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Abstract

Problems such as bisection, graph coloring, and clique
are generally believed hard in the worst case. However,
they can be solved if the input data is drawn randomly from
a distribution over graphs containing acceptable solutions.

In this paper we show that a simple spectral algorithm
can solve all three problems above in the average case,
as well as a more general problem of partitioning graphs
based on edge density. In nearly all cases our approach
meets or exceeds previous parameters, while introducing
substantial generality. We apply spectral techniques, using
foremost the observation that in all of these problems, the
expected adjacency matrix is a low rank matrix wherein the
structure of the solution is evident.

1 Introduction

The problems of bisection, graph coloring, and clique
are well known to be NP-hard. As such, much literature
has emerged on the average-case performance of algorithms
for each problem, the belief being that perhaps the worst-
case instances are not representative of problem instances
as a whole. Average-case analysis is equivalent to consider-
ing the probability of success on a random graph, however
choosing problem instancestoo uniformlyfrom the collec-
tion of all graphs is not particularly illuminating. A very
small fraction of alln node graphs have small colorings,
large cliques, or bisections of merit. Trivial algorithms are
thus able to compete with good algorithms.

One resolution to this issue is to restrict the input dis-
tribution to graphs which are likely to have a specific non-
trivial solution. Each average-case graph problem is there-
fore associated with a particular model of random graph.
A graph is generated by including each edge independently
with an associated probability. The probability associated
with each edge is tailored so that with high probability the
graph includes a particular combinatorial object.

Three problems that have been studied extensively are
bisection, k-coloring, and clique, where the associated
graph models are:

• Bisection: Fix a bisection. Include each intra-part
edge with probabilityq, and each inter-part edge with
probabilityp < q.

• k-Coloring : Fix a k-coloring. Include each edge with
probabilityp, and then removes all intra-color edges.

• Clique: Fix a set of nodes for inclusion in the clique.
Include each edge with probabilityp and then com-
plete the clique.

The problem of graph bisection on random graphs has
been studied for some time. Bui et al. [7] and Dyer and
Frieze [10] have presented algorithms for bisecting dense
graphs whenp < (1− ε)q. Jerrum and Sorkin [14] consider
an approach based on simulated annealing, but using a sin-
gle constant temperature. Boppana [6] presents a spectral
algorithm which succeeds for a large range of parameters
(we will see them shortly), but his approach requires the so-
lution to a convex optimization problem. Recently, Condon
and Karp [8] analyzed a linear time combinatorial algorithm
for partitioning which nearly achieves the same range of pa-
rameters as [6].

Similarly, many researchers have worked on the problem
of coloring random graphs which havek-colorings. Kucera
[18], Turner [22], and Dyer and Frieze [10] present algo-
rithms that optimally colork-colorable graphs for fixedk,
with high probability. However, most graphs are dense,
and therefore easier to color than sparse graphs. Blum and
Spencer [5] and Alon and Kahale [2] demonstrate algo-
rithms that color random sparse graphs properly with high
probability, the latter using a spectral algorithm.

The problem of finding a large clique in a random graph
was suggested by Karp in [16]. Kucera [19] observes that
when the size of the clique isω(

√
n log n) andp = 1/2, the

clique members are simply the vertices of highest degree.
Alon, Krivelevich, and Sudakov [3] showed that a planted



clique of sizeΩ(
√
n) can be found through spectral tech-

niques whenp = 1/2.

1.1 Graph Partition Model

The graph models above each generate a graph by in-
cluding each edge independently with an associated proba-
bility. Further, in each model we can partition the nodes of
the graph so that the probability associated with each edge
depends only on the parts to which its endpoint belongs.
Based on this observation we introduce the following gen-
eral model of “structured” random graphs.

G(ψ, P ): Let ψ : {1, . . . , n} → {1, . . . , k} be
a partition ofn nodes intok classes. LetP be a
k×kmatrix wherePij ∈ [0, 1] for all i, j. Include
edge(u, v) with probabilityPψ(u)ψ(v).

For a particular distributionG(ψ, P ) we let Ĝ refer to the
matrix of random variables corresponding to the adjacency
matrix of the random graph. We also letG refer to the ma-
trix of expectations, whereGuv = Pψ(u)ψ(v).

We now specialize this model into three models
which are equivalent to the models for planted bisec-
tion/multisection, coloring, and clique presented in the lit-
erature.

