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1 Introduction

Data perturbation techniques are one of the most popu-
lar models for privacy preserving data mining [3, 1]. It is
especially convenient for applications where the data own-
ers need to export/publish the privacy-sensitive data. A data
perturbation procedure can be simply described as follows.
Before the data owner publishes the data, theyrandomly
change the data in certain way to disguise the sensitive in-
formation while preserving the particular data property that
is critical for building the data models. Several perturba-
tion techniques have been proposed recently, among which
the most typical ones are randomization approach [3] and
condensation approach [1].
Loss of Privacy vs. Loss of Information.
Perturbation techniques are often evaluated with two basic
metrics, loss of privacy and loss of information (resulting
in loss of accuracy for data classification). An ideal data
perturbation algorithm should aim at minimizing both pri-
vacy loss and information loss. However, the two metrics
are not well-balanced in many existing perturbation tech-
niques [3, 2, 5, 1].

Loss of privacy can be intuitively described as the dif-
ficulty level in estimating the original value from the per-
turbed data. In [3], the variance of the added random noise
is used as the level of difficulty for estimating the original
values. However, later research [5, 2] reveals that variance
is not an effective indicator for randomization approach
since the original data distribution has to be known. In addi-
tion, paper [8] shows that the loss of privacy is also subject
to the special attacks that can reconstruct the original data
from the perturbed data.

The loss of information typically refers to the amount of
critical information preserved about the datasets after the
perturbation. Different data mining tasks, such as classi-
fication and association mining, typically utilize different
set of properties of a dataset. Thus, the information that
is considered critical to data classification may differ from
those critical to association rule mining. We argue that the
exact information that need to be preserved after pertur-
bation should be “task-specific”. Since most classification
models typically concern multi-dimensional properties, per-

turbation techniques for data classification should perturb
multiple columns together. To our knowledge, very few
perturbation-based privacy protection proposals so far have
consideredmulti-dimensional perturbation techniques.
Contribution and Scope of the paper.
Bearing these issues in mind, we have developed a random
rotation perturbation approach to privacy preserving data
classification. In contrast to other existing privacy preserv-
ing classification methods [1, 3, 9], our approach exploits
the task-specific information about the datasets to be clas-
sified, aiming at producing a robust data perturbation that
exhibits a better balance between loss of privacy and loss of
information, without performance penalty.

Concretely, we observe that the multi-dimensional geo-
metric properties of datasets are the critical “task-specific
information” for many classification algorithms. One in-
tuitive way to preserve the multi-dimensional geometric
properties is to perturb the original dataset through rota-
tion transformation. We have identified and proved that
kernel methods, SVM classifiers with the three popular ker-
nels, and the hyperplane-based classifiers, are the three cat-
egories of classifiers that are rotation-invariant.

Another important challenge for the rotation perturba-
tion approach is the privacy loss measurement (the level
of uncertainty) and privacy assurance (the resilience of the
rotation transformation against unauthorized disclosure).
Given that a random rotation based perturbation is a multi-
dimensional perturbation, the privacy guarantee of the mul-
tiple dimensions (attributes) should be evaluated collec-
tively to ensure the privacy of all columns involved and the
privacy of the multi-column correlations. We design a uni-
fied privacy model to tackle the problem of privacy evalu-
ation for multi-dimensional perturbation, which addresses
three types of possible attacks: direct estimation, approx-
imate reconstruction, and distribution-based inference at-
tacks. With the unified privacy metric, we present the pri-
vacy assurance of the random rotation perturbation as an op-
timization problem: given that all rotation transformations
result in zero-loss of accuracy for the discussed classifiers,
we want to pick one rotation matrix that provides higher
privacy guarantee and stronger resilience against the three
types of inference attacks.
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2 Rotation and Classifiers

