Controllable Neural Story Plot Generation via Reinforcement Learning

Pradyumna Tambwekar, Murtaza Dhuliawala, Lara J. Martin, Animesh Mehta, Brent Harrison, and Mark O. Riedl

Neural story plot generation can be controlled via guiding a language model through intermediate plot points toward a desired goal.

Motivation

Automated Plot Generation is the problem of creating a sequence of main plot points that create a story.

Existing story and plot generators lack controllability—the ability to receive guidance to achieve a particular goal.

Reward Function

Reward a seq2seq model when it moves the story progressively toward a target

1. Compute reward for all verbs using:
 - Frequency before target verb
 \[r_1(v) = \log \frac{k_{vg}}{N_v} \]
 - Distance from target verb
 \[r_2(v) = \log \sum_{s \in \mathcal{S}_v, g} l_s - d_s(v, g) \]

2. Create clusters of verbs based on their reward values
 \[R(v) = \alpha \times r_1(v) \times r_2(v) \]

3. Constrain output verb selection to the next cluster.

4. Use the REINFORCE method to backpropagate the reward

Goal

Find a coherent sequence of events that results in a world state where a desired goal holds.

RL allows to address the control and coherence in plot generation

Contributions

We present a policy gradients approach to plot generation.

Our novel reward shaping technique facilitates intermediate rewards, enabling the system to progress towards a specific goal.

Results

<table>
<thead>
<tr>
<th>Goal</th>
<th>Model</th>
<th>Goal Achievement Rate</th>
<th>Average Perplexity</th>
<th>Average Story Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>admire</td>
<td>Seq2Seq</td>
<td>35.52%</td>
<td>48.06</td>
<td>7.31</td>
</tr>
<tr>
<td></td>
<td>DRL</td>
<td>15.83%</td>
<td>5.73</td>
<td>7.32</td>
</tr>
<tr>
<td></td>
<td>DRL + Clustering</td>
<td>94.29%</td>
<td>7.61</td>
<td>4.90</td>
</tr>
<tr>
<td>marry</td>
<td>Seq2Seq</td>
<td>39.92%</td>
<td>48.06</td>
<td>6.94</td>
</tr>
<tr>
<td></td>
<td>DRL</td>
<td>24.05%</td>
<td>9.78</td>
<td>7.38</td>
</tr>
<tr>
<td></td>
<td>DRL + Clustering</td>
<td>93.35%</td>
<td>7.05</td>
<td>5.76</td>
</tr>
</tbody>
</table>