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Abstract Three problems that have been studied extensively are
bisection, k-coloring, and clique, where the associated
Problems such as bisection, graph coloring, and cligue graph models are:
are generally believed hard in the worst case. However,
they can be solved if the input data is drawn randomly from
a distribution over graphs containing acceptable solutions.
In this paper we show that a simple spectral algorithm
can solve all three problems above in the average case, o k-Coloring: Fix a k-coloring. Include each edge with
as well as a more general problem of partitioning graphs probabilityp, and then removes all intra-color edges.
based on edge density. In nearly all cases our approach
meets or exceeds previous parameters, while introducing © Clique: Fix a set of nodes for inclusion in the clique.
substantial generality. We apply spectral techniques, using  Include each edge with probability and then com-
foremost the observation that in all of these problems, the plete the clique.
expected adjacency _mat_rix is_alow rank matrix whereinthe 114 problem of graph bisection on random graphs has
structure of the solution is evident. been studied for some time. Bui et al. [7] and Dyer and
Frieze [10] have presented algorithms for bisecting dense
graphs whem < (1 —€)q. Jerrum and Sorkin [14] consider
1 Introduction an approach based on simulated annealing, but using a sin-
gle constant temperature. Boppana [6] presents a spectral
The problems of bisection, graph coloring, and clique algorithm which succeeds for a large range of parameters
are well known to be NP-hard. As such, much literature (we will see them shortly), but his approach requires the so-
has emerged on the average-case performance of algorithmisition to a convex optimization problem. Recently, Condon
for each problem, the belief being that perhaps the worst-and Karp [8] analyzed a linear time combinatorial algorithm
case instances are not representative of problem instancefor partitioning which nearly achieves the same range of pa-
as awhole. Average-case analysis is equivalent to considerrameters as [6].
ing the probability of success on a random graph, however  Similarly, many researchers have worked on the problem
choosing problem instancéso uniformlyfrom the collec- of coloring random graphs which ha¥ecolorings. Kucera
tion of all graphs is not particularly illuminating. A very [18], Turner [22], and Dyer and Frieze [10] present algo-
small fraction of alln node graphs have small colorings, rithms that optimally coloik-colorable graphs for fixed,
large cliques, or bisections of merit. Trivial algorithms are with high probability. However, most graphs are dense,
thus able to compete with good algorithms. and therefore easier to color than sparse graphs. Blum and
One resolution to this issue is to restrict the input dis- Spencer [5] and Alon and Kahale [2] demonstrate algo-
tribution to graphs which are likely to have a specific non- rithms that color random sparse graphs properly with high
trivial solution. Each average-case graph problem is there-probability, the latter using a spectral algorithm.
fore associated with a particular model of random graph.  The problem of finding a large clique in a random graph
A graph is generated by including each edge independentlywas suggested by Karp in [16]. Kucera [19] observes that
with an associated probability. The probability associated when the size of the clique is(v/n logn) andp = 1/2, the
with each edge is tailored so that with high probability the cliqgue members are simply the vertices of highest degree.
graph includes a particular combinatorial object. Alon, Krivelevich, and Sudakov [3] showed that a planted

e Bisection Fix a bisection. Include each intra-part
edge with probabilityy, and each inter-part edge with
probabilityp < g.



clique of sizeQ2(y/n) can be found through spectral tech- 1.2 Our Approach
niques whem = 1/2.
Given the matrixG, it is easy to reconstrugt by cluster-
1.1 Graph Partition Model ing the columng~,, of G. Unfortunately, we have instead a
matrix G' which is a highly perturbed version ¢f, and the

The graph models above each generate a graph by incolumnsG,, are nowhere near th&,. Itis perhaps natural
cluding each edge independently with an associated probato ask: “Why can we hope to recovgrat all?” The answer
bility. Further, in each model we can partition the nodes of to this question, and our approach to this problem, is based
the graph so that the probability associated with each edgeon the following observation:
depends only on the parts to which its endpoint belongs.

