintenance algorithms with two
aims. First, we want to avoid overloading any of the nodes
by explicitly taking into account of their capacity constraints.
Second, we want to keep nodes with low capacities stay con-
nected.

We organize this section as follows. First we introduce the
concept of heterogeneity level (HL) and then formally intro-
duce the three classes of multi-tier capacity-aware topolo-
gies. To provide a qualitative comparison among the three
types of topologies, we develop a set of metrics to character-
ize their performance in terms of messaging bandwidth, load
variance, query capacity, query latency, and fault-
tolerance in terms of node connectivity. We then present an
analytical model and algorithms for construction and main-
tenance of three classes of multi-tier topologies.

2.1 CAT: Capability-Aware Topologies
Before we describe the design of multi-tier capability-aware
overlay topologies, we introduce the concept of Heterogene-
ity Levels, which is used as a guideline to construct con-
nection aware topologies, and a set of Performance Metrics,
which serve as the basic model to evaluate and compare dif-
ferent classes of overlay topologies.

We classify nodes into Heterogeneity Levels (HLs) based
on their capabilities with level zero used to denote the least
powerful set of nodes. Peers at the same heterogeneity level
are assumed to be almost homogeneous in terms of their ca-
pability. The key idea is to ensure that two nodes whose HLs
vary significantly are not directly connected in the overlay
network. So, we allow a connection between two nodes i
and j only if |HL(i) − HL(j)| ≤ 1. In the following sec-
tions of this paper, we assume that the set of node classes
are given to us, and that each node class is associated with
a scalar capability C (presumably based on access network
bandwidth).

Classifying nodes into capability classes is vital for the per-
formance of the P2P system for at least the following rea-
sons: (i) Weak nodes are prevented from becoming hot-spots
or bottle-necks that throttle the performance of the system,
(ii) Avoiding bottle-necks decreases the average query re-
sponse time as perceived by an end user, and (iii) From the
perspective of the P2P system designer, load balanced archi-
tectures improve the overall throughput of the system. For in-
stance, we can use this notion of heterogeneity level to avoid
a weak node from suffocating the performance of the system
as follows. Given the fact that we construct the overlay net-
work by only connecting nodes of comparable HLs, we can
reduce the load on weak nodes by constructing topologies
such that the connectivity of the nodes increases with their
HL. Hence, a powerful node would maintain more connec-
tions and would receive more queries on an average when
compared to a weak node. In short, our capability-aware
overlay topologies achieve significant performance gains by
getting more work done by the powerful nodes and reducing
the workload on the weaker nodes.

2.2 Three Classes of Multi-Tier Topologies
We first formally define three classes of overlay topologies:
Hierarchical Topology, Layered Sparse Topology and Lay-
ered Dense Topology. We characterize an overlay topology
by the type of connections maintained by each node in the
system.

We now formally define and analyze the performance char-
acteristics of these three classes of overlay topologies.

Definition Multi-Tier Topologies: Let HL(p) denote the het-
erogeneity level of peer p. Let maxHL denote the class
of peers at the maximum heterogeneity level. A multi-tier
topology is defined as a weighted, undirected graph G:〈V,E〉
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where V is the set of nodes and E is the set of edges such that
the following conditions are verified:

1. Connectivity Preserving Rule: ∀p ∈ V , if HL(p) <
HL(maxHL) then ∃q ∈ V such that HL(q) = HL(p)+
1 ∧ (p, q) ∈ E

2. ∀(p, q) ∈ E, assuming HL(p) ≤ HL(q) without loss
of generality, we have

(a) Hierarchical Topology: p, q ∈ maxHL ∨
(

HL(q) = HL(p)+1 ∧ 6 ∃q′ 6= q s.t. (HL(q′) ≥

HL(p) ∧ (p, q′) ∈ E)
)

(b) Sparse Topology: p, q ∈ maxHL ∨ HL(q) =
HL(p) + 1

(c) Dense Topology: p, q ∈ maxHL ∨ HL(q) =
HL(p) + 1 ∨ HL(q) = HL(p)

