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Abstract

Client side caching of location dependent queries is an im-
portant technique for improving performance of location-based
services. Most of the existing research in this area has focused on
cache replacement and invalidation through incorporating some
aspects of the spatial and temporal semantics embedded in the
location queries, while assuming an ad hoc cache placement.
Very few have studied the impact of spatial and temporal va-
lidity semantics and the motion behavior of mobile clients on
the effectiveness of cache placement and ultimately the perfor-
mance of the client cache. In this paper, we propose an adap-
tive spatio-temporal placement scheme for caching location de-
pendent queries. The cache placement decision is made accord-
ing to the potential cache benefit of the query results based on
the spatio-temporal properties of query results and the movement
patterns of the mobile client, aiming at increasing the cache hit
ratio. We introduce the concept of ‘Overlapping Cache Bene-
fit’ as a measure of the hit rate of a cached item, and present
three spatio-temporal cache placement schemes, which provide
a step-by-step in-depth analysis of various factors that may af-
fect the performance of a client cache in mobile environments.
We implemented the spatio-temporal placement model in the first
prototype of theMOBICACHE system. Our experimental evalua-
tion shows that the spatial locality and the movement patterns
of mobile clients are critical factors that impact the effective-
ness of cache placement and the performance of client cache,
and the proposed adaptive spatio-temporal cache placement ap-
proach yields higher hit ratio and better response time compared
to existing mobile cache solutions.

1 Introduction

One of the critical issues in mobile environments is the grow-
ing demand of scalable solutions for efficient delivery of content
and information services.Location Dependent Queries(LDQ)
form a special class of location-based information services in the
sense that location dependent queries are issued by mobile clients
on the move, thus the query results are dependent on the move-
ment patterns and the current location of the mobile client, no
matter whether target objects of the location queries are still ob-
jects such as gas stations, restaurants, or moving objects such as
taxi on the road.

Location-dependent information delivery faces many new dif-
ficulties inherent to mobile computing environments in addition
to the scalability and performance challenges confronted by Web
content delivery in wired networks. Caching of frequently ac-
cessed data items on the client side is an important general tech-
nique that helps address some of these challenges. By storing

copies of data objects locally, data accessibility can be enhanced
and access cost can be reduced. However, frequent network dis-
connections, mobility of the clients, and limited local resources
on the mobile clients, complicate the provision of information
delivery services to mobile users, making location-aware client
caching a challenging problem.

We argue that in a mobile computing environment, the cache
placement decision should take into account both the temporal
validity and the spatial locality of the data items to be placed in
the client cache and the motion behavior of the mobile client.
Consider a simple example in which a mobile user is driving on
the I85 North highway at 60 mph speed, and wants to find the
nearest gas stations within certain range. If the query is asking
for gas stations within 5 miles, then the spatial validity of the gas
stations returned is 5 miles. Obviously, these gas stations will
no longer be relevant after 5 minutes of driving. If the query
interval of this mobile client is typically longer than 5 minutes,
then placing these gas stations in her cache is a waste in terms of
both placement cost and replacement/invalidation cost.

Bearing these challenges in mind, in this paper we propose
an adaptive spatio-temporal placement scheme for caching loca-
tion dependent queries, which predicts the potential cache benefit
of the query results based on multiple spatio-temporal properties
of mobile clients. The main design idea of this new placement
model is based on two observations. First, in a mobile envi-
ronment, some query results may have an extremely low likeli-
hood of being used in the near future due to mobility and spatio-
temporal constraints. Thus the ability of identifying such items
and dropping them earlier instead of placing them in the client
cache and replacing them later can greatly increase the cache
hit ratio and improve the overall cache performance. Second,
due to the motion dynamics of mobile clients, such as changing
speeds and changing query intervals, an adaptive cache placement
scheme can better respond to the dynamic motion behavior and
changing query requirements of mobile clients.

Our contributions in this paper can be summarized in two
folds. First, we present three spatio-temporal cache placement
schemes, which provide step-by-step in-depth understanding of
various factors that may affect the performance of a client cache
in mobile environments. The first one is called threshold based
STP scheme, which emphasizes on the importance of combin-
ing temporal locality and spatial locality on cache efficiency. The
second approach is called Bound-based STP, which highlights the
importance of adequate control of the coordination between the
spatio-temporal placement and the ad hoc placement. The third
one is the speed and query interval adaptive STP scheme (SQI
STP), which stresses the importance of incorporating both mo-
tion pattern and query pattern into the cache placement decision.
Second, we implement and evaluate the proposed schemes in a
prototype system, called MOBICACHE.
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The remaining of the paper proceeds as follows. We give an
overview of the MobiCache system, including the reference sys-
tem model and the problem statement in Section 2. We describe
the three spatio-temporal cache placement schemes in Section 3.
The experimental evaluation of the proposed solutions are pro-
vided in Section 4. We conclude the paper with a discussion on
related work and a summary in Section 5 and Section 6 respec-
tively.