Based on this observation we introduce the following gen- Foranyy and P, the matrixG: has rank:.

era| mode| Of “Structured” random graphs_ If PG iS the projection on the Column SpaceG')f
G, P): Lety : {1,...,n} — {1,...,k} be * |Po(Gu) — Gulis zero.
a partition ofn nodes intok classes. LeP be a o |Ps(Gy — @u)| is small.
kx k matrix whereP;; € [0, 1] forall 4, j. Include _ _ _ N
edge(u, v) with probability Py, (., (v)- By the triangle inequality,P(G.) equalsG.,,

plus a “small” error.
For a particular distributio (v, P) we letG refer to the
matrix of random variables corresponding to the adjacency
matrix of the random graph. We also @trefer to the ma-
trix of expectations, Wher€',, = Py (u)y(v)-

We now specialize this model into three models
which are equivalent to the models for planted bisec- Data is Preserved: |Py(Gy) — Gy | is small
tion/multisection, coloring, and clique presented in the lit-
erature.

Of course, we do not have accessig either. A result
from matrix perturbation theory saves us, in that the equiv-
alent projection folG is close toPg. Our approach is now
to find a projectionPx so that

Noise is Removed:  |Px (G, — G.,)| is small

~

If so, then Px(G,) equalsG, up to a “small” error. If
wheny(u) # ¥(v), |G, — G| is much larger than this
error, we can apply a simple greedy clustering process to
e Planted k-Coloring(z, p): 1 is the coloring. P is p the Px (G,).

everywhere except the diagonal, where ib.is With a minor modification, this is the algorithm we an-
alyze in this paper. Let be a threshold parameter, and let

e Planted Clique(y,p): Lety(v) = 1iff visinthe  CPproj be a function which computes an “appropriate” pro-
clique. P is p everywhere, excep®;;, which is1. jection matrix.

e Planted Multisection(y, p, q): v is the multisection.
P is p everywhere, except the diagonal where ig it

Our model of a random graph with a planted partition Partition (@, T)

leads naturally to the following graph partitioning problem.
Y ggraphp gp 1. Randomly divid€(1, ..., n} into two parts.

Planted Partition Problem: Given a grapht/ Let this division split the columns dF as [ﬁ|§}
drawn from the distributiorG (¢, P), produce a
partition< so that 2. LetP, = CProj(B); let P, = CProj(A)

Y(u) =p(v) i Plu) =) 3. Letl = [Pi(A)|P,(B)

As ¢ encodes the solution to each of the problems above, 4 While there are unpartitioned nodes

recovering a partition equivalent i generalizes the prob- (a) Choose an unpartitioned nodgarbitrarily
lems of finding planted multisections, cliques, and colorings ~ TP ~
in their respective models. (b) Foreachy, sety(v) = iif [Hy, — Hy[ <7

It is important to disassociate this problem from tradi- 5 Return the partitionxj.
tional related optimization problems. The goal is not to R
find the largest clique or min cost bisection, but rather to  Notice that we split the matri% into two parts. This is
recover the planted object. In many cases these two will bedone to avoid the conditioning that would otherwise exist
the same, but if the optimal solution is not equivalent to the between the erro& — G and the computed projection, a
planted object our goal is to find the latter. function of G.



1.3 Results To describe the performance Bartition in the general
context of the Planted Partition Problem we must describe

The main result of this paper is an analysis of the algo- the range of«, P) for which the algorithm succeeds. This
rithm Partition . Appropriate choices dEProj andr result range is best described by a requisite lower bounfipn-
in perfect classification for a large range(af, P). Before G, | wheny(u) # ¢ (v).
considering the general result, we examine the specializa- ) )
tions to the three problems we have mentioned. For theselheorem 4 Let (v, P) be an instance of the planted parti-
corollaries we require that at least one entryitas vari-  tion problem. Let > log® n/n be an upper bound on the
ance at leasbg®(n)/n, and that the failure probabilityis variance of the entries id, and lets,,, be the size of the
no smaller tharxp(— log® n). smallest part of).

There is a constant such that for sufficiently large if

wheny(u) # ¢ (v)

_ap 2 (1 g (T
Gu — G2 > cho <8m+log(5)>

Corollary 1 Let (v, p, q) be an instance of the planted mul-
tisection problem wittk parts. There is a constamtso that
for sufficiently largen if

log(n/d)

qn

q—-p
q

¢ then given@ we can efficiently recovep with probability

1 — ¢ over the random graplﬁA}’, and probabilityk—! over

then we can recovep with probability1 — 4. the random bits of the algorithm.

