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Abstract— Service network analysis is an essential aspect
of web service discovery, search, mining and recommendation.
Many popular web service networks are content-rich in terms
of heterogeneous types of entities, attributes and links. A main
challenge for ranking services is how to incorporate multiple
complex and heterogeneous factors, such as service attributes,
relationships between services, relationships between services
and service providers or service consumers, into the design of
service ranking functions. In this paper, we model services,
attributes, and the associated entities, such as providers,
consumers, by a heterogeneous service network. We propose
a unified neighborhood random walk distance measure, which
integrates various types of links and vertex attributes by a
local optimal weight assignment. Based on this unified distance
measure, a reinforcement algorithm, ServiceRank, is provided
to tightly integrate ranking and clustering by mutually and
simultaneously enhancing each other such that the performance
of both can be improved. An additional clustering matching
strategy is proposed to efficiently align clusters from different
types of objects. Our extensive evaluation on both synthetic
and real service networks demonstrates the effectiveness of
ServiceRank in terms of the quality of both clustering and
ranking among multiple types of entity, link and attribute
similarities in a service network.

I. INTRODUCTION
With the increasing popularity of web services, web

service management is becoming an interesting and chal-
lenging research problem which has received much attention
recently [1], [2], [3], [4], [5], [6], [7], [8]. Service network
analysis has emerged as a critical aspect of web service
management in both industry and academic research. Many
popular web service networks are content-rich in terms of
heterogeneous types of entities and links, associated with
incomplete attributes. Such web service networks expose
two heterogeneity challenges: (1) Multiple types of entities
co-exist in the same service network with various attributes,
and (2) Links between entities have different types and carry
different semantics. Figure 1 presents a real service network
from IBM knowledge base. There are two kinds of object
vertices: blue service vertices and grey provider nodes. Each
service vertex may contain three types of properties: red,
purple and green attribute vertices specify service’s “Type”,
“Category” and “Capability”, respectively. Each provider
vertex may have two kinds of attributes: red “Type” attribute
and purple “Category” property. On the other hand, there are
three kinds of links: an ochre edge represents the “Provides”
relationship between services and providers; a black line
specifies the structure relationship between objects with the
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Figure 1. A Heterogeneous Service Network from IBM Knowledge Base
same type; a dashed edge denotes the attribute edge between
object and its attribute.

Typical applications of web service management include
service retrieval and selection, service ranking and recom-
mendation, service clustering and discovery, service adapta-
tion and composition etc. Among these applications, service
clustering and ranking are two significant ones. Ranking
entails assigning a score to each service, quantifying its
characteristics based on some ranking criteria. With such
criteria, “interesting” services to response a specific user
request appear high in the returned list. Prominent web
ranking algorithms such as HITS [9] and PageRank [10]
as well as service ranking methods such as [3] and [4]
rank webpages or services on the whole homogeneous
network so that the most relevant webpages or services are
presented on the top of the returned list. On the other hand,
clustering partitions a service network into groups so that
services within a cluster are densely connected based on a
certain similarity measure. Most existing graph clustering
techniques have focused on the topological structures of
homogeneous graph based on various criteria.

Although clustering and ranking are two well-known an-
alytical tools for web service management, existing service
clustering and ranking approaches are usually regarded as
two independent processes. As a result, two main drawbacks
characterize such approaches. First, clustering the entire
service network without considering service’s ranking may
result in incorrect clustering result. Suppose we remove
providers “Amazon”, “Paychex” and their associated links
from Figure 1, then service “Business Strategy” has only two
providers “IBM” and “ADP”. If we want to partition vertices
into two clusters, then “IBM” and “ADP” will be in cluster
“IT” and cluster “Business”, respectively. But there is no
statistically convincing evidence on which cluster “Business
Strategy” should fall into. Second, ranking services on the



whole service network without considering which groups
they belong to often leads to biased ranking result. If we
adopt the global ranking algorithm to rank all services in
Figure 1, then service “Business Strategy” has a higher
score than service “Datacenter” since “Business Strategy”
has more peer services and is provided by more providers.
This ranking result does not make sense for a customer
seeking a “IT” service. However, integrating clustering and
ranking together can lead to more comprehensible results.
By combining clustering and ranking, “Business Strategy”
and “ADP” will belong to cluster “Business” since both rank
high in cluster “Business” and rank low in cluster “IT”. In
contrast, “IBM” ranks high in cluster “IT” and relatively
low in “Business”. Thus, “Business Strategy” and “ADP”
are more similar. Similarly, service “Datacenter” will have
a higher score than service “Business Strategy” in cluster
“IT” if we rank all services in each cluster.