2 MobiCache System Overview

We briefly describe the reference system model, including the
basic notions and assumptions used in the paper, and the problem
statement, including two concrete scenarios and the set of critical
factors to be considered in making the cache placement decision
and how they would impact cache performance.

2.1 Reference System Model

In this paper we assume a cellular network as the underlying
infrastructure. The system consists of mobile clients, stationary
servers and mobile support stations. We also assume a geomet-
rical location model where locations are represented in terms of
two dimensional coordinates. The clients can move from one lo-
cation to another and communicate (submit queries and obtain
results) with the stationary servers through the mobile support
stations.

A Location Dependent Query (LDQ) denoted byQi (1 ≤ i ≤
n), is defined as a tuple< Oi, Lx, Ly, Ri, Fi > whereOi is
the object type being queried,(Lx, Ly) the location of the mobile
client making the query,Ri denotes the spatial range of the query,
andFi denotes the filter condition of the query. For simplicity, all
queries are assumed to be associated with a circular range. For
example,<restaurants,-77,38,2 miles, restaurant type = French
> represents the query “Show me all French restaurants within 2
miles radius from my current location (-77,38)”.

Queries are issued by the mobile client to the respective
servers through its mobile support station. For each moving query
over moving objects, the MOBICACHE system on the mobile
client will assign a query dependent time-to-live (TTL) times-
tamp to each query result set returned by the server based on the
query range and location, speeds of the mobile target objects. For
instance, a moving location query “find the nearest taxi within 5
miles of my current location” will be processed by the taxi service
provider in the area and return a list of taxi cars ordered by the
distance to the current location of the mobile client. Assuming
the typical speed of taxi on the city street is 30mph, the Mobi-
Cache system will associate 10 minutes as the maximum TTL for
the query results− the taxi objects returned by the server. By
default, all query result objects are assigned a system-supplied
large value as the maximum TTL. For all moving queries over
static objects, such as “find the nearest gas station within 5 miles
of my current location”, the result objects will have their TTL set
to the system default.

2.2 Problem Statement and Important Parameters

In mobile information delivery systems, ad-hoc cache place-
ment suffers from a number of problems. In this section we first
describe these problems and then discuss the set of parameters

that are critical for improving the cache performance of a mobile
client cache.

The fundamental objective of cache placement is to keep all
items that will potentially be requested by subsequent queries.
Due to the limited bandwidth, intermittent connectivity, and re-
stricted computing capacity at mobile clients, the cache place-
ment strategy for a mobile client should make effort to avoid plac-
ing data items that will unlikely be used by subsequent queries in
the near future. There are certain situations where we can predict
the potential cache benefit of the query results with reasonable
accuracy.

Figure 1: Importance of spatial locality in cache placement

Figure 1 provides two example scenarios. The scenario on
the left side of Figure 1 illustrates an example where the mobile
user driving across a city at the speed of 50 mph issues a con-
tinuous location query: “Show me all restaurants within 5 miles
(of the user’s current location) every5 minutesin the next hour”.
This continuous query will be evaluated at the interval of every
5 minutes(equivalent to every 4.1 miles) from its installation for
twenty consecutive times (since the stop condition of this query
is 1 hour). Each execution is shown as a circle (with the mobile
user at the center) in Figure 1. In such a scenario, caching the
query results is beneficial due to the overlap of query results be-
tween two consecutive query evaluations. However, if the mobile
user issued the following query instead: “Show me all restau-
rants within 5 miles radius (of the user’s current location)every
20 minutesfor the next hour”, then the placement of this query
results in the mobile client cache will not generate a cache hit for
the next query (and other subsequent queries), because the query
ranges of the two consecutive evaluations do not overlap at all, as
shown in Figure 1(right). In fact, storing the results of this query
in the cache not only generates zero cache benefit but incurs both
the cost of placement and the cost of replacement, because place-
ment of such results might trigger replacement of some other en-
tries from the cache that might be more useful. This example
scenario amounts to say that when the mobile client moves far
away from the spatial scope of the current query results long be-
fore posing the next query, even if the next query is posed on the
same object type at the future location, there will unlikely be any
spatial overlapping between the current query results and the next
query results due to the relatively small spatial validity scope of
the query results with respect to the query interval and the move-
ment speed of the mobile client. Hence it is cost-effective if we
can detect such scenarios and avoid unnecessary placement.