• Planted Multisection(ψ, p, q): ψ is the multisection.
P is p everywhere, except the diagonal where is itq.

• Planted k-Coloring(ψ, p): ψ is the coloring.P is p
everywhere except the diagonal, where it is0.

• Planted Clique(ψ, p): Let ψ(v) = 1 iff v is in the
clique.P is p everywhere, exceptP11, which is1.

Our model of a random graph with a planted partition
leads naturally to the following graph partitioning problem.

Planted Partition Problem: Given a graphĜ
drawn from the distributionG(ψ, P ), produce a
partitionψ̂ so that

ψ̂(u) = ψ̂(v) iff ψ(u) = ψ(v)

As ψ encodes the solution to each of the problems above,
recovering a partition equivalent toψ generalizes the prob-
lems of finding planted multisections, cliques, and colorings
in their respective models.

It is important to disassociate this problem from tradi-
tional related optimization problems. The goal is not to
find the largest clique or min cost bisection, but rather to
recover the planted object. In many cases these two will be
the same, but if the optimal solution is not equivalent to the
planted object our goal is to find the latter.

1.2 Our Approach

Given the matrixG, it is easy to reconstructψ by cluster-
ing the columnsGu of G. Unfortunately, we have instead a
matrix Ĝ which is a highly perturbed version ofG, and the
columnsĜu are nowhere near theGu. It is perhaps natural
to ask: “Why can we hope to recoverψ at all?” The answer
to this question, and our approach to this problem, is based
on the following observation:

For anyψ andP , the matrixG has rankk.

If PG is the projection on the column space ofG

• |PG(Gu)−Gu| is zero.

• |PG(Gu − Ĝu)| is small.

By the triangle inequality,PG(Ĝu) equalsGu,
plus a “small” error.

Of course, we do not have access toPG either. A result
from matrix perturbation theory saves us, in that the equiv-
alent projection forĜ is close toPG. Our approach is now
to find a projectionPX so that

Data is Preserved: |PX(Gu)−Gu| is small

Noise is Removed: |PX(Gu − Ĝu)| is small

If so, thenPX(Ĝu) equalsGu up to a “small” error. If
whenψ(u) 6= ψ(v), |Gu − Gv| is much larger than this
error, we can apply a simple greedy clustering process to
thePX(Ĝu).

With a minor modification, this is the algorithm we an-
alyze in this paper. Letτ be a threshold parameter, and let
CProj be a function which computes an “appropriate” pro-
jection matrix.

Partition (Ĝ, τ)

1. Randomly divide{1, . . . , n} into two parts.

Let this division split the columns of̂G as
[
Â|B̂

]
2. LetP1 = CProj(B̂); let P2 = CProj(Â)

3. LetĤ =
[
P1(Â)|P2(B̂)

]
4. While there are unpartitioned nodes

(a) Choose an unpartitioned nodeui arbitrarily

(b) For eachv, setψ̂(v) = i if |Ĥui
− Ĥv| ≤ τ

5. Return the partition̂ψ.

Notice that we split the matrix̂G into two parts. This is
done to avoid the conditioning that would otherwise exist
between the errorG − Ĝ and the computed projection, a
function ofĜ.



1.3 Results

The main result of this paper is an analysis of the algo-
rithm Partition . Appropriate choices ofCProj andτ result
in perfect classification for a large range of(ψ, P ). Before
considering the general result, we examine the specializa-
tions to the three problems we have mentioned. For these
corollaries we require that at least one entry inG has vari-
ance at leastlog6(n)/n, and that the failure probabilityδ is
no smaller thanexp(− log6 n).

Corollary 1 Let(ψ, p, q) be an instance of the planted mul-
tisection problem withk parts. There is a constantc so that
for sufficiently largen if

q − p

q
> c

√
log(n/δ)
qn

then we can recoverψ with probability1− δ.

This range of parameters is equivalent to the range in [6],
up to constant factors. It is worth emphasizing that Bop-
pana produces the optimal bisection, whereas we recover
the planted multisection.

Corollary 2 Let (ψ, p) be an instance of the planted k-
coloring problem, where the size of each color class is lin-
ear inn. There is a constantc such that for sufficiently large
n if

p > c log3(n/δ)/n

then we can recoverψ with probability1− δ.

This result is simultaneously weaker and more general that
that of [2]. Here we admit color classes of differing sizes,
and can further generalize to cover the case where the sizes
of the color classes are asymptotically different. On the
other hand, this result covers a smaller range ofp than
[2] who show that the problem can be solved even when
p = c/n, for some large constantc.