In this paper, we identify four requirements for ranking
and clustering a heterogeneous network of services. First,
we need to integrate various types of links and attributes
into a unified distance model to estimate the pairwise vertex
closeness. Second, we need to design a robust probabilistic
clustering method for heterogeneous service network to
make our approach applicable to a wide range of appli-
cations. Third, we need to design a more useful service
ranking approach with combining ranking information from
peer services, providers and associated attributes. Finally, we
need to develop a framework that can smoothly integrate
ranking and clustering techniques.

The main contributions of this paper are outlined below.
First, we propose a unified neighborhood random walk dis-
tance measure integrating various types of link and attribute
information with the local optimal weight assignment on
a heterogeneous service network. Second, we propose a
greedy strategy to efficiently execute clustering matching
process to align clusters for each type of objects on the
heterogeneous service network. Third, we present a general
algorithm that smoothly integrates ranking and clustering
techniques, while mutually enhances the individual perfor-
mance of each of those techniques. Finally, we perform
extensive evaluation of our proposed ranking approach on
both synthetic and real service datasets to demonstrate the
effectiveness and efficiency of our method.

II. PROBLEM STATEMENT

In this section, we first introduce the problem formulation
of service clustering and ranking considering both service
network structure and service attribute information.

A heterogeneous service network is denoted as G =
(V,A,E), where V represents the set of object vertices,
A denotes the set of property vertices, E contains mul-
tiple types of edges between object or property vertices.
V contains two types of object vertices: the service set
S and the provider set P , i.e., V = S ∪ P . A =

{a11, . . . , a1n1 , . . . , am1, . . . , amnm} represents m associat-
ed attributes and their values for describing object prop-
erties. Dom(ai) = {ai1, . . . , aini} represents the domain
of attribute ai with a size of |Dom(ai)| = ni. An at-
tribute vertex vij ∈ A represents that attribute ai takes
the jth value. An attribute edge (vi, vjk) ∈ E iff vertex
vi takes the value of ajk on attribute aj . Thus, there are
five types of edges between different kinds of vertices:
E = ESS ∪EPP ∪ESP ∪ESA ∪EPA where subscripts S,
P and A represent the service set, the provider set and the
attribute set, respectively. For ease of presentation, we call
an edge between object vertices, i.e., e ∈ ESS∪EPP ∪ESP ,
as a structure edge and an edge between object and attribute,
i.e., e ∈ ESA ∪ EPA, as an attribute edge.

In such a heterogeneous service network with various
types of objects, links and attributes, a good measure of
“similarity” between objects is crucial to efficient social
network analysis on real applications. A unified neighbor-
hood random walk distance measure is to measure the
closeness between vertices based on connectivity, vicinity
and transition probabilities at different types of vertices.

Given k initial disjoint clusters of G = (V,A,E) for
each type of objects, S = ∪k

i=1Si (Si ∩ Sj = ∅, ∀i ̸= j)
and P = ∪k

i=1Pi (Pi ∩ Pj = ∅, ∀i ̸= j) as the initial
service influence, service influence based probabilistic
clustering is to execute service influence propagation to
partition each service s ∈ S into each of k clusters based
on the dynamic social activities with the initial disjoint
service clusters and provider clusters. In the final clustering
result,

∑k
i=1 psi = 1,∀s ∈ S where psi represents the

normalized probability of service s will be partitioned into
the ith cluster. A desired clustering of a heterogeneous
service network should achieve a good balance between the
following two properties: (1) services within one cluster are
close to each other in terms of structure links, while services
between clusters are distant from each other; and (2) services
within one cluster have similar properties, while services
between clusters could have quite different attribute values.

Given a service influence based probabilistic clustering,
service influence based ranking is to rank each service
s ∈ S and each provider p ∈ P in each of k clusters
based on some heuristics rules so that good service ranking
generates good provider ranking, good provider ranking
promotes good service ranking.

III. A UNIFIED WEIGHTED DISTANCE MEASURE
In a heterogeneous service network, each service is as-

sociated with a service set and a provider set through
structure links and an attribute set through attribute links,
we propose to use a unified distance measure based on the
neighborhood random walk model to integrate various types
of structural and attribute similarities. In the heterogeneous
service network, there exists a random walk path between
two services s1, s2 ∈ S if (1) s1 and s2 have the same peer
service s3 ∈ S; (2) both s1 and s2 are provided by the same



provider p ∈ P ; or (3) s1 and s2 have the same attribute
value a ∈ A. If there are multiple paths connecting s1 and
s2, then they are close. On the other hand, if there are very
few or no paths between s1 and s2, then they are far apart.

Definition 1 (Transition Probability Matrix): Let S be
the service set, P be the provider set, and A be the set of
associated attribute vertices, the transition probability matrix
T of a heterogeneous service network G is defined as follow.