Another situation where early detection of unnecessary place-
ment is obviously beneficial is when the query results are valid
only for a short period of time. A typical example of such sce-
narios includes those in response to LDQs made over moving ob-
jects. Thus, even if the very same query is made from the very
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same location at a later time the cached results may no longer be
valid due to the query rate and the movement patterns of the query
result objects. For instance, consider a LDQ issued by a mobile
client: “Find all AAA vehicles moving on the road and within 10
miles of my current location”. Given that the AAA vehicles in
question are on the move, the query results might not be valid for
a long time. If the AAA vehicles in question are moving at 50
mph on average, the results will be invalid after 12 minutes. If
the predicted query interval for the next query is 20 minutes, then
the query results will have expired quite some time ago. Hence,
it will be prudent not to place such results into the cache and thus
avoid both the cost of placement and the potential problem of re-
placement of a potentially more useful entry in the client cache.
Typically when the temporal validity period of the query results
is short with respect to the query interval, the placement decision
should be made with care.

By closely examining scenarios like those in above examples,
we made two observations. First, ad-hoc placement is not always
beneficial in mobile environments. Second, the spatial relation-
ship between the two consecutive query ranges and the distance
between the current and the next query locations are critical mea-
sures for determining the effectiveness of the cache placement
decision. More interestingly, the distance between the two con-
secutive query locations depends greatly on the query interval and
the movement speed of the mobile client.

3 Adaptive Spatio-Temporal Cache Placement

In this section we first describe the concept of spatial area
overlapping and the general metric for computing the overlap-
ping cache benefit. We then present an in-depth analysis of the
adaptive placement model through the step-wise development
of three spatio-temporal placement (STP) schemes: Threshold-
based STP, Bound-based STP, and Speed-Interval adaptive STP.
Each of these three schemes shows one specific way of measur-
ing the overlapping cache benefit. We describe our experimental
evaluation of the effectiveness of these schemes in Section 4.

3.1 Basic Concepts and Threshold Based STP Scheme

In MOBICACHE we introduce two basic concepts: spatial
area overlapping and overlapping cache benefit. The overlapping
cache benefit is defined in the spirit of spatial area overlapping,
and is used as the core technique for developing adaptive
spatio-temporal placement schemes.

Figure 2: Accurately measuring the Area of Overlap

Area Overlapping Function: Recall example scenarios in Sec-
tion 2, we show that if there is a possibility that the next query
to be made might overlap with the current query range, then the
results should be placed in the cache since there is a potential for

cache hit. On the other hand, if there is an indication that there
is no chance of overlapping in the near future it is better not to
place the current query results into the cache. Thus, the expected
overlapping serves as a measure of the likelihood that the query
result will generate a cache hit. To perform this test we first pre-
dict where and when the next query is likely to be made based on
the client’s movement pattern and query interval history. Then we
perform the area overlapping test by considering a scenario that
maximizes the possibility of an overlapping. One such scenario
would be when the immediate next query is for the same object
type. Query results that fail to pass the test will not be placed in
the cache.

Formally, let two range queries beQ1 andQ2, let the query
range ofQ1 centered atA(x1, y1) with radiusr1 and the range
of Q2 centered atB(x2, y2) with radiusr2. Let the two points of
intersection betweenQ1 andQ2 denote byC andD as shown in
Figure 2. The area overlap function of two location queriesQ1

andQ2, denoted byAOF (Q1, Q2), can be computed as follows:

AOF (Q1, Q2) = r2
2( 6 CBD−sin(6 CBD))+r1

2( 6 CAD−sin(6 CAD))
2

Where, 6 CBD = 2 cos−1( r2
2+AB2−r1

2

2×r2×AB
) and 6 CAD =

2 cos−1( r1
2+AB2−r2

2

2×r1×AB
)

The computation of the area overlapping betweenQ1 andQ2

shows that the bigger the overlapping area, the higher the likeli-
hood thatQ1s results will be reused to answerQ2, thus the more
benefit we will gain by placement of the results ofQ1 into the
client cache.

Given that the location where the next query (i.e.,Q2) will
be issued is typically unknown at the time when we determine
whether to place the results of the current query (sayQ1) into
the client cache, one approach is to use the distance between the
location where the current query (Q1) is issued and the expected
location where the next query (Q2) will be issued, denoted byd,
to approximate the overlapping effect. This leads us to introduce
the concept ofOverlapping Cache Benefit.
Overlapping cache benefit: Let ri denote the radius of the
current queryQi anddi denote the distance between the loca-
tion where the current queryQi is issued and the expected lo-
cation where the next queryQi+1 will be issued. Letαc de-
note a system-defined constant andwi be the weight function that
balances the measurement of overlapping benefit through query-
dependent adaptation. We define theOverlapping Cache Benefit
for a given queryQi as follows:

OCB(Qi) =
ri

di
− wiαc (1)

The intuition behind theOverlapping Cache Benefitformula can
be illustrated through the discussion of the three variablesdi, ri,
andwi. We first describe how to computedi, the distance be-
tween the location where the current query (Qi) is issued and
the expected location where the next queryQi+1 will be issued.
The distancedi can be computed as the Euclidean distance be-
tween the two center points of the two query ranges, using the
formula d =