This range of parameters is equivalent to the range in [6], 1 4 Additional Related Work
up to constant factors. It is worth emphasizing that Bop-
pana produces the optimal bisection, whereas we recover

) X As well as theoretical success in average case analysis,
the planted multisection.

spectral algorithms have been successfully used in practice
as a heuristic for data partitioning. While there is no sin-
gle spectral approach, most examine the eigenvectors of the
adjacency matrix of a graph (or of the Laplacian of this
matrix). In particular, the second eigenvector is typically
used as a classifier, partitioning nodes based on the sign
of their coordinate. The special cases of bounded degree
planar graphs and d-dimensional meshes (cases which oc-
cur frequently in practice) were analyzed successfully by

This result is simultaneously weaker and more general thatSPi€iman and Teng in [21]. Recently, Kannan, Vempala,
that of [2]. Here we admit color classes of differing sizes, and Vetta [15] gave a compelling clustering bi-criteria and
and can further generalize to cover the case where the size& SPectral algorithm which produces clusterings of quality
of the color classes are asymptotically different. On the Similar to the optimal clustering.
other hand, this result covers a smaller rangey dhan The perturbatlon.theory ofgmatnxs spectrum has been
[2] who show that the problem can be solved even when &round for some time. Davis and Kahan [9] present a
p = ¢/n, for some large constant classic anaIyS|s qf the perturbatlon' of Hermitian operators.
Through a fairly simple transformation, the results also lead
to perturbation bounds for the singular value decomposi-
tion. Papadimitriou et al. [20] and Azar et al. [4] have ap-
plied perturbation theory to analyze and give justification
for spectral techniques. In particular, the observed insensi-
tivity of low rank approximations to random noise is closely
related to this work.

Feige and Kilian [11] consider an alternate model for de-
scribing the performance of “empirical” algorithms. For the
This result subsumes the spectral result of [3] where theyproblems of bisection, coloring, and clique, a random graph

Corollary 2 Let (v, p) be an instance of the planted k-
coloring problem, where the size of each color class is lin-
ear inn. There is a constantsuch that for sufficiently large
n if

p > clog®(n/d)/n

then we can recovep with probability1 — 4.

Corollary 3 Let (%, p) be an instance of the planted clique
problem, where the clique size és There is a constant
such that for sufficiently large if

(

then we can recovep with probability1 — 4.

n

52

log(n/9)

S

1-p
P

show that cliques of siz&(y/n) can be found whep =
1/2. Note that this theorem allows for variabl@nds . The

is produced as before. However, they now allow an ad-
versary to “help” the algorithm, perhaps by including addi-

restriction to a single clique is also not necessary. The gen-tional edges between color classes, or removing non-clique

eral theorem addresses graphs with several hidden cliquegdges.

and hidden independent sets, each of varying size.

[11] give algorithms that address these problems

when the objects are of linear size. While this model is



interesting in these three domains, it does not seem to genis the orthogonal projection ont®. For any vector:, Psx

eralize to planted partition problem.
1.5 Paper Outline

In section 2 we review a few important facts from linear

algebra. In section 3 we analyze two types of projection

matrices. Finally, in section 4 we conclude with several

is the vector inS closest tar. If one were to stand at and
drop a ball, with gravity oriented towards the hyper-pl&he
describes, it would bounce exactly Bt x.

2.3 Singular Vectors

One very important class of projections with respect to

extensions to and observations about our spectral approacty matrix M/ is the projection onto the span of its fifsteft

2 Linear Algebra

We will need to introduce some notions from linear al-

gebra before we can proceed too far. The text of Golub
and Van Loan [13] is an excellent reference for this ma-

terial. Notationally speaking, capital letter&/§ will rep-
resent matrices, single subscripid;{ will represent a col-
umn of the matrix (or a vector), and double subscripis;(
will index elements of a matrix first by row, then column.
2.1 Vector and Matrix Norms

We will frequently use the vector L2 norm, defined as
2 2
|M;|* = Z M;;
J

We will use two matrix norms in this paper. They are

|M| = Im‘a}i | M x| Spectral Norm

2 _ 2
M=
4,7

One important relation between the two norms is:

Frobenius Norm

Fact5 If M is rankk, then|M|% < k| M|

singular vectors (computed through the singular value de-
composition). IfP,; denotes this projectiork(will be “un-
derstood”), therP; M is the optimal rank approximation

to M in the following sense

Fact 8 For any rankk matrix X, |M — Py M| < |M — X|
These facts (and the triangle inequality) demonstrate that

Lemma 9 For any matrix}/ and rankk matrix M,

M — PgM|% < 8k|M — M

Proof:

|M — PzM|% < 2k|M — PoM|?
< 2k(|M — M|+ |M — P5M)|)?
< 2k(M — M|+ |M - M|)?

8k|M — M|?

O
Itis worth noting that this fairly simple observation plays
a central role in our result. By bounding — PzG|%., we

have bounded the total entry-wise error in usifgG, a
computable quantity, to approximaté

2.4 Random Matrices

If we associate the Frobenius summation by column we see

Fact6 Y, |M;|* = |M|3%

A counting argument limits the number of columns that
have significant length

Claim 7 The set{i : |M;|> > |M|% /c} has size at most
2.2 Subspaces and Projections

A subspace ofR™ is a set of vectors closed under addi-
tion and scalar multiplication. Any subspa8eof R™ can
be represented by a collection of orthonormal vec{at$
such thatS is exactly the set of linear combinations of those
vectors{g; }. If we let @ be the matrix whose columns are
the{g¢;}, then the matrix

Ps QQ"

Random matrices play an important role in our result, as
it is a random matrix that separates the observed data from
what we aim to recover. In particular, as we saw just above,
the spectral norm off — G is quite relevant. The following
is a classic expectation result of Furedi and Komlos [12],
combined with a recent concentration result of Krivelevich
and Vu [17].

Theorem 10 Let M be a matrix generated by randomly
rounding the entries of a matrix of probabilitidd preserv-
ing symmetry. Let be the largest deviation of an entry in
M. Ifo? > log® n/n, then

|M — M| < 40v/n

with probability at leastl — 2e=7°"/8



For the range of allowed in the theorem, this probability ~Proof: Note that
is alwaysl — O(exp(— log® n)). For the rest of this paper, . .
we will assume that this bound holds. Furthermore, unless (I —P3)B = (I —P3;)A— (I —P3;)(A-B)
explicitly stated otherwise, we will assume thasatisfies = (A- pgg) —(I- pg)(j — A)
the condition of the theorem.
A — Pg/ﬂ can be bounded dsi — A|, as it is A1 (A),
3 Spectral Graph Partitioning and\;11(4) = 0. The magnitude of any eigenvalue can
change by at mogtA — A|, which give us that bound. We
It is now time to identify projections and delve into their take norms of the above equation and conclude
particulars. Recall theartition works when the projected
columnsP(G,) are close to the original columigs,, and
the columns inG from different parts are distant. We can
codify this in the following observation.

(Pz—I1)B] < 2|A- A

Now, observe that for any column there ares,, identical
columns in(I — P3;)B. As such, the length of the column
Observation 11 Assume that for ali; in (P; — I)B can be no more than our L2 bound, divided

~ by \/s.. Otherwise we will violate the L2 bound we just
[P1(Au) = Aul <m0 and - [Pr(Ay = é’“” =2 derived (that column would witness a higher L2 norm).
B

|P2(By) = Bu| <71 and  |[Py(By — Bu)| < 72 We now consider the second inequality{{,} are the
If wheny(u) # 4 (v) left singular vectors ofl, then
Gu =Gl 2 ) Pa(Bu = BJ)P = Y (B~ B.),Q,)

thenPartition(G, 2(y, + 72)) is equivalent tap. g

Naturally, the challenging question is: “Givehand B, Observe that for any unit vectdy;

can we compute projectiorfd and P, with small values of ~ - 5

v1 and~,?" Theorems 12 and 14 bound these values for ((Bu=Bu),@5) = Z(B”“ = Bou)Qu;
two different computable projections. Theorem 14 involves
CProj and largely surpasses the results of Theorem 12, butEach of these terms in the sum is an independent zero mean
the latter is pleasingly simple and (in the author’s opinion) random variable. Furthermore, we can bound

more natural than Theorem 14.

