Inference in Graphical Models
Variable Elimination and Message Passing Algorithm

Le Song

Machine Learning II: Advanced Topics
CSE 8803ML, Spring 2012
Conditional Independence Assumptions

- **Local Markov Assumption**
 \[X \perp \text{Nondescendant}_X | Pa_X \]

- **Global Markov Assumption**
 \[A \perp B | C, \text{sep}_G(A, B; C) \]

Diagrams:
- **BN** (Bayesian Network)
- **MN** (Markov Network)
- **Undirected Tree**
- **Undirected Chordal Graph**

Other Concepts:
- **Moralize**
- **Triangulate**
Distribution Factorization

- **Bayesian Networks (Directed Graphical Models)**

 \[I - \text{map: } I_l(G) \subseteq I(P) \]

 \[\iff \]

 \[P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i \mid P a_{X_i}) \]

- **Markov Networks (Undirected Graphical Models)**

 strictly positive \(P \), \(I - \text{map: } I(G) \subseteq I(P) \)

 \[\iff \]

 \[P(X_1, \ldots, X_n) = \frac{1}{Z} \prod_{i=1}^{m} \Psi_i(D_i) \]

 \[Z = \sum_{x_1, x_2, \ldots, x_n} \prod_{i=1}^{m} \Psi_i(D_i) \]

- **Conditional Probability Tables (CPTs)**
- **Clique Potentials**
- **Normalization (Partition Function)**
- **Maximal Clique**
- **Clique**
- **Strictly Positive**
Inference in Graphical Models

- Graphical models give compact representations of probabilistic distributions $P(X_1, ..., X_n)$ (n-way tables to much smaller tables)

- How do we answer queries about P?

- We use inference as a name for the process of computing answers to such queries
Query Type 1: Likelihood

Most queries involve evidence
- Evidence e is an assignment of values to a set E variables
- Evidence are observations on some variables
- Without loss of generality $E = \{X_{k+1}, \ldots, X_n\}$

Simplest query: compute probability of evidence
- $P(e) = \sum_{x_1} \ldots \sum_{x_k} P(x_1, \ldots, x_k, e)$
- This is often referred to as computing the likelihood of e
Query Type 2: Conditional Probability

- Often we are interested in the conditional probability distribution of a variable given the evidence

\[P(X|e) = \frac{P(X, e)}{P(e)} = \frac{P(X, e)}{\sum_x P(X = x, e)} \]

- It is also called a posteriori belief in \(X \) given evidence \(e \)

- We usually query a subset \(Y \) of all variables \(\mathcal{X} = \{Y, Z, e\} \) and “don’t care” about the remaining \(Z \)

\[P(Y|e) = \sum_z P(Y, Z = z|e) \]

- Take all possible configuration of \(Z \) into account
- The processes of summing out the unwanted variable \(Z \) is called marginalization
Query Type 2: Conditional Probability Example

Sum over this set of variables

Interested in the conditionals for these variables

Interested in the conditionals for these variables

Sum over this set of variables
Application of a posteriori Belief

- Prediction: what is the probability of an outcome given the starting condition
 - The query node is a descendent of the evidence

![Diagram of network with nodes A, B, C, and directed edges A → B → C]

- Diagnosis: what is the probability of disease/fault given symptoms
 - The query node is an ancestor of the evidence

![Diagram of network with nodes A, B, C, and directed edges A → B → C]

- Learning under partial observations (Fill in the unobserved)

- Information can flow in either direction
 - Inference can combine evidence from all parts of the networks
Query Type 3: Most Probable Assignment

- Want to find the most probably joint assignment for some variables of interests

- Such reasoning is usually performed under some given evidence \(e \), and ignoring (the values of other variables) \(Z \)
 - Also called maximum a posteriori (MAP) assignment for \(Y \)
 - \(MAP(Y|e) = arg\max_y P(Y|e) = arg\max_y \sum_z P(Y, Z = z|e) \)

Interested in the most probable values for these variables

Sum over this set of variables
Application of MAP assignment

- Classification
 - Find most likely label, given the evidence

- Explanation
 - What is the most likely scenario, given the evidence

Cautionary note:
- The MAP assignment of a variable dependence on its context – the set of variables being jointly queried

Example:
- MAP of (X, Y)?
 - $(0, 0)$
- MAP of X?
 - 1

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>P(X,Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>P(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>1</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Computing the a posteriori belief $P(X|e)$ in a GM is NP-hard in general.