√
(cx − lx)2 + (cy − ly)2, where (cx,cy) denotes

the location of the current queryQi and (lx,ly) denotes the ex-
pected future location when the next query is likely to be made.
The future location(lx, ly) can be predicted using the current lo-
cation (cx, cy), the current velocity(vx, vy), and the expected
query intervalqi+1 of the mobile client, i.e.,lx = cx + vxqi+1

and ly = cy + vyqi+1. The estimated query interval (qi+1) is
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determined based on the query history of the mobile client. By
replacing(lx, ly) in the above formula for computingd, we have

d = qi+1

√
v2

x + v2
y. Let t1 denote the time when the initial query

issued by the mobile client andt2 be the next query issued by the
same client. The expected query interval after the current query
Qi, denoted byqi+1, can be estimated using an exponential aver-
aging scheme:q2 = t2− t1 andqi+1 = β(ti − ti−1) + (1− β)qi

where i> 2 andt1, t2, ti, ti−1 represent the timestamps when the
mobile client issued the first query, the second query, the current
query, and the previous query respectively.qi andqi−1 represent
the query interval for the current queryQi and the query interval
for the previous queryQi−1 respectively.β is a constant between
0 and 1.

Now we discuss the role of variableri in measuring the over-
lapping cache benefitOCB(Qi). For any two queriesQi with
radiusri andQi+1 with radiusri+1 to overlap, the sum ofri and
ri+1 should be larger than the distancedi between the two query
centers. Namelyri + ri+1 > di holds. Given that at timeti
when the current queryQi is processed, it is not always obvious
when and where the next queryQi+1 will be posed. One way to
approximate the next query for the same query object type is by
assuming that it is similar to the current query (i.e.,ri = ri+1).
Thus, the following condition holds:ri/di < 1/2. This implies
that the results of queryQi will be placed in the cache only if
ri/di is higher than the specified threshold constantαc andαc

should be set greater than1/2.

Finally, we discuss the role ofwiαc in measuring the over-
lapping cache benefit.αc is a system-defined parameter and is
typically set by a constant. The weightwi can be set as a query
independent constant or a query dependent variable. The product
wiαc serves as the‘Control Knob’ to enable the incorporation of
spatio-temporal placement to the cache placement decision when-
ever the overlapping cache benefitOCB(Qi) is greater than zero.
For example, by settingwi = 1 andαc = 10, the aboveOver-
lapping Cache Benefitcomputation will be instantiated to the fol-
lowing threshold-based formula withαc = 10.
OCBthreshold(Qi) = ri

di
− αc

Clearly, keeping the‘Control Knob’ value very high can be
risky because it could result in eliminating most of the data items,
while keeping a very low value ofwiαc (close to zero) would
make the ad-hoc cache placement dominate the placement deci-
sion. Thus, an important challenge is to determine the setting of
the weightwi and thus the‘Control Knob’ to meet the objective
of the chosen cache placement scheme.

Temporal Cache Benefit Measure: The Overlapping Cache
Benefit measure can be seen as a technique used in MOBICACHE

to capture the spatial locality of cached data items. Recall Sec-
tion 2.2, in mobile environments, location queries may be posed
over moving objects, when the expected query interval for the
next query is much longer than the time-to-live (TTL) timestamp
of the moving objects returned by the current query, such query
results should not be placed in the client cache. One straight-
forward and yet effective way to model the temporal locality of
cached data items is to compare the TTL of the query results with
the expected query interval of the next query. Only when the
TTL of a data item is greater than the expected query interval,
the placement of such an item in the client cache can be granted.
Thus, if the TTL of the query result items will expire much sooner
than the expected query interval for the next query, then such

items should not be placed into the client cache.
Threshold-based STP Scheme:Threshold-based STP scheme
implements the most basic spatio-temporal placement strategy.
In this scheme, the placement decision is made by analyzing two
orthogonal and yet complimentary factors: (1) the overlapping
cache benefit measure to determine if the following spatial place-
ment conditionr

d ≤ αc holds, and (2) the temporal cache benefit
measure which uses the TTL of the target objects from the cur-
rent query against the expected query interval of the next query
and test ifTTL(Qi) > qi+1 holds. Only the data items that pass
the test of both overlapping cache benefit measure and the tem-
poral cache benefit measure are placed in the client cache.
Setting αc in MobiCache: In MOBICACHE, the spatial control
knob constantαc is typically set to a positive value greater than
0.5, favoring placement of those query results that are likely to
overlap with the next expected query. Naturally, the larger the
αc value is, the higher degree of spatial overlapping is preferred
for cache placement. Thus choosing a slightly higher value for
αc would ensure that only the query results that are highly likely
to overlap with the next expected query would be placed in the
cache. However, setting theαc value too high may cause too few
query results to enter the cache, affecting hit ratio unfavorably.