v

%) 2
Before we barge into any proofs or other discussions, we Z [(Bow = Bou)Quj|” < 1
need to define a few terms. With high probability, the size of Y
each part ofp when restricted tal (or B) is close to half the We can apply Azuma’s inequality (Theorem 13) to

original size of the part. To facilitate our discussion, we will bound|((B, — Eu),Qj>\. Furthermore, we can apply a
assume (wrongly) that this size is exactly half. ketlenote union bound to bountP;(B,, — §u)| for all w.

the size of part of ¢ in each ofA andB. Lets,,, = min; s; 0
be a lower bound on these sizes. The variablgs all lie

in {1,...,k}, whereas the variables v lie in {1,...,n}. Theorem 13 (Azuma) Let{ X, } be independent zero mean
We will occasionally use the notation like; to refer to the  random variables such thdf(;| < ¢; where)". ¢? < 1.
column ofG that corresponds to nodes in partLikewise, Then for any\ > 0,

we uses,, to refer to the size of the part containing ,
Pr(d Xi| =\ < 20/

3.1 A Traditional Spectral Result

A natural projection to consider fdP, is the projection 3.2 Combinatorial Projections
onto the firstk left singular vectors ofd. As they are the

best basis to descrihé, we might imagine that they will While Theorem 12 is acceptable wheris large (ors,
capture the structure d¢ as well (the columns oft and B is small) it does not give competitive results for very small
are the same). values ofg. The absence of a in the second inequality
. - stops attempts to prove strong bounds. We would like to
Theorem 12 With probability at least — 4 argue that if the vectaB; — B, has very low variance in its
|Pi(By) — B,| < 8ov/nk/s, entries, its projection will be that much smaller.

~ We now discuss the algorith@Proj and analyze its per-
|P3(Bu — Bu)| < 2klog(n/d) formance. In this algorithm, and in its discussion, we use



the notationﬁf. This is thevth column of the transpose of  Proof: Let us call a node good if
A, which is a vector of roughly./2 coordinates. Note that

as each part of) is assumed bisectedi? is like a small AT = P Ay < |A = PiAlr/Vsm/2
copy of GT. < 160v/nk/sm
CProj (A\vka Sy T) Claim 7 bounds the number of non-good nodes as fewer

thans,, /2. The probability we pick a good node for each
of the firstk nodes can be crudely bounded as at least
(&) Choose an unclassified noderandomly. A more refined analysis gives us a lower bound:of/2.
(b) LetT; = {u: |Pzr (ﬁf _ gg)‘ <7} Note that for each round, if we select a goqd T; will
i include all other good nodes from’s part in v, and no

good nodes from other parts of With probability s /2,
2. Assign each remaining node to thegwith closest pro- after thekth iteration we have removed all the good nodes,

jectedu;. leaving fewer thar,,, /2 nodes.

At this point, we return to the inequality we are trying
to prove. Observe that as 4l} are centered around good

1. While there are at least, /2 unclassified nodes

(c) Mark eachu € T; as classified.

3. Letc; be the characteristic vector @f

4. ReturnP, the projection onto the span of thg nodes (the);), everywv that contributes tev,; must satisfy
If the ¢; were the characteristic vectors©f this projec- AT — P,ZTA\ﬂ > |A7 - AT|/4

tion would be exactlyP,. Instead, we will see that th&
are not unlike the characteristic vectorsj/of

Theorem 14 If when(u) # ¥(v) Z ag(Py — Pij)” < Z agl A7 = AT1?/s;

|By, — By| > 64o+/nk/sm

We will now consider a series of inequalities.