In this section, we first describe rotation transformation
and the set of geometric properties of the datasets significant
to most classifiers, and then we define rotation-invariant
classifiers.
Notations for DatasetsTraining dataset is the part of data
that has to be exported/published in privacy-preserving data
classification. A classifier learns the classification model
from the training data and then is applied to classify the
unclassified data. Suppose thatX is a training dataset con-
sisting ofN data rows (records) andd columns (attributes).
For the convenience of mathematical manipulation, we use
Xd×N to notate the dataset, i.e.,X = [x1 . . .xN ], wherexi

is a data tuple, representing a vector in the real spaceRd.
Each data tuple belongs to a predefined class, which is de-
termined by its class label attributeyi. The class labels can
be nominal (or continuous for regression). The class label
attribute of the data tuple is public, i.e., privacy-insensitive.
All other attributes containing private information needs to
be protected.
Properties of Geometric RotationLet Rd×d represent the
rotation matrix. Geometric rotation of the dataX is gener-
ally notated as a functiong(X), g(X) = RX. Note that the
transformation will not change the class label of data tuples,
i.e.,Rxi still has the labelyi.

A rotation matrixRd×d is defined as a matrix having the
follows properties. LetRT represent the transpose of the
matrix R, rij represent the(i, j) element ofR, andI be
the identity matrix. Both the rows and the columns ofR

are orthonormal, i.e., for any columnj,
∑d

i=1 r2
ij = 1,

and for any two columnsj andk,
∑d

i=1 rijrik = 0. The
similar property is held for rows. The definition infers that
RT R = RRT = I. It also implies that by changing the
order of the rows or columns of rotation matrix, the result-
ing matrix is still a rotation matrix. A key feature of rota-
tion transformation is preserving length. It follows that ro-
tation also preserves inner product and Euclidean distance
between any pair of points. In general, rotation preserves
the geometric shapes such as hyperplane and hyper curved
surface in the multidimensional space.

Rotation-invariant Classifiers We can treat the classi-
fication problem as function approximation problem – the
classifiers are the functions learned from the training data.
Therefore, we can use functions to represent the classi-
fiers. Let f̂X represent a classifier̂f trained with dataset
X andf̂X(Y ) be the classification result on datasetY . Let
T (X) be any transformation function, which transforms the
datasetX to another datasetX ′. We useErr(f̂X(Y )) to
notate the error rate of classifier̂fX on testing dataY and
let ε be some small real number,|ε| < 1.

Definition 1. A classifierf̂ is invariant to some transforma-
tion T if and only ifErr(f̂X(Y )) = Err(f̂T (X)(T (Y )))+

ε for any training datasetX and testing datasetY .

It follows that the strict condition f̂X(Y ) ≡
f̂T (X)(T (Y )) trivially guarantees the invariance property.

If a classifierf̂ is invariant torotation transformation, we
specifically name it as arotation-invariant classifier.

The initial result shows several popular classifiers deal-
ing with numerical data are rotation-invariant. Due to the
space limitation, we will ignore the concrete proofs [4], and
summarize that KNN , general Kernel methods, SVM clas-
sifiers using polynomial, radial basis, and neural network
kernels, and Hyperplane-based classifiers are invariant to
rotation.

3 Evaluating Privacy Quality for Random
Rotation Perturbation

The goals of rotation based data perturbation are
twofold: preserving the accuracy of classifiers, and preserv-
ing the privacy of data. The discussion about the rotation-
invariant classifiers has proven that the rotation transforma-
tion theoretically guarantees zero-loss of accuracy for three
popular types of classifiers. We dedicate this section to dis-
cuss how good the rotation perturbation approach is in terms
of preserving privacy. The critical step to identify thegood
rotation perturbation is to define a multi-column privacy
measure for evaluating the privacy quality of any rotation
perturbation to a given dataset. With this privacy measure,
we can employ some optimization methods to find good ro-
tation perturbations for a given dataset.

For data perturbation approach, the quality of preserved
privacy can be understood as the difficulty level of estimat-
ing the original data from the perturbed data. Basically,
the attacks to the data perturbation techniques can be sum-
marized in three categories: (1)estimating the original data
directly from the perturbed data [3, 2], without any other
knowledge about the data (naive inference); (2) approxi-
mately reconstructing the data from the perturbed data and
then estimating the original data from the reconstructed data
[8, 6] (approximation-based inference); and (3) if the distri-
butions of the original columns are known, the values or the
properties of the values in the particular part of the distribu-
tion can be estimated [2, 5] (distribution-based inference).
A multi-colum metric should be applicable to all three types
of inference attacks to determine the robustness of the per-
turbation technique. We will focus on the first two attacks
in this paper.