The Threshold based Spatio-Temporal Placementscheme is
non-adaptive because the‘Control Knob’ in the Overlapping
Cache Benefit calculation remains fixed throughout the life time
of the cache. This motivates us to develop the Bound based STP
and the Speed and Query Interval (SQI) adaptive STP scheme.

3.2 Bound-based Spatio-Temporal Placement Scheme
(Bound STP)

One of the reasons that the threshold-based STP scheme im-
proves ad-hoc placement is the fact that the threshold-based STP
selectively discards certain query results based on their overlap-
ping cache benefit measure and their temporal cache benefit mea-
sure. It is also observed that when the mobile client moves at
higher speeds the threshold-based STP drops much more items
than when the mobile client travels at lower speeds. In order to
maintain a reasonable hit ratio for the client cache, we need to
avoid extremely high drop rate or extremely low drop rate dur-
ing cache placement when responding to changing motion be-
havior and changing query patterns. A simple and straightfor-
ward way to address this problem is to configure the system with
a lower discard bound, denoted byTLower, and anupper discard
bound, denoted byTUpper. Instead of setting theSTP Control
Knob as a fixed system-wide parameter, we devise an adaptive
approach. Whenever the percentage of discarded items (denoted
by λdiscard) drops below the specified lower boundTLower, the
Bound-based STP scheme will increase theControl Knob weight
by a pre-configured constantγc. Similarly, when the percent-
age of discarded items becomes greater than the specified upper
discard boundTUpper, the Bound STP scheme will be relaxed
by reducing theControl Knob weightby the pre-defined con-
stantγc. The testing ofλDiscard againstTUpper andTLower is
performed at the end of each epoch, which is when the adap-
tation happens. The goal of this placement scheme is to keep
the amount of discarded items during the cache placement within
the upper and lower bound in each epoch. This is achieved by
comparing the percentage of the discarded items (λDiscard) dur-
ing the cache placement decision in the current epoch against the
system-supplied lower and upper boundTLower andTUpper, and
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adapting the setting of the control knob weightwi (oneγc step
at a time) for the next epoch. If the percentage of discarded
items (λDiscard in one epoch continues to be greater thanTUpper

(system-supplied parameter), then the weight for the next epoch
will be further reduced by oneγc at the end of the current epoch.
On the other hand if the percentage of discarded items is lesser
thanTLower the weight for the next epoch will be increased by
oneγc at the end of the current epoch. Eventually, the percentage
of discarded items during the cache placement will fall into the
range specified by the lower and upper bound and stabilize. As
expected, this Bound STP scheme offers better performance than
the Threshold-based STP scheme when the movement speed of
the mobile client changes more frequently.

Now we formally describe the Bound-based STP scheme. Let
wi andwi−1 denote the weight to be set and the previous weight
respectively andγc denotes the constant increment or decrement
step, such as10 (a lower value ofγc would result in slower but
more stable adaptation while a higher value would result in faster
but potentially unstable adaptation). LetλDiscard denote the per-
centage of discarded entries for the current epoch,TUpper and
TLower denote the upper discard bound and the lower discard
bound respectively. We can define the control knob weightwi

as follows:

wi =

 wi−1 − γc if λdiscard > TUpper

wi−1 + γc if λdiscard < TLower

wi−1 otherwise

Thus theOverlapping Cache Benefitfor a query with radius
ri and the expected distance ofdi from the center of the current
query (Qi) to the center of the next query (Qi+1) is defined as
follows:

OCBbound(Qi) =
ri

di
− wiαc. (2)

In the Bound-based STP, the control knob weightwi is deter-
mined at the end of each epoch based on the weightwi−1, the per-
centage of discarded itemsλDiscard, and the pre-defined system-
wide parametersγc, TUpper, andTLower. In MOBICACHE the
lifetime of the client cache is divided into epochs of equal du-
ration. Adaptations happen only at the end of each epoch. By
introducing epochs, the system adapts only when there is a con-
sistent drop or increase in the percentage of items discarded.

3.3 Speed and Query Interval Adaptive STP Scheme
(SQI STP)

The Bound STPoffers better performance in comparison to
threshold-based STPin most cases. On one hand, bound STP is
able to adapt the STP control knob weight periodically through
increasing or decreasing the weight by a constantγc at the end
of each epoch. By maintaining the percentage of discarded items
(λDiscard) during the cache placement within the specified up-
per and lower bound, one can avoid making over pessimistic
or over-optimistic placement decision. On the other hand, the
threshold STP uses a fixed threshold throughout the lifetime of
a client cache, which severely limits the flexibility of the place-
ment scheme to adapt to changing movement pattern and query
interval of the mobile client. However, the flexibility of adapta-
tion supported by the Bound STP scheme is limited by the pre-
defined lower and upper bound on the percentage of discarded
items,TLower andTUpper.