Hardness implies we cannot find a general procedure that works efficiently for arbitrary GMs.

- For particular families of GMs, we can have provably efficient procedures.
 - eg. trees

- For some families of GMs, we need to design efficient approximate inference algorithms.
 - eg. grids
Approaches to inference

- **Exact inference algorithms**
 - Variable elimination algorithm
 - Message-passing algorithm (sum-product, belief propagation algorithm)
 - The junction tree algorithm

- **Approximate inference algorithms**
 - Sampling methods/Stochastic simulation
 - Variational algorithms
Marginalization and Elimination

A metabolic pathway:
- What is the likelihood protein E is produced

Query: $P(E)$
- $P(E) = \sum_d \sum_c \sum_b \sum_a P(a, b, c, d, E)$

Using graphical models, we get
- $P(E) = \sum_d \sum_c \sum_b \sum_a P(a)P(b|a)P(c|b)P(d|c)P(E|d)$

Naïve summation needs to enumerate over an exponential number of terms
Rearranging terms and the summations

\[P(E) \]
\[= \sum_{d} \sum_{c} \sum_{b} \sum_{a} P(a)P(b|a)P(c|b)P(d|c)P(E|d) \]
\[= \sum_{d} \sum_{c} \sum_{b} P(c|b)P(d|c)P(E|d) \left(\sum_{a} P(a)P(b|a) \right) \]
Now we can perform innermost summation efficiently.

\[P(E) \]
\[
= \sum_d \sum_c \sum_b P(c|b)P(d|c)P(E|d) \left(\sum_a P(a)P(b|a) \right)
\]
\[
= \sum_d \sum_c \sum_b P(c|b)P(d|c)P(E|d)P(b)
\]

The innermost summation eliminates one variable from our summation argument at a local cost.
Elimination in Chains (cont.)

Rearranging and then summing again, we get

\[P(E) = \sum_{d} \sum_{c} \sum_{b} P(c|b)P(d|c)P(e|d)P(b) \]

\[= \sum_{d} \sum_{c} P(d|c)P(E|d) \left(\sum_{b} P(c|b)P(b) \right) \]

\[= \sum_{d} \sum_{c} P(d|c)P(E|d)P(c) \]

Equivalent to matrix-vector multiplication, |Val(B)| * |Val(C)|
Elimination in Chains (cont.)

- Eliminate nodes one by one all the way to the end
 \[
P(E) = \sum_d P(E|d)P(d)
 \]

- Computational Complexity for a chain of length \(k\)
 - Each step costs \(O(|\text{Val}(X_i)| \times |\text{Val}(X_{i+1})|)\) operations: \(O(kn^2)\)
 - \(\Psi(X_i) = \sum_{x_{i-1}} P(X_i|X_{i-1})P(X_{i-1})\)
 - Compare to naïve summation: \(O(n^k)\)
 - \(\sum_{x_1} \cdots \sum_{x_{k-1}} P(x_1, \ldots, X_k)\)
Undirected Chains

Rearrange terms, perform local summation ...

\[P(E) \]
\[= \sum_d \sum_c \sum_b \sum_a \frac{1}{Z} \Psi(b, a)\Psi(c, b)\Psi(d, c)\Psi(E, d) \]
\[= \frac{1}{Z} \sum_d \sum_c \sum_b \Psi(c, b)\Psi(d, c)\Psi(E, d) \left(\sum_a \Psi(b, a) \right) \]
\[= \frac{1}{Z} \sum_d \sum_c \sum_b \Psi(c, b)\Psi(d, c)\Psi(E, d)\Psi(b) \]
The Sum-Product Operation

- During inference, we try to compute an expression

 \[\sum_z \prod_{\psi \in \mathcal{F}} \psi \]

 - \(\mathcal{X} = \{X_1, \ldots, X_n\} \) the set of variables
 - \(\mathcal{F} \) a set of factors such that for each \(\psi \in \mathcal{F}, \text{Scope}[\psi] \in \mathcal{X} \)
 - \(\mathcal{Y} \subset \mathcal{X} \) a set of query variables
 - \(\mathcal{Z} = \mathcal{X} - \mathcal{Y} \) the variables to eliminate

- The result of eliminating the variables in \(\mathcal{Z} \) is a factor

 \[\tau(\mathcal{Y}) = \sum_z \prod_{\psi \in \mathcal{F}} \psi \]

 - This factor does not necessarily correspond to any probability or conditional probability in the network.