T =

TSS TSP TSA

TPS TPP TPA

TAS TAP TAA

 (1)

where TSS is a |S| × |S| matrix representing the transition
probabilities between service vertices; a |P | × |P | matrix
TPP specifies the transition probabilities between provider
vertices; TSP or TPS represents the transition probabili-
ties between services and providers; TSA or TAS denotes
the transition probabilities between services and attributes;
TPA or TAP represents the transition probabilities between
providers and attributes; and TAA is a |A|× |A| matrix with
all 0s since there is no edge between attribute vertices. Here,
|S|, |P | and |A| represent the cardinalities of the service set
S, the provider set P and the attribute set A, respectively.

Since each type of structure and attribute edges may have
different degrees of contribution in random walk distance,
we assign each type of edges an individual weight. TSS ,
TSP , TPS and TPP correspond to four kinds of structure
edges, and the corresponding structure weights are defined
as αSS , αSP , αPS and αPP , respectively. Notice that αSP

is equal to αPS since edges have no orientation in an
undirected service network. On the other hand, there are
m associated attributes with object vertices in the service
network. The attribute edges connected to attribute vertices
vi1, . . . , vini corresponding to attribute ai are assigned to an
attribute weight βi. We proposed a dynamic weight tuning
method [11] to produce a local optimal weight assignment
for various types of links. Based on this weight assignment,
each submatrix in T is defined as follow.

TSS(i, j) =

{
αSSeij , if(vi, vj) ∈ ESS

0, otherwise
(2)

where eij denotes the number of providers that service i
and service j co-shared. When service i and service j have
different types or are from different categories, eij is usually
equal to 0 since they often do not have the same providers.

TPP (i, j) =

{
αPP eij , if(vi, vj) ∈ EPP

0, otherwise
(3)

where eij is the number of services that provider i and
provider j co-provided.

TPS(i, j) =

{
αPSeij , if(vi, vj) ∈ EPS

0, otherwise
(4)

where eij is the number of service j that provider i provided.
eij has a value of 0 or 1 since provider i may or may not
provide service j in the original dataset. As the relationship
between services and providers is symmetric, TPS(i, j) is
equal to TSP (j, i) due to αSP = αPS .

TSA(i, J) =

{
βjeijk, if(vi, vjk) ∈ ESA

0, otherwise
, J = k+Σj−1

l=1nl (5)

where eijk denotes whether service i takes the kth value on
attribute aj . It also has a value of 0 or 1.
TAS(I, j) =

{
eijk, if(vj , vik) ∈ ESA

0, otherwise
, I = k +Σi−1

l=1nl (6)

where eijk specifies whether the kth value on attribute ai is
taken by service j. The weight factor is ignored since each
row in TAS corresponds to the same attribute vertex vik.

Since both services and providers are the subclass of
objects, TPA and TSA have the similar definitions and so
have TAP and TAS .

TPA(i, J) =

{
βjeijk, if(vi, vjk) ∈ EPA

0, otherwise
, J = k+Σj−1

l=1nl (7)

where eijk denotes whether provider i takes the kth value
on attribute aj .

TAP (I, j) =

{
eijk, if(vj , vik) ∈ EPA

0, otherwise
, I = k +Σi−1

l=1nl (8)

where eijk specifies whether the kth value on attribute ai is
taken by provider j.

Since each row of the transition probability matrix should
sum to 1, we then perform the row-wise normalization for
T . Entries TSS(i, j), TSP (i, j) and TSA(i, j) are normal-
ized by dividing them by the sum of row entries, i.e.,
Σ

|S|
l=1TSS(i, l) + Σ

|P |
l=1TSP (i, l) + Σ

|A|
l=1TSA(i, l). Similarly,

elements TPS(i, j), TPP (i, j) and TPA(i, j) are normalized
by Σ

|S|
l=1TPS(i, l) + Σ

|P |
l=1TPP (i, l) + Σ

|A|
l=1TPA(i, l). Entries

TAS(i, j) and TAP (i, j) are normalized by Σ
|S|
l=1TAS(i, l)+

Σ
|P |
l=1TAP (i, l) since TAA is a zero matrix.
A random walk on a heterogeneous service network G

is performed in the following way. Suppose a particle starts
at a certain vertex v0 and walks to a vertex vs in the sth

step and it is about to move to one of the neighbors of
vs, denoted as vt ∈ N(vs), with the transition probability
T (s, t), where N(vs) contains all neighbors of vertex vs.
The vertex sequence of the random walk is a Markov chain.
The probability of going from vi to vj through a random
walk of length l can be obtained by multiplying the transition
probability matrix l times.

Definition 2 (Unified Neighborhood Random Walk Distance):
Let T be the transition probability of a heterogeneous
service network G, l be the length that a random walk can
go, and c ∈ (0, 1) be the restart probability, the unified
neighborhood random walk distance d(u, v) from vertex u
to vertex v in G is defined as follow.

d(u, v) =
∑

τ :u v
length(τ)≤l

p(τ)c(1− c)length(τ) (9)

where τ is a path from u to v whose length is length(τ)
with transition probability p(τ). d(u, v) reflects the vertex
closeness based on multiple types of links among services,
providers and attributes.