Informally, a hierarchical topology is a pure tree-like topol-
ogy, except that the nodes in the highest HL are strongly
connected (but not completely connected). An example 3-
tiered hierarchical topology is shown in Figure 1. A sparse
topology improves the fault-tolerance and reduces the diame-
ter of the hierarchical topology by permitting a node to main-
tain connections with more than one node at its immediate
higher level, as illustrated in Figure 2. A dense topology
is equivalent to the basic multi-tier topology that adds no
further restrictions on the connections between nodes; see
Figure 3. Note that constraint (1) in the definition of the
topologies is very important to maintain the connectivity of
the overlay network; while constraint (2) is responsible for
the differences observed in the performance trends of these
three classes of multi-tier overlay topologies.

2.3 Performance Characterization of Three
Multi-Tier Topologies

2.3.1 Performance Metrics

We characterize the goodness of an overlay topology using
the following five metrics.

Amortized messaging bandwidth: Amortized messaging band-
width is measured as the ratio of the total capacity-aware
bandwidth (CAB) consumed by a query to the number of re-
sults obtained. Capacity-Aware Bandwidth (CAB) is defined
as the ratio of the total number of messages sent/received by
a node to the node’s capacity.

Load Variance: Load on a node is measured as the ratio of
the total number of messages sent/received by a node to its
capacity, i.e., the amount of CAB expended by a node in the
system. We characterize load distribution of a heterogeneous
P2P system by the variance of load over all nodes in the sys-
tem.

Coverage: Number of nodes that receive a broadcast query
whose initial TTL was set to initTTL.

Amortized Latency: Ratio of total response time for a query
to the number of results obtained.

Fault-Tolerance: Fault-tolerance is measured as the fraction
of the number of results obtained when a random set of nodes
fail.

2.3.2 Performance Trends

Having formally defined the overlay topologies, we now dis-
cuss in depth their performance trends with respect to various
performance metrics listed in section 2.3.1.

Amortized messaging bandwidth: In a hierarchical topology,
the tree structure ensures that there is no duplication of queries
(except for the nodes at the strongly connected highest HL).
However the increase in the number of duplicate queries in
the sparse and the dense topology (due to redundant paths
in the overlay topology) increases their amortized messaging
bandwidth requirement. In comparison to a random topol-
ogy, we achieve a huge bandwidth savings because our capability-
aware overlay topologies ensure that the number of messages
required to be handled by a node is commensurate with its
capability.

Load Variance: In a hierarchical topology, due to its tree-like
structure, the nodes at the highest HL are likely to be more
heavily loaded (relative to their capability) than the nodes at
lower levels, thereby making the load distribution somewhat
skewed. Nevertheless, our multi-tier topologies, by their very
structure, ensure that the load on a node is commensurate
with its capability, and hence show remarkably better load
distribution when compared to a random topology that is ag-
nostic to peer heterogeneity.

Coverage: A hierarchical topology’s tree-like structure in-
creases the diameter of the overlay network, and tends to
bring down the coverage when compared to a random topol-
ogy. Also, by the structured nature of sparse and dense topolo-
gies, they reduce the number of duplicate queries, and hence
achieve higher coverage, when compared to a random topol-
ogy.

Amortized Latency: Latency is much lower in the multi-tier
topologies primarily because they largely avoid weak nodes
from appearing on a overlay path between two powerful nodes.
Assuming that the communication latency between two nodes
is constrained by the weaker of the two nodes, the response
time (and consequently amortized latency) in a random topol-
ogy would be much higher than a multi-tier topology.

Fault-Tolerance: In a hierarchical topology, if a node fails,
then the entire sub-tree rooted at that node gets disconnected
from the P2P network temporarily. The sparse and dense
topologies show increasingly higher fault tolerance, but still
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Figure 1: Hierarchical Topology
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Figure 2: Sparse Topology
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Figure 3: Dense Topology

they assign higher responsibility to higher level nodes thereby
making them marginally weaker than the random topology.