Corollary 3 Let (ψ, p) be an instance of the planted clique
problem, where the clique size iss. There is a constantc
such that for sufficiently largen if

1− p

p
> c

(
n

s2
+

log(n/δ)
s

)
then we can recoverψ with probability1− δ.

This result subsumes the spectral result of [3] where they
show that cliques of sizeΩ(

√
n) can be found whenp =

1/2. Note that this theorem allows for variablep ands . The
restriction to a single clique is also not necessary. The gen-
eral theorem addresses graphs with several hidden cliques
and hidden independent sets, each of varying size.

To describe the performance ofPartition in the general
context of the Planted Partition Problem we must describe
the range of(ψ, P ) for which the algorithm succeeds. This
range is best described by a requisite lower bound on|Gu−
Gv| whenψ(u) 6= ψ(v).

Theorem 4 Let (ψ, P ) be an instance of the planted parti-
tion problem. Letσ2 � log6 n/n be an upper bound on the
variance of the entries inG, and letsm be the size of the
smallest part ofψ.

There is a constantc such that for sufficiently largen if
whenψ(u) 6= ψ(v)

|Gu −Gv|2 > ckσ2

(
n

sm
+ log

(n
δ

))
then givenĜ we can efficiently recoverψ with probability
1 − δ over the random grapĥG, and probabilityk−1 over
the random bits of the algorithm.

1.4 Additional Related Work

As well as theoretical success in average case analysis,
spectral algorithms have been successfully used in practice
as a heuristic for data partitioning. While there is no sin-
gle spectral approach, most examine the eigenvectors of the
adjacency matrix of a graph (or of the Laplacian of this
matrix). In particular, the second eigenvector is typically
used as a classifier, partitioning nodes based on the sign
of their coordinate. The special cases of bounded degree
planar graphs and d-dimensional meshes (cases which oc-
cur frequently in practice) were analyzed successfully by
Spielman and Teng in [21]. Recently, Kannan, Vempala,
and Vetta [15] gave a compelling clustering bi-criteria and
a spectral algorithm which produces clusterings of quality
similar to the optimal clustering.

The perturbation theory of a matrix’s spectrum has been
around for some time. Davis and Kahan [9] present a
classic analysis of the perturbation of Hermitian operators.
Through a fairly simple transformation, the results also lead
to perturbation bounds for the singular value decomposi-
tion. Papadimitriou et al. [20] and Azar et al. [4] have ap-
plied perturbation theory to analyze and give justification
for spectral techniques. In particular, the observed insensi-
tivity of low rank approximations to random noise is closely
related to this work.

Feige and Kilian [11] consider an alternate model for de-
scribing the performance of “empirical” algorithms. For the
problems of bisection, coloring, and clique, a random graph
is produced as before. However, they now allow an ad-
versary to “help” the algorithm, perhaps by including addi-
tional edges between color classes, or removing non-clique
edges. [11] give algorithms that address these problems
when the objects are of linear size. While this model is



interesting in these three domains, it does not seem to gen-
eralize to planted partition problem.

1.5 Paper Outline

In section 2 we review a few important facts from linear
algebra. In section 3 we analyze two types of projection
matrices. Finally, in section 4 we conclude with several
extensions to and observations about our spectral approach.

2 Linear Algebra

We will need to introduce some notions from linear al-
gebra before we can proceed too far. The text of Golub
and Van Loan [13] is an excellent reference for this ma-
terial. Notationally speaking, capital letters (M ) will rep-
resent matrices, single subscripts (Mi) will represent a col-
umn of the matrix (or a vector), and double subscripts (Mij)
will index elements of a matrix first by row, then column.

2.1 Vector and Matrix Norms

We will frequently use the vector L2 norm, defined as

|Mi|2 =
∑
j

M2
ij

We will use two matrix norms in this paper. They are

|M | = max
|x|=1

|Mx| Spectral Norm

|M |2F =
∑
i,j

M2
ij Frobenius Norm

One important relation between the two norms is:

Fact 5 If M is rankk, then|M |2F ≤ k|M |2.

If we associate the Frobenius summation by column we see

Fact 6
∑
i |Mi|2 = |M |2F

A counting argument limits the number of columns that
have significant length

Claim 7 The set{i : |Mi|2 > |M |2F /c} has size at mostc.