In order to support dynamic adaptation of cache placement to
the changing movement speed and changing query interval of the
mobile client, we develop the third spatio-temporal placement
scheme, called theSpeed-Query Interval Adaptive STPscheme
(SQI-Adaptive STP or simply SQI STP for short). In this scheme,
the ‘STP Control Knob weight’is determined based on both the
query interval and the movement speed of the mobile client. In-
tuitively, we observe that the higher the movement speed and the
longer the query interval a mobile client has, the lower the over-
lap cache benefit will be. This is because at higher speeds or
higher query intervals the query ranges of consecutive queries are
further apart and the chances of spatial overlapping are greatly re-
duced. Thus, instead of using the fixed upper and lower bound to
tune the control knot weight and thus the cache placement qual-
ity, the ‘STP Control Knob weight’should be set to be inversely
proportional to the speed and the query interval for better cache
performance. Based on this rationale we define the‘STP Control
Knob weight’based on the movement speed of the mobile client
at the time when theith queryQi was issued, denoted byspeedi,
and the expected movement speed when the next queryQi+1 is
expected to be posed, denoted byExpSpeed.

wi =
1

ExpSpeedi+1 × qi+1
(3)

Wherei > 1, qi+1 is the expected query interval when the next
query will be posed, and

ExpSpeed2 = speed1 (4)

ExpSpeedi+1 = ζ(speedi − speedi−1) + (1− ζ)ExpSpeedi

(5)
q2 = t2 − t1 (6)

qi+1 = β(ti − ti−1) + (1− β)qi (7)

Wherei ≤ 2, ti, ti−1 represent timestamps for the mobile client
to ask the current query and the previous query respectively,qi

andqi−1 denote the current query interval and the previous query
interval respectively, andβ is a constant between 0 and 1, and
usually set to0.5 in our experiments.

In the Speed-Query Interval Adaptive STP scheme, theOver-
lapping Cache Benefitmeasure for a queryQi with radiusri and
expected distance ofdi from the center of the current query to the
next query is defined as follows:

OCBSQIadapt(Qi) =
ri

di
−

(
1

ExpSpeedi+1 × qi+1

)
αc (8)

whereαc is set by the system default (recall the discussion in
Section 3.1).

4 Experimental Evaluation

In this section we conduct the experimental evaluation on the
proposed three spatio-temporal placement schemes and compare
them with the popular ad-hoc placement scheme used in most of
existing mobile cache systems [10, 16, 5, 4, 13, 11, 6, 12]. The
experiments are divided into two sets. One set of experiments is
designed to study the impact of different characteristics of mobile
clients on cache performance in terms of hit ratio. Another set of
experiments is designed to study the impact of different charac-
teristics of location-dependent queries on cache performance. We
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show that spatio-temporal placement schemes can significantly
improve the cache hit ratio (between 5% to 10% improvement).
Among the three STP schemes, the SQI adaptive placement of-
fers the highest hit ratio and at the same time is highly robust in
responding to changes in speed and query interval of the mobile
client. We also show that the proposed STP placement schemes
work well with both temporal replacement policy like LRU and
spatial replacement policy like FAR [10]. The combination of our
SQI-adaptive STP with FAR offers higher hit ratio than any other
combination of placement and replacement strategies, be it ad-
hoc and FAR, ad-hoc and LRU, Bound and FAR, threshold-based
STP and FAR, or SQI-adaptive placement and LRU replacement.
In the rest of this section we first describe the mobility simulation
model used for our experiments, including the input generator
and the play module. Then we report our experimental results in
detail.

4.1 Simulation Model

We use a variant of the popularRandom Walk Model[2] for
simulation of client mobility and motion behavior of moving ob-
jects. The client starts at location (0,0) with an initial velocity
(vx, vy). vx andvy represent the x component and y component
of the velocity vector. A positive value indicates that the move-
ment of the client is along the positive axis while a negative value
indicates the movement along the negative axis. Thus, the ve-
locity values represent both speed and direction. The client is
modeled to move with a given velocity for some time (movement
interval), then wait for a duration at the new destination (pause
interval) and then change its velocity randomly (speed and direc-
tion). This process repeats over time. The client makes a large
number of queries based on the given query intervals while on
the move. By varying the input parameters for the model, such
as the movement interval, pause interval, query interval, several
different work loads can be generated. For instance, having a
very large movement interval would force the client to travel in a
straight line for longer durations (e.g., simulating a vehicle such
as truck traveling from city to city on the highway), while hav-
ing a small movement interval would allow a mobile client mov-
ing along a straight line only for a short duration (e.g., simulating
tourists traveling within a city or a tourist attraction). Our simula-
tion model consists of two components - (a) Input Generator and
(b) Play module.The input generator takes parameters, such as
client velocity, static or moving objects, per object query radius
distribution, query interval, movement interval, and generates a
sequence of location dependent queries, each of such queries is
associated with the time when the query was made, the size of
the result, and the TTL of the result. The TTL for queries on
moving objects is calculated using the radius of the query range
and the speed of the moving target object, which is randomly set
between 30 to 60 mph. Null values are used for query results
that are still objects such as restaurants, gas stations, and so forth.
Queries were generated and assigned random values of range (R)
using a normal distribution onR. For example, if the object type
(O) is ‘restaurant’ and the rangeR is 10 miles then the queries
with restaurant as the object type would set the radius following
a normal distribution around 10 miles. The object types used in
the queries are generated based on a zipf distribution, namely a
few object types are queried very often while most of other object
types are queried once in a while. This module is representative
of the real-world query scenarios in mobile environments. The