2.4 Constructing CATs: Analytical Model
Having presented three classes of multi-tier capability-aware
overlay topologies and analyzed their performance trends with
respect to various performance metrics, we now turn our at-
tention to constructing such overlay topologies. We utilize
an analytical model described in [12] that provides direc-
tives to construct an overlay topology that minimize the vari-
ance of CAB over all nodes in the system. This not only
ensures that all nodes contribute equal amounts of CAB to
the P2P system (thereby, eliminating bottle-necks in the sys-
tem), but also significantly reduces the amortized messaging
bandwidth requirement.

3 CAR: Capability-Aware Routing
3.1 Design Ideas
Recall the broadcast styled routing (bsr) technique used in
most Gnutella-like P2P systems today, query originator ini-
tializes Q.TTL to maxTTL and consequently the query
Q reaches all peers that are at most maxTTL hops from
the originator. Several threshold based iterative algorithms
have been proposed to improve the performance of the rout-
ing algorithm. For example, the restricted depth first search
(rdfs) or the iterative deepening technique attempts to be
lucky by satisfying the query within a smaller scope (fewer
hops) [13]. Each query is associated with another parame-
ter Q.threshold, specifying the number of results required.
The query originator iterates over query’s initTTL, starting
from Q.initTTL = minTTL to maxTTL (minTTL and
maxTTL are system parameters) until the query Q is sat-
isfied. However, all these routing techniques do not exploit
the huge variances observed in terms of both the number of
documents shared by each peer and the bandwidth capability
of different peers. In an open P2P system like Gnutella in
which a large number of non-cooperating peers are present,
it has been observed that a large number of peers (70%) are
free-riders [1] and that about 90% of documents is shared by
about 10% of the nodes [11]. This means that most of the

peers do not contribute to the peer community but merely
utilize the resources provided by a small subset of peers in
the community.

The key idea behind our probabilistic selective routing (psr)
algorithm is to promote a focused search through selective
broadcast. The selection takes into account the peer hetero-
geneity and the huge variances in the number of documents
shared by different peers. Our routing algorithm iterates over
the number of neighbors to whom the query is forwarded at
each step. This is accomplished by adding a breadth param-
eter B to the query. The query originator iterates over the
breadth parameter Q.B from minB to maxB (minB and
maxB is a system defined parameter). In each iteration the
query Q takes maxTTL hops but is forwarded only to Q.B
neighbor peers at each hop. A main distinction of our algo-
rithm, in contrast to other existing search schemes, is that, in
a given iteration when the query is required to be forwarded
to say n neighbors, conscious effort is put forth to ensure
that the query is sent to the best subset of n neighbors, rather
than any or all of the n neighbors. We use a capability-aware
ranking algorithm to select the best B neighbors from a set
of neighbor peers. The ranking algorithm also takes into ac-
count the performance of peers in the recent past and dynam-
ically updates the rankings as peers join or leave the system.

The probabilistic selective routing algorithm comprises of
three major components: Ranking neighbor peers, Process-
ing a query using the ranking information, and Maintaining
the rankings up-to-date. We below describe the ideas of the
algorithmic design of these three components. Readers may
refer to [12] for the algorithm details.

3.2 Ranking Neighbor Peers
In a P2P system, peers are constantly interacting with their
neighbors as a part of their query forwarding responsibility.
Also, the results of a query retrace the path to the query orig-
inator. Note that the results forwarded to peer p by its neigh-
bor peer q not only includes the results from the local file
index of peer q, but also includes the results from other peers
which received the query via peer q. A peer p could build the
following metrics to rank the goodness of a neighboring peer
q based on its interactions with peer q:

4



RV2

RV3

RV4

RV6

RV5

RV6

RV1 > RV2 > RV3 > RV4 and RV5 > RV6
RV1 > RV2 > RV3 > RV4 and RV5 > RV6

Q.B = 2Q.B = 1

x1

x2

x3

x4

RV5
x5

x6

x1

x2

x3

x4

x5

x6
RV1

pqpq
RV2

RV3

RV4

RV1

Figure 4: Probabilistic Selective Algorithm: Illustration

• Max Degree: Degree refers to the number of neighbors
to which a peer is connected. Peers maintaining large
degree can be expected to have high processing power
and access network bandwidth.