3.1 Privacy Model for Multi-column Perturbation

Unlike the existing value randomization methods, where
multiple columns are perturbed separately, the random ro-
tation perturbation needs to perturball columns together,
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where the privacy quality of all columns is correlated under
one single transformation.

Since in practice different columns(attributes) may have
different privacy concern, we consider that a general-
purpose privacy metricΦ for entire dataset is based oncol-
umn privacy metric . An abstract privacy model is de-
fined as follows. Letp be the column privacy metric vector
p = (p1, p2, . . . , pd) for d columns, and there areprivacy
weightsassociated to the columns, respectively, notated as
w = (w1, w2, . . . , wd). Φ = Φ(p,w) defines the overall
privacy guarantee. Basically, the design of privacy model
should consider determining the three factorsp, w, and
function Φ. We summarize our design of privacy metric
as follows.

Unified Column Privacy Metrics Below we extend the
variance-based privacy metric [3] to the multi-column uni-
fied metric. LetY be a random variable, representing a
column of the dataset,Y′ be the perturbed/reconstructed
result ofY, andD be the difference betweenY andY′.
Let E[D] andV ar(D) denote the mean and the variance
of difference (VoD) respectively.E[D] is not effective in
protecting privacy, thus VoD becomes the primary measure
in terms of the first level of inferences. Unfortunately, this
single-column privacy metric does not work across differ-
ent columns since it ignores the effect of value range and
the mean of the original data column. It is easy to under-
stand that the same amount of VoD is not equally effective
for different value ranges. One effective way to unify the
different value ranges is vianormalization.

Let si = 1/(max(Yi) − min(Yi)), ti =
min(Yi)/(max(Yi)−min(Yi)) denote the constants de-
termined by the value range of the columnYi. The column
Yi is scaled to range [0, 1], generatingYsi, with the trans-
formationYsi = si(Yi− ti). This allows all columns to be
evaluated on the same base, eliminating the effect of diverse
value ranges. The normalized dataYsi is then perturbed to
Y′

si. Let D′
i =Y′

si − Ysi. We useV ar(D′
i), instead of

V ar(Di), as the unified column privacy metric.

Composing the Column Metrics Having the unified
column metricsp, we can compose the multiple metrics
into one metric for optimization. Letw denote the impor-
tance of columns in terms of preserving privacy. Intuitively,
the more important the column is, the higher level of privacy
guarantee will be required for the perturbed data column.
Therefore, we let

∑d
i=1 wi = 1 and usepi/wi to represent

theweighted column privacy.

The first composition function is theminimum privacy
guaranteeamong all columns. Concretely, when we mea-
sure the privacy quality of a multi-column perturbation, we
need to pay special attention to the column having the low-
est weighted column privacy, because such columns could
become the breaking point of privacy. Hence, we design the
minimum privacy guaranteeΦ1 = mind

i=1{pi/wi}. Sim-

ilarly, the average privacy guaranteeof the multi-column
perturbation,Φ2 = 1

d

∑d
i=1 pi/wi, is another interesting

measure. With the definition of privacy guarantee, we can
evaluate and optimize the privacy quality of a give pertur-
bation.

Multi-column Privacy Analysis for Random Rotation
Perturbation With the variance metric over the normalized
data, we can formally analyze the privacy quality of random
rotation perturbation. LetX be the normalized dataset,X ′

be the rotation ofX, andId be thed-dimensional identity
matrix. Thus, VoD can be evaluated based on the difference
matrixX ′−X, and the VoD for columni is the element (i,i)
in the covariance matrix ofX ′−X, which is represented as

Cov(X ′ −X)(i,i) = Cov(RX −X)(i,i)
= ((R− Id)Cov(X)(R− Id)T )(i,i) (1)

Let rij represent the element(i, j) in the matrixR, andcij

be the element(i, j) in the covariance matrix ofX. The
VoD for ith column is computed as follows.