The matrix form of the unified distance is given as follow.

R =

l∑
γ=1

c(1− c)γT γ (10)

For ease of presentation, R is rewritten as the following
form by using the similar representation in Eq.(1).

R =

RSS RSP RSA

RPS RPP RPA

RAS RAP RAA

 (11)



IV. SERVICE INFLUENCE BASED CLUSTERING
In this section, we propse an innovative service influence

based probabilistic clustering framework considering social
interactions among service and provider disjoint clusters.
A. Clustering Matching Process

Most existing clustering methods such as k-Means [12]
and k-Medoids [13] only offer disjoint clusters. We can not
directly apply them to our heterogeneous service network,
otherwise they will lead to two issues: (1) service clusters
and provider clusters are independent of each other; and (2)
each object is partitioned into a single cluster. To address
the first issue, the clustering matching process is designed
to produce a one-to-one matching between service clusters
and provider clusters based on some similarity measures.

The inter-cluster similarity with the same type is defined
as follow.

d(cL) =
1

k(k − 1)

k∑
i=1

k∑
j=1,j ̸=i

d(ciL, c
j
L), L ∈ {S, P} (12)

where cxL represents the centroid of cluster Lx and L
specifies the service set (or the provider set). d(ciL, c

j
L) is

the unified distance from ciL to cjL. S = ∪k
i=1Si (Si ∩ Sj =

∅, ∀i ̸= j) (or P = ∪k
i=1Pi (Pi ∩ Pj = ∅, ∀i ̸= j)) is a

disjoint clustering of services (or providers). A clustering of
services (or providers) with a small inter-cluster similarity
is considered as a good clustering based on this criterion.

The inter-cluster similarity across different types is de-
signed to quantitatively measure the similar extent between a
service cluster and a provider cluster. It is defined as follow.
d(Xi, Yj) =

1

|Xi||Yj |
∑

x∈Xi,y∈Yj

d(x, y) (X,Y ∈ {S, P}, X ̸= Y )

(13)
where X is a disjoint clustering of services (or providers)
and Y is a disjoint clustering of providers (or services).

The disjoint clustering matching algorithm is presented in
Algorithm 1. It first chooses the clustering with the minimal
inter-cluster similarity as the basic clustering X and the
clustering with the maximal inter-cluster similarity as the
clustering Y to be matched. The algorithm then calculates
the inter-cluster similarity between X’s clusters and Y ’s
clusters and matches each cluster of Y to the cluster of
X with the maximal inter-cluster similarity. It places the
potential conflict cluster labels of Y and the corresponding
cluster label of X into Q. During each “Dequeue” iteration,
the algorithm rematches the one of two conflict clusters
Ym and Yn, which has smaller inter-cluster similarity with
cluster Xi, and puts new possible conflict tripes into Q until
the queue is empty. Finally, it updates the cluster labels of
Y with the matched cluster labels respectively.
B. Service Influence Propagation

The process of service influencing one another in a service
network is very similar to the heat diffusion process [14],
[15]. Heat diffusion is a physical phenomenon that heat
always flows from an object with high temperature to an
object with low temperature. In the context of a hetero-
geneous service network, an early service often influences

Algorithm 1 Disjoint Clustering Matching
Input: a heterogeneous service network G = (V,A,E), a disjoint
clustering S1, . . . , Sk, P1, . . . , Pk, a unified random walk distance
matrix R, and a queue Q containing triples of conflict cluster labels.
Output: a 1 × k vector CL containing new cluster label for the
matched clusters of S or P .

1: X = argminL∈{S,P}d(cL); Y = argmaxL∈{S,P}d(cL);
2: CL = (0, 0, · · · , 0); Q = ϕ;
3: Calculate d(Xi, Yj) for ∀i, j = 1, · · · , k;
4: for j = 1, · · · , k
5: CL(j) = argmaxi∈{1,··· ,k}d(Xi, Yj);
6: EnQueue(Q, (i,m, n)) for ∀CL(m) = CL(n) = i,m < n;
7: while QueueEmpty(Q) == False
8: DeQueue(Q, (i,m, n));
9: if CL(m) == CL(n)

10: j = argminl∈{m,n}d(Xi, Yl);
11: CL(j) = argmaxl∈{1,··· ,k}−{i}d(Xl, Yj);
12: EnQueue(Q, (i′,m′, j)) for ∀CL(m′) = CL(j) = i′

m′ < j;
13: EnQueue(Q, (i′, j, n′)) for ∀CL(j) = CL(n′) = i′

j < n′;
14: Update each Yj’s cluster label as CL(j).

other late services through links. For example, some “IT”
company currently provides an early service of “Datacenter”
but doesn’t support a late service of “Cloud Computing”. If
there exists a direct connection between “Datacenter” and
“Cloud Computing”, then it is very possible that “Cloud
Computing” will be provided by this company in the future.
On the other hand, a provider may also transfer its influence
to services provided by it. For instance, “IBM” provides
both “Datacenter” and “Business Strategy” so that these two
services have an indirect connection through the common
provider “IBM”. The spread of service influence resembles
the heat diffusion phenomenon. Early choice of a provider
(or a service) with many peers and services (or providers)
in a cluster may act as heat sources, transfer its heat to its
peers and services (or providers) and diffuse their influences
to other majority. Finally, at a certain time, heat is diffused
to the margin of the service network.