- \(P(\mathcal{Y}) = \frac{\tau(\mathcal{Y})}{\sum \tau(\mathcal{Y})} \)
Inference via Variable Elimination

General Idea

- Write query in the form
 \[
P(X_1, e) = \sum_{x_n} \cdots \sum_{x_3} \sum_{x_2} \prod_{i} P(x_i | P_{a_{x_i}})
 \]
 - The sum is ordered to suggest an elimination order

- Then iteratively
 - Move all irrelevant terms outside of innermost sum
 - Perform innermost sum, getting a new term
 - Insert the new term into the product

- Finally renormalize
 \[
P(X_1 | e) = \frac{\tau(X_1, e)}{\sum_{x_1} \tau(X_1, e)}
 \]
A more complex network

- A food web

- What is the probability \(P(A|H) \) that hawks are leaving given that the grass condition is poor?
Example: Variable Elimination

- Query: $P(A|h)$, need to eliminate B, C, D, E, F, G, H

- Initial factors
 - $P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h|e,f)$

- Choose an elimination order: $H, G, F, E, D, C, B (<)$

- Step 1: Eliminate G
 - Conditioning (fix the evidence node on its observed value)
 - $m_h(e,f) = P(H = h|e,f)$
Example: Variable Elimination

- Query: $P(A|h)$, need to eliminate B, C, D, E, F, G

- Initial factors
 - $P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h|e,f)$
 - $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)m_h(e,f)$

- Step 2: Eliminate G
 - Compute $m_g(e) = \sum_g P(g|e) = 1$
 - $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)m_g(e)m_h(e,f)$
 - $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)m_h(e,f)$
Example: Variable Elimination

- Query: $P(A|h)$, need to eliminate B, C, D, E, F

- Initial factors

 $P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h|e,f)$

 $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)m_h(e,f)$

 $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)m_h(e,f)$

- Step 3: Eliminate F

 Compute $m_f(e,a) = \sum_f P(f|a)m_h(e,f)$

 $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)m_f(e,a)$
Example: Variable Elimination

- Query: $P(A|h)$, need to eliminate B, C, D, E

- Initial factors
 - $P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h|e,f)$
 - $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)m_h(e,f)$
 - $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)m_h(e,f)$
 - $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)m_f(a,e)$

- Step 3: Eliminate E
 - Compute $m_e(a,c,d) = \sum_e P(e|c,d)m_f(a,e)$
 - $\Rightarrow P(a)P(b)P(c|b)P(d|a)m_e(a,c,d)$
Example: Variable Elimination

- Query: $P(A|h)$, need to eliminate B, C, D

- Initial factors

 \[
 P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h|e,f) \\
 \Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)m_h(e,f) \\
 \Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)m_h(e,f) \\
 \Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)m_f(a,e) \\
 \Rightarrow P(a)P(b)P(c|b)P(d|a)m_e(a,c,d)
 \]

- Step 3: Eliminate D

 Compute $m_d(a, c) = \Sigma_d P(d|a)m_e(a, c, d)$

 $\Rightarrow P(a)P(b)P(c|b)m_d(a, c)$
Example: Variable Elimination

- Query: $P(A|h)$, need to eliminate B, C

- Initial factors
 - $P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h|e,f)$
 - $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)m_h(e,f)$
 - $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)m_h(e,f)$
 - $\Rightarrow P(a)P(b)P(c|b)P(d|a)m_f(a,e)$
 - $\Rightarrow P(a)P(b)P(c|b)m_e(a,c,d)$
 - $\Rightarrow P(a)P(b)P(c|b)m_d(a,c)$

- Step 3: Eliminate C
 - Compute $m_c(a,b) = \sum_c P(c|b)m_d(a,c)$
 - $\Rightarrow P(a)P(b)m_c(a,b)$
Example: Variable Elimination