2.2 Subspaces and Projections

A subspace ofRn is a set of vectors closed under addi-
tion and scalar multiplication. Any subspaceS of Rn can
be represented by a collection of orthonormal vectors{qi}
such thatS is exactly the set of linear combinations of those
vectors{qi}. If we letQ be the matrix whose columns are
the{qi}, then the matrix

PS = QQT

is the orthogonal projection ontoS. For any vectorx, PSx
is the vector inS closest tox. If one were to stand atx and
drop a ball, with gravity oriented towards the hyper-planeS
describes, it would bounce exactly atPSx.

2.3 Singular Vectors

One very important class of projections with respect to
a matrixM is the projection onto the span of its firstk left
singular vectors (computed through the singular value de-
composition). IfPM denotes this projection (k will be “un-
derstood”), thenPMM is the optimal rankk approximation
toM in the following sense

Fact 8 For any rankk matrixX, |M −PMM | ≤ |M −X|

These facts (and the triangle inequality) demonstrate that

Lemma 9 For any matrixM̂ and rankk matrixM ,

|M − PcMM̂ |2F ≤ 8k|M − M̂ |2

Proof:

|M − PcMM̂ |2F ≤ 2k|M − PcMM̂ |2

≤ 2k(|M − M̂ |+ |M̂ − PcMM̂ |)2

≤ 2k(|M − M̂ |+ |M̂ −M |)2

= 8k|M − M̂ |2

2

It is worth noting that this fairly simple observation plays
a central role in our result. By bounding|G − P bGĜ|2F , we

have bounded the total entry-wise error in usingP bGĜ, a
computable quantity, to approximateG.

2.4 Random Matrices

Random matrices play an important role in our result, as
it is a random matrix that separates the observed data from
what we aim to recover. In particular, as we saw just above,
the spectral norm ofG− Ĝ is quite relevant. The following
is a classic expectation result of Furedi and Komlos [12],
combined with a recent concentration result of Krivelevich
and Vu [17].

Theorem 10 Let M̂ be a matrix generated by randomly
rounding the entries of a matrix of probabilitiesM preserv-
ing symmetry. Letσ be the largest deviation of an entry in
M̂ . If σ2 � log6 n/n, then

|M̂ −M | ≤ 4σ
√
n

with probability at least1− 2e−σ
2n/8



For the range ofσ allowed in the theorem, this probability
is always1 − O(exp(− log6 n)). For the rest of this paper,
we will assume that this bound holds. Furthermore, unless
explicitly stated otherwise, we will assume thatσ satisfies
the condition of the theorem.

3 Spectral Graph Partitioning

It is now time to identify projections and delve into their
particulars. Recall thatPartition works when the projected
columnsP (Ĝu) are close to the original columnsGu, and
the columns inG from different parts are distant. We can
codify this in the following observation.

Observation 11 Assume that for allu

|P1(Au)−Au| ≤ γ1 and |P1(Au − Âu)| ≤ γ2

|P2(Bu)−Bu| ≤ γ1 and |P2(Bu − B̂u)| ≤ γ2

If whenψ(u) 6= ψ(v)

|Gu −Gv| ≥ 4(γ1 + γ2)

thenPartition(Ĝ, 2(γ1 + γ2)) is equivalent toψ.

Naturally, the challenging question is: “Given̂A andB̂,
can we compute projectionsP1 andP2 with small values of
γ1 andγ2?” Theorems 12 and 14 bound these values for
two different computable projections. Theorem 14 involves
CProj and largely surpasses the results of Theorem 12, but
the latter is pleasingly simple and (in the author’s opinion)
more natural than Theorem 14.

Before we barge into any proofs or other discussions, we
need to define a few terms. With high probability, the size of
each part ofψ when restricted toA (orB) is close to half the
original size of the part. To facilitate our discussion, we will
assume (wrongly) that this size is exactly half. Letsi denote
the size of parti of ψ in each ofA andB. Letsm = mini si
be a lower bound on these sizes. The variablesi, j, ` all lie
in {1, . . . , k}, whereas the variablesu, v lie in {1, . . . , n}.
We will occasionally use the notation likeGi to refer to the
column ofG that corresponds to nodes in parti. Likewise,
we usesu to refer to the size of the part containingu.