We use our unified random walk distance as the heat
diffusion kernel since it captures the service (or provider)
influence through both direct and indirect links. The heat
diffusion kernel H is a submatrix of R in Eq.(11).

H =

[
RSS RSP

RPS RPP

]
(14)

We utilize the matched clusters of services and providers
from the disjoint clustering process as the heat (influence)
source. A (|S|+ |P |)×k initial heat matrix sc(0) represents
the heat source from which the heat kernel starts its diffusion
process. The initial heat column vector sc(0)(:, j)(j =
1, · · · , k) of the service network at time 0 is defined below.
sc(0)(:, j) = (p1j , · · · , p|S|j , p(|S|+1)j , · · · , p(|S|+|P |)j)

T (15)

where pij is the probability of the ith (1 ≤ i ≤ |S|) service
vertex in cluster Sj or the (i−|S|)th (|S|+1 ≤ i ≤ |S|+|P |)
provider vertex in cluster Pj . Due to the disjoint clustering,



each initial pij is equal to 0 or 1 and
∑k

j=1 pij = 1, ∀i.
Thus, sc(0) is given as follow.

sc(0) = [sc(0)(:, 1), sc(0)(:, 2), · · · , sc(0)(:, k)] (16)
where sc(0) essentially denotes the clustering distribution of
services and providers after the clustering matching process.

We treat each pij > 0 as an initial influence source to
execute the service influence propagation in each cluster
until convergence, i.e., influence equilibrium. We argue that
a service’s partitioning not only depends on the cluster label
of peer services but also lies on the cluster label of its
providers. During the following influence propagation, a ser-
vice continuously obtains the influences from its providers
and peer services about the cluster selection until it arrives
at the margin of the service network.

sc(1) = H × sc(0)

· · ·
sc(t) = H × sc(t− 1)

(17)

Therefore, the service network’s thermal capacity at time
t, denoted by sc(t), is defined as follow.

sc(t) = Ht × sc(0) (18)
where sc(t) corresponds to a probabilistic clustering result,
i.e., each entry sc(t)(i, j) represents the probability of the
ith (1 ≤ i ≤ |S|) service or the (i− |S|)th (|S|+ 1 ≤ i ≤
|S| + |P |) provider in the jth cluster. We then normalize
each sc(t)(i, j) so that Σk

l=1sc(t)(i, l) = 1.

sc(t)(i, j) =
sc(t)(i, j)

Σk
l=1sc(t)(i, l)

(19)

V. SERVICE INFLUENCE BASED RANKING
When ranking services over the global service network

without considering which clusters they belong to, it is not
clear to the user, from where to start looking at the results,
since users usually prefer seeing a ranked result list in some
area what they are interested in rather than a global ranked
list. We require ranking functionality to present services
to the user in a meaningful way i.e. by ranking them in
each cluster based on a good clustering result. However, it
is still not enough for a local ranking method to help the
user efficiently distinguish the returned service list. We argue
that the influence propagation among services and providers
can provide more informative views of ranking result. The
ranking of an early service usually influences other late peer
services through the direct connection. On the other hand, a
provider may transfer its influence to the ranking of services
provided by it. Their influences are finally diffused to the
entire service network through the influence propagation.

The following heuristics rules give us initial ideas.
• Highly ranked services in each cluster have connections

with many highly ranked services within the same cluster.
• Highly ranked services in each cluster are provided by

many highly ranked providers within the same cluster.
• Highly ranked providers in each cluster own many highly

ranked peer providers within the same cluster.
• Highly ranked providers in each cluster provide many

highly ranked services within the same cluster.
We still utilize H in Eq.(14) as the propagating heat-

diffusion kernel in the ranking process since it captures the

direct connections between different types of objects based
on the above four ranking rules. We use a (|S| + |P |) × k
influence matrix sr(0) to represent the initial ranking of
services and providers in each cluster. The initial ranking
score of the ith object vertex in jth cluster is defined below.