Query: $P(A|h)$, need to eliminate B

Initial factors
- $P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h|e,f)$
- $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)m_h(e,f)$
- $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)m_h(e,f)$
- $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)m_f(a,e)$
- $\Rightarrow P(a)P(b)P(c|b)P(d|a)m_e(a,c,d)$
- $\Rightarrow P(a)P(b)P(c|b)m_d(a,c)$
- $\Rightarrow P(a)P(b)m_c(a,b)$

Step 3: Eliminate C
- Compute $m_b(a) = \sum_b P(b)m_c(a,b)$
- $\Rightarrow P(a)m_b(a)$
Example: Variable Elimination

- Query: $P(A|h)$, need to renormalize over A

Initial factors

- $P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h|e,f)$
- $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)m_h(e,f)$
- $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)m_h(e,f)$
- $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)m_f(a,e)$
- $\Rightarrow P(a)P(b)P(c|b)P(d|a)m_e(a,c,d)$
- $\Rightarrow P(a)P(b)P(c|b)m_d(a,c)$
- $\Rightarrow P(a)P(b)m_c(a,b)$
- $\Rightarrow P(a)m_b(a)$

Step 3: renormalize

- $P(a,h) = P(a)m_b(a)$, compute $P(h) = \sum_a P(a)m_b(a)$
- $\Rightarrow P(a|h) = \frac{P(a)m_b(a)}{\sum_a P(a)m_b(a)}$
Complexity of variable elimination

- Suppose in one elimination step we compute
 \[m_x(y_1, ..., y_k) = \sum_x m'_x(x, y_1, ..., y_k) \]
 \[m'_x(x, y_1, ..., y_k) = \prod_{i=1}^{k} m_i(x, y_{c_i}) \]

- This requires
 \[k \times |Val(X)| \times \prod_i |Val(Y_{c_i})| \] multiplications
 - For each value of \(x, y_1, ..., y_k \), we do \(k \) multiplications
 \[|Val(X)| \times \prod_i |Val(Y_{c_i})| \] additions
 - For each value of \(y_1, ..., y_k \), we do \(|Val(X)| \) additions

- Complexity is exponential in the number of variables in the intermediate factor
Recall that induced dependency during marginalization is captured in elimination cliques
- Summation \Leftrightarrow Elimination
- Intermediate term \Leftrightarrow Elimination cliques

Can this lead to a generic inference algorithm?
Tree Graphical Models

Undirected tree: a unique path between any pair of nodes

Directed tree: all nodes except the root have exactly one parent
Equivalence of directed and undirected trees

Any undirected tree can be converted to a directed tree by choosing a root node and directing all edges away from it.

A directed tree and the corresponding undirected tree make the conditional independence assertions.

Parameterization are essentially the same

Undirected tree: \(P(X) = \frac{1}{Z} \prod_{i \in V} \Psi(X_i) \prod_{(i,j) \in E} \Psi(X_i, X_j) \)

Directed tree: \(P(X) = P(X_r) \prod_{(i,j) \in E} P(X_j | X_i) \)

Equivalence: \(\Psi(X_i) = P(X_r), \Psi(X_i, X_j) = P(X_j | X_i), Z = 1, \Psi(X_i) = 1 \)
Recall Variable Elimination Algorithm
- Choose an ordering in which the query node f is the final node
- Eliminate node i by removing all potentials containing i, take sum/product over x_i
- Place the resultant factor back

For a Tree graphical model:
- Choose query node f as the root of the tree
- View tree as a directed tree with edges pointing towards f
- Elimination of each node can be considered as message-passing directly along tree branches, rather than on some transformed graphs
- Thus, we can use the tree itself as a data-structure to inference
Let $m_{ij}(X_i)$ denote the factor resulting from eliminating variables from below up to i, which is a function X_i

- $m_{ji}(X_i) = \sum_{x_j}(\Psi(x_j)\Psi(X_i, x_j) \prod_{k \in N(j) \setminus i} m_{kj}(x_j))$

- This is like a message sent from j to i

$$P(x_f) \propto \Psi(x_f) \prod_{e \in N(f)} m_{ef}(x_f)$$

$m_{ef}(x_f)$ represents a belief on x_f from x_e