Cov(X ′ −X)(i,i) =
d∑

j=1

d∑

k=1

rijrikckj − 2
d∑

j=1

rijcij + cii

(2)
We develop a simple method to implement a fast local

optimization. As shown in Equation 2, the privacy metric
of column i is only related to the row vectors of rotation.
Therefore, swapping the rows of rotation matrix could pro-
vide a better rotation that provides higher privacy guaran-
tee. This method can significantly reduce the search space
and thus provides better efficiency as we observed in exper-
iments.

ICA-based Attack to Rotation Perturbation Indepen-
dent Component Analysis (ICA) [7] is the most potential
method to breaching the privacy protected by rotation per-
turbation. However, we argue that ICA is in general not
effective in breaking the rotation perturbation, in practice.
ICA can be briefly describes as follows. Let matrixX com-
posed by the source signals, where each row vector is a sig-
nal, and the observed mixed signalsX ′ beX ′ = AX. ICA
model can be applied to estimate the independent compo-
nents (the row vectors) of the original signalsX, from the
mixed signalsX ′, if the four conditions are satisfied [7].

Three factors make the ICA attacks are often quite in-
effective for rotation perturbation. First, two of the four
conditions, although reasonable for signal processing, are
not common for data classification: 1) The source signals
are independent and 2) All the source signals must be non-
Gaussian with possible exception of one signal. In addition,
the ordering of the reconstructed signals can not be deter-
mined.

In practice, we can evaluate the effectiveness of ICA at-
tacks with difference between the constructed data and the
original data. Since the ordering of the reconstructed row
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Figure 1. ICA reconstruction
has no effect on privacy guar-
antee.

Random Optimization for Votes Data
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Figure 2. Example that ICA
undermines the privacy guar-
antee.
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Figure 3. Comparison on min-
imum privacy level with con-
densation approach.

vectors is not certain, we estimate the VoDs with the best
effort of thed! possible row orderings. Let̂Xk be the ICA
reconstructed data with one of the orderings, andP k

ica be
the minimum privacy guarantee for̂Xk, k = 1 . . . d!. The
ordering that gives lowest minimum privacy quality is se-
lected as the most likely ordering and the corresponding
privacy quality is the undermined privacy quality.

Algorithm. Combining the local optimization and the
test for ICA attacks, we develop a random iterative algo-
rithm to find a better rotation in terms of privacy qual-
ity. The algorithm runs in a given number of iterations.
In each iteration, it randomly generates a rotation matrix.
Local optimization through row-swapping rows is applied
to find a better rotation matrix, which is then tested by
the ICA reconstruction. We take the combinationP =
min{Pica, Popt} as the final privacy guarantee. The rota-
tion matrix is accepted as the best perturbation yet if it pro-
vides highestP among the previous perturbations.

4 Experimental Result

We design three sets of experiments. The first set is used
to show that the discussed classifiers are invariant to rota-
tions. The second set shows privacy quality of the good
rotation perturbation. The third one compares the privacy
quality between the condensation approach and the ran-
dom rotation approach. Due to the space limitation, we re-
port some results of the later two sets of experiments. The
datasets are all from UCI machine learning database. Three
results are selected to show the effectiveness of the rotation
perturbation approach.

Figure 1 represents a typical scenario that ICA attacks
are totally ineffective, while Figure 2 shows, when ICA at-
tacks are substantial, the algorithm can also find a rotation
that has the highest combined privacy guarantee in the ran-
dom rotation matrices. Figure 3 demostrates the rotation
approach can provide much higher privacy quality than the
condensation approach [1].

5 Conclusion

Loss of privacy and loss of information/accuracy are
treated as two conflict factors in privacy preserving data
classification. In this paper, we propose a rotation based
perturbation technique that guarantees zero loss of accu-
racy for many classifiers. Meanwhile, we can adjust the
rotation to find a locally optimal rotation in terms of ba-
sic privacy guarantees and possible attacks, where the opti-
mality is measured by a new multi-column privacy metric.
Experiments show that the rotation perturbation can greatly
improve the privacy quality without sacrificing accuracy.
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