• Max Results: The number of results returned per query
by a neighbor over the last T time units.

• Max Rate: The ratio of the number of results returned
per query to the time taken to return them over the last
T time units.

3.3 Probabilistic-Selective Routing
Query processing using the probabilistic selective routing tech-
nique consists of three steps: (i) The query originator iterates
through the breadth parameter Q.B from minB to maxB
until the query Q is satisfied. In each iteration (if the query is
not yet satisfied), the query originator issues the query with
the query’s TTL set to maxTTL. (ii) When a peer p receives
a query Q from peer q, peer p chooses the best Q.B neigh-
bors (excluding peer q) and forwards the query only to them.
(iii) When a peer q receives the results for a query Q from
its neighbor peer p it updates the goodness metric for peer p.
Figure 4 illustrates our algorithm at peer p for Q.B = 1 and
Q.B = 2 with ranking values RV 1 > RV 2 > RV 3 > RV 4
and RV 5 > RV 6.

3.3.1 Maintaining Rankings Up-To-Date

The key problem in maintaining the rankings up-to-date is
the following: Say at time instant t, a peer p ranks its neigh-
bors X = {x1, x2, · · · , xn} as x1 � x2 � · · · � xn. Let the
average breadth parameter (Q.B) at which a typical query is
satisfied be b. So, peer p sends most of its queries to peers
x1, x2, · · · , xb at time t′ (t′ > t). Consequently, the rank-
ing measures of peers xb+1, xb+2, · · · , xn are not updated
by peer p since peer p did not forward queries to (and thus
not get results from) these peers. Hence, changes to the file
indices of peers in the overlay network that are accessible
through peers xb+1, xb+2, · · · , xn are not considered subse-
quently.

To capture the dynamics of the P2P network we modify
the neighbor selection step as follows: Instead of determin-
istically selecting the best Q.B peers, peer p selects Q.B
peers probabilistically, that is, each of the neighbor peer xj

is selected with a probability proportional to its ranking value
RV (xj). Hence, most of the queries get routed through the

neighbors who have performed well before; yet, by proba-
bilistically sending the query to some inferior neighbors, peer
p can figure out if they can provide us better results now.

4 Experimental Results
We have performed three sets of simulation-based experi-
ments. The first set compares the three classes of multi-tier
topologies against a random topology using our performance
metrics. The second set evaluates our model for construct-
ing multi-tier capability-aware topologies against a random
topology. The third set studies the effectiveness of proba-
bilistic routing in handling vastly heterogeneous nodes and
trade-offs in probabilistic-selective routing algorithm.

4.1 Simulation Set Up
We implemented our simulator using a discrete event simu-
lation [4] model. The end users send queries to the system
at an exponentially distributed rate λ. The latency of a link
from node n to node m is modeled as being inversely pro-
portional to min(CHL(n), CHL(m)). The processing time of
a query at a node is modeled as a constant; especially since
the amount of computation power available to nodes is al-
most homogeneous. Our simulation setup comprises of three
main modules: the Network Generator, the Document Gen-
erator, and the Routing Simulator. Tables 1, 2 and 3 present
the major tunable parameters used in these modules. In all
these modules we chose the parameter settings from several
observations made on the real Gnutella network [11, 2].
Network Generator. We use our multi-tier bootstrap al-
gorithm and construct the overlay network incrementally by
adding one node at a time. For our simulation we use 20%,
70% and 10% of the peers for the corresponding HL = 0, 1
and 2.
Document Generator. We use Zipf-like distribution wherein
the number of documents that match the ith most popular
query is proportional to 1/iα (with α = 1). We use Docu-
ment Bias (Db) to specify non-uniform distribution of doc-
uments amongst peers (Db of 20%-80% means that 20% of
the peers hold about 80% of the documents).
Routing Simulator. The routing simulator implements one
of the following routing algorithms: broadcast styled routing
and probabilistic-selective routing.