Play modulesimply ‘plays’ the location-dependent queries gen-
erated by the input module under different cache placement and
replacement policies and different cache sizes. The play mod-
ule consists of implementations of various placement, invalida-
tion and replacement policies. This module simulates the mobile
client. It estimates the query interval, the movement speed and
other parameter of the mobile client at run time and uses them in
the spatio-temporal placement algorithms described in Section 3.
The advantage of separating the input generator module from the
play module is to enable the exact same set of queries at the ex-
act same set of locations to be replayed under different placement
and replacement policies and different cache sizes, allowing us to
conduct an in-depth study of these parameters and their impacts
on cache performance.

The key parameters used in the experiments reported in this
paper are summarized in Table 1. The number of location queries
used in the experiments is 30,000. For the constants, we setαc to
10, β to 0.5,γc to 10, ζ to 0.8,TUpper to 60%,TLower to 50%
and epoch size to 100 . All the simulations were run on a Linux
server with 4 3GHz processors and a total memory of 4GB. The
results are reproducible on any other machine, since the mobile
client specific information is implemented as a part of the play
module.

4.2 Experimental results

We first report the experimental evaluation of the effectiveness
of our spatio-temporal placement schemes by studying the impact
of the characteristics of mobile client, such as changes in cache
size, query interval, movement interval and movement speed on
hit ratio. Then we report the experimental results on the impact
of different query characteristics on cache hit ratio, including the
percentage of queries over moving objects and the number of ob-
jects returned by queries. Finally we report the study on the effect
of using different replacement policies on the performance of our
spatio-temporal cache placement schemes in terms of hit ratio.

4.2.1 Mobile Client Characteristics on Cache Hit Ratio

Impact of Cache Size on Hit Ratio: Figure 3(leftmost) shows
the impact of cache size on hit ratio on cache sizes of the mobile
devices. The spatial placement refers to using only the Over-
lapping cache benefit measure to make the placement decision,
whereas the temporal placement refers to using only the temporal
cache benefit measure (TTL against query interval) to make the
placement decision. This experiment shows that both spatial and
temporal placement strategies perform better compared to the ad
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Figure 3: Effect of Characteristics of Mobile Client on Cache Hit Ratio

hoc placement. By combining spatial and temporal cache benefit
measures together as the Threshold-based STP, the cache perfor-
mance is even better. It is important to note that, in theThreshold-
based STPscheme, theSTP Control Knobis fixed withwi = 1
andαc = 10. However, in theBound STP, the overlap benefit
factor varies depending on the percentage of discarded items in
each epoch, the system-supplied bound parameters,TLower and
TUpper, and the system-defined increment/decrement constantγc.
Similarly, in theSpeed-Query Interval adaptive STPscheme, the
overlapping cache benefit measure rises and falls depending on
the movement speeds and query intervals of the mobile clients.
Hence, the adaptive STP schemes offer better overall cache per-
formance than threshold-based or ad-hoc placement approaches.

Impact of Query Interval on Hit Ratio: Figure 3(center-left)
shows the variation of hit ratio with changes in query interval.
When the client frequently poses queries, the hit ratios for all the
placement strategies (including the Ad hoc placement) are high.
This is intuitive because the client is not likely to have traveled
far away between the queries. With an increase in query interval,
the hit ratio drops for all the placement schemes (except for Spa-
tial and Threshold STP initially). The deviation for spatial and
threshold STP schemes for smaller query intervals is because they
have fixed overlapping benefit factors and hence cannot adapt to
the changes in query interval.

Impact of Client Movement Interval on Hit Ratio: Figure
3(center-right) shows the variation of hit ratio with changes in
movement interval. Movement interval is defined as the average
time interval between stops when the client is on the move. At
the end of every movement interval the client pauses for a fixed
amount of time (pause interval). As the movement interval in-
creases, the probability of the mobile client changing its velocity
is small, and thus the chance of overlapping with previous queries
is smaller (since the client would turn around less often). In all
the three STP schemes theSTP Control Knob weightis chosen
to maximize the overlapping cache benefit. As a result, with in-
crease in movement interval (taking a longer time for velocity
changes), the hit ratio for spatial placement and hence all STP
schemes but bound STP increases. However, this improvement is
limited to the beginning stage of the adaptation to theSTP Control
Knob weight.