< Z 16|AT — P AT|?/s;
then with probabilityl — 4, if we let
: = 16\AT— AT (35
P> = CProj(A, k, s, 320\/nk/sm) by
< 128k|A — A|*/s;
then
which concludes the proof. a
|P=(By,) — By| < 64do+/nk/sm
|Px(By — Eu)| < o\/2klog(n/d) Lemma 16 For the terms defined above, and letting
with probability at least;—1/2, P; = CProj(A, k, sm, 320\/nk/sm)
Proof: Lemmas 16 proves the first bound, but we must first it is the case that
read Lemma 15 for an important observation. A Chernoff-
type argument proves the second bound, though the details |PeBi — Bi| < 6doy/nk/s;
are omitted from this abstract. _ = Proof: If we lets; be the size of sef;, then we can write
Combining this theorem with Observation 11 allows us
to conclude Theorem 4. We now proceed to the proofs of &I'B; = 5Py+ Z aui(Py; — Pyj)

the supporting lemmas. The first is a structural property

about the sets produced@Proj. We assume (without loss . . )
of generality, as we will see) that(v;) = i. And so ifv € T; thevth coordinate of?:B; is

Lemma 15 For the conditions of Theorem 14, with prob- (P:B;), = Pj+ Za& Puj — Pi;) /5
ability at leastk—'/2 CProj(A, k, s,,, 320 +/nk/s,,) pro-

ducesk setsT; such that if we define .
Let us now break the vectd?: B; along these lines. Assum-

ap, = [Hv:y(v)=Landv € T;} ing v € T;, we defineE; and F; by defining their values at

each coordinate.
then for anyj

E, = Py

(o773 Pg 1 2 S 128k|A—121\|2/S‘
Z ! ] ! ij = Zah PZ] 2] /87,



It should be clear thaP:B; = E; + F;. Observe that
IB; —Ej|* = > au(Py - Py)?
il

and that (letting vary with v)

YO ag(Py — Py)?/s;
v 4

5> ai(Py - Py)? /5
7 4

> au(Py — Py)?
i,

|Fy|?

IA

We conclude, through the help of Lemma 15, that

|P:B; — B;| < |Fj|+ |E; — Byl
< 64o+/nk/s;

4 Observations and Extensions

4.1 Implementation Details

We can also analyze the case whéres not of low rank,
but is well represented by a low rank matrix. In other words,
we can view it as a low rank matrix plus a small nadeter-
ministicerror. Our results do not immediately translate, due
principally to the arbitrary projection this error may have.
If this quantity is boundedour proofs will hold.

4.3 Parameterless Partitioning

The principal open questions in [8] involve the problem
of partitioning a graph when either the part sizes or number
of parts is unknown. In this paper we need only a lower
bound on the sizes, and an upper bound on the number of
parts. These two bounds do occur in the requisite lower
bound on|G, — G|, and if they are too loose we risk not
satisfying this bound. Otherwise, the algorithm performs
properly, even without precise information about the size
and number of parts.

4.4 Future Directions

One significant open question with respect to this work
is: “Is CProj necessary?” Our analysis 6% was defeated
by our inability to analyze the projection of a low variance
random vector onto the perturbed singular vectors. It seems

For the most part, the question of average case multisecteasonable to believe that with probability- §

tion, coloring, and clique is: “for what range of parameters
can we find a solution in poly-time?” The algorithm pre-
sented in this paper also has the desirable property that it i
not slow. Aside from the computation of the matfix, we
requireO(nk? + mk) time to partition and classify nodes.

S

|P;(B, — B,)| € O(ov/klog(n/d))

At present, this is only speculation.

Several recent papers have begun to address the prop?> Acknowledgements

lem of efficiently computing approximations #; A. The
optimality ong/T is not truly required; if one were to pro-
duce a rank: matrix X instead ofP; Ay, the termA — X|
could be introduced into the bound, replacing occurrences
of |A — A|. Achlioptas and McSherry [1] examine the
problem of quickly computing approximations which have
bounded spectral norm. Their technique adds random nois
to each entry, increasing but having no other effect on
our algorithm. Through a trivial analysis, their technique
enables partitioning in sub-linear time for a certain (non-
trivial) range of parameters.

4.2 General Graph Partitioning

Our restriction to unweighted graphs is purely artificial.
The bound of Theorem 10 applies equally well to weighted,
non-symmetric matrices (at the expense gfaterm). Per-
haps even more interesting, at no point have we actually

required that our matrices be square. Our analyses have tac-[3]

itly assumed this, but they can easily be rewritten in terms of
ny andnsy, should the input matrix be; x ny dimensional.
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