sr(0)(i, j) =

{
Σ

|S|+|P |
l=1,l̸=i,sc(t)(l,j)>0H(i, l), if sc(t)(i, j) > 0

0, otherwise
(20)

where sr(0)(i, j) is the sum of the unified random walk
distance from the ith (1 ≤ i ≤ |S|) service or the (i −
|S|)th (|S| + 1 ≤ i ≤ |S| + |P |) provider to other objects
partitioned into cluster sc(t)(:, j). If a service (or a provider)
in a cluster is connected to many peers and many providers
(or services) in the same cluster, then it will achieve a higher
initial ranking score in this cluster. We then normalize each
sr(0)(i, j) so that Σ|S|+|P |

l=1 sr(0)(l, j) = 1.

sr(0)(i, j) =
sr(0)(i, j)

Σ
|S|+|P |
l=1 sr(0)(l, j)

(21)

Thus, we use the influence propagation to iteratively refine
ranking scores based on the above heuristics rules.

sr(t)(:, j) = H ×
[

sr(t− 1)(1 : |S|, j)
sr(t− 1)(|S|+ 1 : |S|+ |P |, j)

]
,

sr(t)(i, j) =
sr(t)(i, j)

Σ
|S|+|P |
l=1 sr(t)(l, j)

(22)

where sr(t)(:, j) specifies the ranking score of each service
(or provider) in cluster sc(t)(:, j) at time t. During the
influence propagation, a service’s ranking is continuously
refined by the ranking of its direct peers and providers as
well as the ranking of these neighbors’ neighbors. When the
influence propagation reaches equilibrium, the final ranking
score of a service in a cluster is jointly decided by the
ranking scores of the services and providers in the same
cluster which have at least one feasible path to this service.

The clustering and ranking based similarity is defined as
follow.

eij = 1−
∑k

l=1 |sc(t)(i, l)sr(t)(i, l)− sc(t)(j, l)sr(t)(j, l)|∑k
l=1 sc(t)(i, l)sr(t)(i, l) + sc(t)(j, l)sr(t)(j, l)

,

∀i, j ∈ {1, . . . , |S|+ |P |}
(23)

We then substitute this new eij for the old one in T and
recalculate the matrices T and R to further improve the
performance of both clustering and ranking.

By assembling different parts, our ranking algorithm,
ServiceRank, is presented in Algorithm 2. Steps 1 and 2
figure out a local optimal weight assignment for various
types of links. Steps 3 calculates the transition probability
matrix T and the unified random walk distance matrix
R. Step 4 performs the clustering method, k-Medoids, to
produce disjoint clusters of services and providers. The
clustering matching process is then executed between service
clusters and provider clusters in step 5. Steps 7-10 repeatedly
run the service influence based clustering and ranking and
iteratively update the clustering and ranking based similarity
so that T and R are continuously refined to generate better
ranking result until convergence.



Algorithm 2 ServiceRank
Input: a heterogeneous service network G, a length limit l of
random walk paths, a restart probability c, a cluster number k.
Output: service ranking sr(t)(:, j) in each cluster.

1: αSS = αSP = αPS = αPP = β1 = . . . = βm = 1.0;
2: Generate the local optimal weights through the algorithm

in [11];
3: Calculate T in Eq.(1) and R in Eq.(11);
4: Execute k-Medoids to produce clusters S1, . . . , Sk,

P1, . . . , Pk;
5: Match S1, . . . , Sk to P1, . . . , Pk through Algorithm 1;
6: Repeat until convergence:
7: Get probabilistic clusters sc(t)(i, j) in Eq.(19);
8: Get local ranking sr(t)(i, j) in Eq.(22);
9: Update all eijs in Eq.(23);

10: Recalculate T and R.

VI. EXPERIMENTAL EVALUATION

We have performed extensive experiments to evaluate the
performance of SERVICERANK on both synthetic and real
service datasets.
A. Experimental Datasets

BSBM Dataset: we modify the BSBM data generator [16]
and create a dataset with 246, 161 triples where “Provides”
is used to model the relationship between “Service” and
“Provider”s providing them, while an instance of “Service”
has multiple instances of properties “Capability”, “Function”
and “Type”, and an instance of “Provider” contains multiple
instances of properties “Feature” and “Type”. There are
totally 10, 000 “Service” instances and 3, 628 “Provider”
instances with 10 “Type” instances and 5 instances of
“Capability”, “Function” and “Feature”, respectively.