4.2 Evaluation of CATs
We compare the performance of a hierarchical, sparse, dense
and random overlay topology using five performance met-
rics: Amortized messaging bandwidth, Load Distribution,
Coverage, Amortized Latency, and Fault Tolerance using the
broadcast style routing algorithm with initTTL equal to 7.
We conclude this section with an experiment that shows the
importance of identifying the correct number of heterogene-
ity levels (peer classes) in obtaining good performance.
Amortized messaging bandwidth. Figure 5 presents the
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Parameter Description Default
N Number of Nodes 10,000

HL Number of Peer Classes 3
C Node capability 8:4:1

Maxd Maximum Peer Degree 10
Mind Minimum Peer Degree 1

Dd Degree Distribution Power Law
(Random/Power Law)

Table 1: Network Generator

Parameter Description Default
Nd Number of Documents 100,000
Ndd Number of Distinct 10,000

Documents
Db Document Bias 20%-80%

Table 2: Document Generator
Parameter Description Default

THR Result threshold 32

Table 3: Search Simulator

amortized messaging bandwidth consumption on various
topologies. For N = 10, 000 nodes, the hierarchical topol-
ogy consumes the least amortized messaging bandwidth since
its tree-like structure minimizes the number of duplicate queries.
Also, the multi-tiered sparse and dense topologies reduces
the CAB requirement on nodes by about 6 to 10 times when
compared to a random topology because they require that the
weak nodes send/receive far fewer messages when compared
to strong (more capable) nodes. This clearly demonstrates
our claim that capability-aware topologies indeed reduce the
amortized messaging bandwidth requirement significantly.
Load Distribution. Figure 6 shows the variation of load dis-
tribution among the four overlay topologies that are normal-
ized with respect to a N = 1, 000 node random topology.
For N = 10, 000 the sparse and the dense topology show 80
to 100 times lower variance, while a hierarchical topology
shows 10 times lower variance.
Coverage. We measured the distribution of the coverage
with respect to the heterogeneity level of peers. Table 4
shows the variation of coverage with different HLs of peers
that are normalized with respect to HL = 0 peers. One key
conclusion drawn from this table is that the extra work done
by the higher HL peers rewards them with larger coverage
(and thus more results). Further, this property of fairness acts
as an important motivation for the high capability nodes to do
more work for the system.
Amortized Latency. Figure 7 shows the amortized latency
(equivalently, the response time experienced by an end-user)
of the four overlay topologies. Recall that we had, for sim-
plicity, modeled the latency of a link from node n to node
m to be inversely proportional to min(CHL(n), CHL(m)).
In a random topology, the presence of many weak nodes
on the paths between two powerful nodes is mainly respon-
sible for its latency to be about twice as large as that of
capability-aware topologies. Further, among the capability-
aware topologies, the hierarchical topology shows about 5%
and 12% lower latency than the sparse and the dense topolo-
gies; one could attribute this trend to the increasing ran-
domness in the topology from a hierarchical topology to the
sparse and the dense topologies.
Fault Tolerance. We study the fault-tolerance of the four
topologies under two conditions: Uniform Faults and Non-
Uniform Faults. Figure 8 shows the quality of the results
obtained when a random 10% of the peers fail under uni-
form faults. Quality of results is expressed as the ratio of
the number of results obtained under faulty conditions to

that obtained when all the peers were functional. For N =
10, 000 nodes, the hierarchical topology shows about 50%
lower fault-tolerance than the random topology because of
its delicate tree-like structure; while the sparse and the dense
topologies exhibit only 2-3% lower fault-tolerance because
they assign more responsibility to higher level nodes; recall
that in a random topology all nodes are treated as the same
and hence are assigned equal responsibilities.