Impact of Client Movement Speed on Hit Ratio: Figure
3(rightmost) shows the variation of the hit ratio as the movement
speed of the mobile client changes. In the experiments the radius
of spatial range of the queries is set between 1 to 100 miles with
90% of the objects having the radius range less than 10 miles.
The gain in hit ratio due to spatio-temporal placement is higher
at lower speeds. At higher speeds like 50 mph to 100 mph, the
hit ratio reduces for all placement schemes. Not surprisingly, in
all cases the Bound scheme or speed and query interval adaptive

STP scheme offer the best performance.

4.2.2 Query Characteristics on Mobile Cache Performance

Figure 4: Effect of Query Characteristic on Hit Ratio

Figure 5: Effect of Replacement Algorithm

Percentage of Queries for Moving Objects on Hit Ratio: In
the MOBICACHE system, clients can make queries for both static
objects and other moving objects. Queries over moving objects
are important to study because they represent results which have
very low TTLs since the target objects may soon move out of
the area of interest and hence the query results may quickly be-
come invalid. Figure 4(left) shows that when the percentage of
queries on moving objects is extremely low (close to 0%), the
gain because of temporal placement is close to zero. This is sim-
ply because all queries are over static objects such as gas stations,
restaurants, and the query results will only expire when the mo-
bile client moves out of the current query range. However, when
the percent of queries on moving objects increases, the hit ratio
drops irrespective of which STP strategy is used.
Number of Query Object Types on Hit Ratio: Figure 4(right)
shows how the varying number of query object types impacts the
hit ratio. Clearly, with the increase in the number of object types,
the hit ratio drops irrespective of which cache placement scheme
one uses. This is because, with increase in object types, the prob-
ability of overlapping will drop and so does the hit ratio.
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4.3 Effect of replacement algorithm

From the graph 5 it can be seen that irrespective of which
cache replacement algorithm we use, either purely temporal like
LRU or spatial like FAR [10], the spatio-temporal placement
schemes always outperform the corresponding ad hoc placement-
replacement algorithm combination. Another interesting obser-
vation is that the difference in the cache hit ratio betweenSQI
STP+FARcombination andAd hoc+FARcombination is higher
than that betweenSQI STP+LRUandAd hoc+LRU. This demon-
strates that the cache performance can be improved to an even
higher extent by incorporating the spatio-temporal techniques in
both cache placement and cache replacement decision.

5 Related work

Client side caching of location dependent queries is an im-
portant technique for improving performance of location-based
services. Most of the existing research in this area has fo-
cused on cache replacement and invalidation through incorpo-
rating some aspects of the spatial and temporal semantics em-
bedded in the query result objects or the location queries, while
assuming an ad hoc cache placement. Examples include cache
invalidation work [1, 7, 16, 3, 14] and cache replacement pro-
posals [10, 16, 5, 4, 13, 11, 6, 9, 8, 15, 12]. FAR [10] is one of
the pioneer work on spatial cache replacement algorithm using
distance as a parameter in addition to temporal parameters like
those in LRU. PA and PAID [16] offered improved cache replace-
ment algorithms for caching nearest neighbor queries. MARS [5]
continued the research by adding frequency of access, query rate,
velocity to further improve the cache replacement efficiency. Sur-
prisingly, all existing research efforts have focused on employing
spatiotemporal strategies for improving cache invalidation and
cache replacement.

To our best knowledge, none have studied the potential of in-
corporating spatio-temporal aspects and the motion behavior of
mobile clients into the cache placement decision and the impact
of spatio-temporal placement on the performance (hit ratio) of the
client cache. Furthermore, the development of spatio-temporal
strategies for cache replacement and invalidation are different in
both design principle and engineering algorithms, and cannot be
directly applied to cache placement for obvious reasons. The fac-
tors that affect the decision of cache placement are quite different
than those that are critical to cache replacement simply because
placement happens much earlier in the life cycle of cached items,
thus the parameters that are significant for cache replacement are
not available for making cache placement decision.

6 Conclusion

We have described a spatio-temporal placement model for
caching location-dependent queries. This paper makes three un-
qiue contributions. First, we introduce the concept of‘Over-
lapping Cache Benefit’as a measure of the potential hit rate of
cached data items and predicts the potential cache benefit of the
query results based on multiple spatio-temporal properties of mo-
bile clients. Second, we develop three spatio-temporal cache
placement schemes, which provide step-by-step in-depth under-
standing of various factors that may affect the performance of
a client cache in mobile environments. In our spatio-temporal
placement model, the decision of whether to place an item into

the cache of a mobile client is made by combining both the spa-
tial validity and temporal validity of query results and the motion
behavior and query patterns of the mobile client.
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