IBM Service Dataset: the dataset contains a total of
41, 292 triples with 2, 450 “Service” instances and 928
“Provider” instances. Each “Service” instance may have
three types of properties: “Type”, “Category” and “Capa-
bility”, respectively. On the other hand, each “Provider”
instance may contain two kinds of properties: “Type” and
“Category”. We build a service network where object ver-
tices represent services or providers, attribute vertices denote
their properties, object edges represent the relationship be-
tween object vertices, attribute edges specify the relationship
between object vertices and their associated attributes.
B. Comparison Methods and Evaluation

We compare ServiceRank with three representative rank-
ing algorithms, HITS [9], PageRank [10] and Sim-
Rank [17]. Since the last three ranking algorithms can
not directly handle a heterogeneous network, we treat ser-
vices, providers and attributes as homogeneous vertices
with the same type and rank homogeneous vertices in
each cluster. We choose three disjoint clustering methods
of k-Means [12], k-Means++ [18] and k-Medoids [13] for
these three ranking algorithms, respectively. ServiceRank
integrates various types of entity, link and attribute informa-
tion into a unified distance measure with the local optimal
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Figure 2. Cluster Quality Comparison on BSBM 13,628 Vertices

weights on a heterogeneous service network. Service influ-
ence based clustering and ranking are iteratively performed
to mutually enhance the performance of both of them.

Evaluation Measures We use three measures of den-
sity, entropy and Davies-Bouldin Index (DBI) to evaluate
the quality of clusters {Si}ki=1 and {Pi}ki=1 generated by
different methods. The metrics are defined as follows.

density({Si ∪ Pi}k
i=1) =

k∑
i=1

∑
vp,vq∈Si∪Pi,(vp,vq)∈E min(πpi, πqi)

|E|
(24)

where πpi, πqi represent the probabilities of vertex vp and
vertex vq in the ith cluster respectively. min(πpi, πqi) is
equal to 1 for disjoint clustering methods but may be less
than 1 for our probabilistic clustering.

entropy({Si∪Pi}k
i=1) =

m∑
i=1

βi∑m
l=1 βl

k∑
j=1

|Sj |
|S|

entropy(ai, Sj)+
|Pj |
|P |

entropy(ai, Pj)

(25)
where entropy(ai, Sj) = −

∑|S|
l=1 pijllog2pijl and pijl is

the percentage of services in cluster Sj which have value
ail on attribute ai. entropy({Si ∪ Pi}ki=1) measures the
weighted entropy from all attributes over k clusters.

DBI({Si∪Pi}k
i=1 =

1

2k

k∑
i=1

maxj ̸=i(
d(cjS , ciS)

σj
S + σi

S

)+maxj ̸=i(
d(cjP , ciP )

σj
P + σi

P

)

(26)
where cxS (1 ≤ x ≤ k) is the centroid of cluster Sx,
d(ciS , c

j
S) is the random walk distance between centroids

ciS and cjS , and σx
S (1 ≤ x ≤ k) is the average similarity of

all elements in cluster Sx to centroid cxS . entropy(ai, Pj),
cxP , d(ciP , c

j
P ) and σx

P corresponding to providers P have the
similar meanings. A cluster with high intra-cluster similarity
and low inter-cluster similarity will have a low DBI value.
C. Cluster Quality Evaluation

Figure 2 (a) shows the density comparison on BSBM
13, 628 Vertices by varying the number of clusters k =
10, 20, 30, 40. The density values by ServiceRank obviously
higher than that other three methods except k = 10. They
remain in the range of 0.63 or above even when k is
increasing. This demonstrates that ServiceRank can find
densely connected components. Different from the disjoint
clustering methods, the density value by our service influ-
ence based probabilistic clustering keeps increasing when
k is increasing since each vertex is partitioned into more
clusters with a larger k.

Figure 2 (b) presents the entropy comparison between four
methods on BSBM 13, 628 Vertices. ServiceRank achieves
the lowest entropy than other three methods. Entropy by
ServiceRank is as low as less than 1.32 while entropy
by other three approaches is still above 1.83 since they
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Figure 5. Efficiency Evaluation

partitions the service network without considering different
degrees of importance for multiple types of links. As shown
in Figures 2 (a) and (b), the performance of ServiceRank is
the best in terms of both density and entropy. This is because
its distance function integrates the local optimal weight as-
signment for multiple types of structural and attribute links,
thus it achieves a good performance on both criteria. On
the other hand, other three methods do not differentiate the
links between different kinds of objects. It is equivalent to
combine multiple types of structural and attribute similarities
with the equal weighting factor of 1, which usually does not
produce a good clustering.

Figures 2 (c) shows the DBI comparison on BSBM
13, 628 Vertices with different k values by four methods.
ServiceRank has the lowest DBI of around 0.15 − 1.80,
while PageRank, HITS and SimRank have a much higher
DBI than ServiceRank. This demonstrates that ServiceRank
can achieve both high intra-cluster similarity and low inter-
cluster similarity.
D. Ranking Quality Evaluation

Figures 3 (a) and (b) plot the average ranking scores of
top-k vertices in each cluster on two datasets, respectively.
The score curve of ServiceRank with respect to k value is
most stable among four ranking algorithms. Especially, the
curve is almost a stable horizontal line when the k value
stands in between 20 and 50. This is because ServiceRank
achieves both the highest intra-cluster similarity and the
lowest inter-cluster similarity. In addition, the iteratively
updated ranking-based similarity between services makes
the generated clusters get more cohesive intra-cluster struc-
ture and more homogeneous vertex properties. As a result,
services within clusters are connected to similar services,
providers and attributes so that they achieve similar ranking
scores in terms of our heuristics ranking rules. The quality
by PageRank and HITS is the worst since the resulted
clusters without considering the weight assignment and the
alternative iterations of clustering and ranking have a rather
random distribution of services in terms of both structure
and attribute similarities. Although SimRank also doesn’t
consider the weight assignment and the ranking iterations,
the quality of SimRank stands in between since it iteratively
updates the pairwise similarities.