Figure 9 shows the fault-tolerance of the topologies under
non-uniform faults with 10% of failed peers, where the prob-
ability of peer failure at HL = 0, 1 and 2 are in ratio 4:3:1
[2, 11]. For N = 10, 000 nodes, the sparse and dense topol-
ogy show about 4-5% more fault-tolerance than the random
topology and the hierarchical topology shows 20% improve-
ment as against the uniform faults case. This improvement
is primarily because the multi-tiered topologies assign more
responsibility to more capable nodes which are less likely to
fail (higher level nodes).
Importance of Choosing Correct numHL. To demonstrate
the importance of determining the correct value of numHL,
we compare the performance of a system with an incorrect
value for numHL to that of a system which used the right
value. Assume that the number of genuine peer classes in
the system is three. We constructed a hierarchical, a sparse,
and a dense topology using these peers for numHL = 2 (by
merging the top two peer classes) and numHL = 3. Ta-
ble 5 shows ratios of the performance measures obtained for
numHL = 2 to those obtained for numHL = 3. For in-
stance, a sparse topology with numHL = 2 shows 1% lesser
coverage, 3.5 times more bandwidth (CAB), 16% more la-
tency, 18% lesser fault-tolerant, and 11 times more variance
in load distribution than a sparse topology with numHL =
3. Nevertheless, observe that the results obtained for numHL =
2 is better than a random topology because the former is more
capability-aware.

4.3 Evaluation of CAR
In this section we present a detailed evaluation of our capability-
aware routing algorithm. We first show the benefits of CAR
on both a random topology and a multi-tier topology. Sec-
ond, we compare our routing algorithm with other routing
algorithms popularly known in literature, such as, iterative
deepening (rdfs) [13] and broadcast-styled routing (bsr). Third,
we show the ability of our routing algorithm to adapt itself to
the dynamics of the P2P network.
Performance Enhancements by CAR. Figure 10 shows the
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Figure 6: Variance of load/capability

Topology HL = 0 HL = 1 HL = 2

Hierarchical 1.0 5.2 15.3
Layered Sparse 1.0 3.6 7.7
Layered Dense 1.0 2.9 6.0

Table 4: Coverage vs HL for N = 10, 000
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Figure 7: Amortized Latency
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Figure 8: Fault Tolerance with uniform faults
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Figure 9: Fault Tolerance with non-uniform
faults

mean bandwidth (CAB) expended for the execution of a query.
For a random topology, CAR shows about 30% reduction in
bandwidth, while for a capability-aware multi-tier topology,
CAR shows about 35% reduction in network bandwidth.
Comparison of Routing Algorithms. Table 6 shows the
performance of several routing algorithms over a random topol-
ogy and a three-tiered sparse topology for several values of
the search threshold. The performances of the routing algo-
rithms are measured in terms of amortized messaging band-
width (based on CAB) and amortized latency (shown within
brackets). Note that PSR denotes our probabilistic-selective
routing algorithm, ITR-DEEP denotes the iterative-deepening
technique [13], BIASED-RW denotes a biased random-walk
algorithm [9] and BSR denotes the broadcast-styled routing
algorithm. In general the capability-aware topologies (CAT)
consume about 5-7 times lower amortized messaging band-
width than the random topologies (RT).

5 Related Work
In the past few years research on P2P systems has received
a lot of attention. Several research efforts have been targeted
at improving the performance of P2P search [13, 3, 9]. These
papers suggest enhancements over the naive flooding-based
algorithm by fine-tuning their search schemes based on mea-
surement studies conducted on user characteristics, distribu-
tion of files among peers, etc. For example Routing Indices
in [3] exploits the locality of the queries and the uneven dis-
tribution of different categories of files among peers.

Several have pointed out that peer heterogeneity would be
a major stumbling block for Gnutella [10, 11]. Solutions

based on super-peer architectures have been proposed in [7]
to alleviate the problem of peer heterogeneity. The super-
peer architecture can be viewed as a hierarchical topology
with numHL = 2. Our work not only generalizes numHL
to arbitrary values, promoting multi-tiered sparse topology
over the hierarchical topology, but also provides an analytical
model that yields the desired degree information to precisely
construct capability-aware overlay topologies.

Chawathe et al [2] suggest the use of dynamic topology
adaptation that puts most nodes within short reach of high
capacity nodes. Their topology adaptation scheme defines
a level of satisfaction and ensures that high capacity nodes
are indeed the ones with high degree and that low capacity
nodes are within short reach of higher capacity ones. How-
ever, it constructs and maintains topology using ad hoc mech-
anisms which not only increases the topology maintenance
cost (to maintain the level of satisfaction for every node) but
also runs into the risk of building disconnected topologies,
each of whose components are like the small world groups
observed in Gnutella. Also, the performance gains reported
in [2] are primarily due to the fact that they use one hop repli-
cation and allow nodes to maintain as many as 40-60 neigh-
bors. From well-known observations on Gnutella, it is ob-
served that even the powerful nodes maintain only about 10
neighbors. Hence, we believe that maintaining such a large
number of connections on behalf of one application is unrea-
sonable.
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Figure 10: CAR Benefits

Topology Coverage Amortized Amortized Fault Load
Type Bandwidth Latency Tolerance Dist

Hierarchical 0.97 3.06 0.96 0.96 21.0
Sparse 0.99 3.49 1.16 0.82 11.0
Dense 0.99 3.33 1.12 0.81 9.0

Table 5: Importance of choosing correct numHL

Search THR CAT-PSR CAT-ITR-DEEP CAT-BIASED-RW CAT-BSR RT-PSR RT-ITR-DEEP RT-BIASED-RW RT-BSR
1 2.11 1.75 1.45 5242 7.53 6.33 4.62 9031

(7.40) (1.75) (1.82) (24.03) (10.53) (2.54) (3.69) (35.87)
5 7.50 8.53 7.03 5242 35.15 42.17 20.53 9031

(8.41) (8.87) (7.95) (24.03) (12.65) (13.74) (15.07) (35.87)
10 15.63 17.94 14.00 5242 68.39 78.97 56.74 9031

(12.73) (13.73) (20.83) (24.03) (18.21) (19.83) (30.85) (35.87)
20 31.01 36.34 27.05 5242 130.63 150.33 104.98 9031

(18.23) (20.01) (50.34) (24.03) (26.74) (30.15) (61.32) (35.87)
30 50.93 62.93 40.83 5242 200.73 240.93 154.35 9031

(23.06) (24.62) (100.53) (24.03) (32.53) (33.83) (123.65) (35.87)

Table 6: Comparison of Routing Algorithms: N = 10, 000, numHL = 3 and initTTL = 7

6 Conclusion
The key problem that has plagued a Gnutella like P2P sys-
tems is Peer Heterogeneity. We have proposed simple yet
effective multi-tier capacity-aware topologies for improving
the P2P search performance. There are three main contribu-
tions in this paper. First, we propose techniques to struc-
ture overlay topologies taking peer heterogeneity into ac-
count; such capacity aware topologies ensure that the per-
formance of the P2P system is not hindered by less powerful
peers. Second, we developed an analytical model to enable
us to construct and maintain capacity-aware overlay topolo-
gies with good node connectivity and better load balance.
Third, we proposed a probabilistic routing algorithm that fur-
ther reduces the bandwidth consumption of our P2P system.
We used extensive simulation-based experiments and math-
ematical analysis to construct and evaluate the goodness of
capacity-aware topologies and routing algorithms over ran-
dom topologies and broadcast-styled routing algorithms. Fi-
nally, our design and techniques being simple and pragmatic
can be easily incorporated into existing systems like Gnutella.
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