Figures 4 (a) and (b) present the average ranking scores
of services within clusters and services outside clusters by
ServiceRank, respectively. We rank all services in each
cluster and treat a service with a positive probability in

cluster as the service within cluster. The score curve of
services within clusters is much higher than that of services
outside clusters since services within clusters are connected
to many services, providers and attributes in clusters but
there are few links between cluster and services outside
cluster. During each iteration of clustering and ranking, the
clustering iteratively refines the weights of multiple types of
links in terms of their contribution. The updated ranking-
based similarity with the refined weights makes services
with the similar cluster distribution and the similar ranking
scores become more similar so that they will have a higher
probability to be partitioned into the same clusters in the
next iteration.
E. Efficiency Evaluation

The running time by each algorithm for BSBM 13, 628
Vertices and IBM 3, 378 Vertices is summarized in Figures
5 (a) and (b), respectively. As we can observe, HITS
and PageRank are the most efficient as they execute both
clustering and ranking algorithms only once on the homo-
geneous service network (i.e., without running the clustering
matching and the alternative iterations of clustering and
ranking). SimRank is usually 1.5 − 4 times slower than
HITS and PageRank since it needs to iteratively update the
pairwise similarities on the entire service network. Although
ServiceRank does not need to update the pairwise similar-
ities, it is about 1.05 − 1.16 times slower than SimRank.
As ServiceRank needs to iteratively adjust the weights of
multiple types of structure and attribute links, it iteratively
computes the random walk distance matrix from scratch on
the service network. In addition, service influence based
clustering and ranking are iteratively performed so that
the total cost of ServiceRank has been greatly increased.
Although ServiceRank is more expensive, the iterative re-
finement improves the ranking quality a lot, as demonstrated
in Figures 3 and 4.

VII. RELATED WORK
Web service discovery and management has been a heated

topic in recent years [1], [5], [6], [8]. Skoutas et al. [3]
proposed a methodology for ranking and clustering the
relevant web services based on the notion of dominance,
which apply multiple matching criteria without aggregating
the match scores of individual service parameters. Xiao et
al. [2] proposed a context modeling approach which can dy-
namically handle various context types and values. Based on
the relations among context values, the algorithm can capture
the potential services that the user might need. Almulla et



al. [4] presented a web services selection model based on
fuzzy logic and proposed a fuzzy ranking algorithm based
on the dependencies between proposed quality attributes.
Liu et al. [7] proposed a heuristic social context-Aware trust
network discovery algorithm, H-SCAN, by adopting the K-
Best-First Search (KBFS) method and some optimization
strategies.

Graph ranking is one of the core tasks in social networks.
Most of existing graph ranking techniques [9], [10], [19],
[20], [21] compute ranking scores by only resorting to
graph structure information. Jeh and Widom [17] designed
a measure called SimRank, which defines the similarity
between two vertices in a graph by their neighborhood
similarity. DivRank [22], based on a reinforced random walk
in an information network, can automatically balances the
prestige and the diversity of the top ranked vertices in a
principled way. Tong et al. [23] defined a goodness measure
to capture both the relevance and the diversity for a given
ranking list.

Graph clustering has attracted active research in the last
decade. Most of existing graph clustering techniques have
focused on the topological structures based on various
criteria, including normalized cuts [24], modularity [25],
structural density [26]. Some recent works, SA-Cluster [27]
and BAGC [28], perform clustering based on both structural
and attribute similarities to partition the collaboration graph
with single link type and single attribute type into k clusters.
Sun et al. [29] proposed GenClus to cluster general hetero-
geneous information networks with different link types and
different attribute types.

VIII. CONCLUSION
In this paper, we have presented a unified neighborhood

random walk distance measure integrating various types of
link and attribute information with the local optimal weight
assignment on a heterogeneous service network. We present
a reinforcement algorithm that is developed to tightly inte-
grate ranking and clustering by mutually and simultaneously
enhancing each other such that the performance of both
can be improved. We propose an additional greedy strategy
to efficiently execute clustering matching process to align
clusters for each type of objects in the heterogeneous service
network. Our extensive evaluation on both synthetic and real
service networks demonstrates the power of our method in
terms of the quality of both clustering and ranking.
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