3.1 A Traditional Spectral Result

A natural projection to consider forP2 is the projection
onto the firstk left singular vectors of̂A. As they are the
best basis to describêA, we might imagine that they will
capture the structure ofB as well (the columns ofA andB
are the same).

Theorem 12 With probability at least1− δ

|P bA(Bu)−Bu| ≤ 8σ
√
nk/su

|P bA(Bu − B̂u)| ≤
√

2k log(n/δ)

Proof: Note that

(I − P bA)B = (I − P bA)Â− (I − P bA)(Â−B)

= (Â− P bAÂ)− (I − P bA)(Â−A)

|Â − P bAÂ| can be bounded as|Â − A|, as it isλk+1(Â),
andλk+1(A) = 0. The magnitude of any eigenvalue can
change by at most|A − Â|, which give us that bound. We
take norms of the above equation and conclude

|(P bA − I)B| ≤ 2|Â−A|

Now, observe that for any columnu, there aresu identical
columns in(I − P bA)B. As such, the length of the column
in (P bA − I)B can be no more than our L2 bound, divided
by

√
su. Otherwise we will violate the L2 bound we just

derived (that column would witness a higher L2 norm).
We now consider the second inequality. If{Qj} are the

left singular vectors of̂A, then

|P bA(Bu − B̂u)|2 =
∑
j

〈(Bu − B̂u), Qj〉2

Observe that for any unit vectorQj

〈(Bu − B̂u), Qj〉 =
∑
v

(Bvu − B̂vu)Qvj

Each of these terms in the sum is an independent zero mean
random variable. Furthermore, we can bound∑

v

|(Bvu − B̂vu)Qvj |2 ≤ 1

We can apply Azuma’s inequality (Theorem 13) to
bound |〈(Bu − B̂u), Qj〉|. Furthermore, we can apply a
union bound to bound|P bA(Bu − B̂u)| for all u.

2

Theorem 13 (Azuma) Let{Xi} be independent zero mean
random variables such that|Xi| ≤ ci where

∑
i c

2
i ≤ 1.

Then for anyλ > 0,

Pr[|
∑
i

Xi| ≥ λ] ≤ 2e−λ
2/2

3.2 Combinatorial Projections

While Theorem 12 is acceptable whenσ is large (orsm
is small) it does not give competitive results for very small
values ofσ. The absence of aσ in the second inequality
stops attempts to prove strong bounds. We would like to
argue that if the vectorBi − B̂i has very low variance in its
entries, its projection will be that much smaller.

We now discuss the algorithmCProj and analyze its per-
formance. In this algorithm, and in its discussion, we use



the notationÂTv . This is thevth column of the transpose of
Â, which is a vector of roughlyn/2 coordinates. Note that
as each part ofψ is assumed bisected,ATv is like a small
copy ofGTv .

CProj(Â, k, sm, τ)

1. While there are at leastsm/2 unclassified nodes

(a) Choose an unclassified nodevi randomly.

(b) LetTi = {u : |P bAT (ÂTvi
− ÂTu )| ≤ τ}

(c) Mark eachu ∈ Ti as classified.

2. Assign each remaining node to theTi with closest pro-
jectedvi.

3. Let ĉi be the characteristic vector ofTi

4. ReturnPbc, the projection onto the span of theĉi.

If the ĉi were the characteristic vectors ofψ, this projec-
tion would be exactlyPA. Instead, we will see that thêci
are not unlike the characteristic vectors ofψ.

Theorem 14 If whenψ(u) 6= ψ(v)

|Bu −Bv| > 64σ
√
nk/sm

then with probability1− δ, if we let

Pbc = CProj(A, k, sm, 32σ
√
nk/sm)

then

|Pbc(Bu)−Bu| ≤ 64σ
√
nk/sm

|Pbc(Bu − B̂u)| ≤ σ
√

2k log(n/δ)

with probability at leastk−1/2.

Proof: Lemmas 16 proves the first bound, but we must first
read Lemma 15 for an important observation. A Chernoff-
type argument proves the second bound, though the details
are omitted from this abstract. 2

Combining this theorem with Observation 11 allows us
to conclude Theorem 4. We now proceed to the proofs of
the supporting lemmas. The first is a structural property
about the sets produced inCProj . We assume (without loss
of generality, as we will see) thatψ(vi) = i.

Lemma 15 For the conditions of Theorem 14, with prob-
ability at leastk−1/2 CProj(Â, k, sm, 32σ

√
nk/sm) pro-

ducesk setsTi such that if we define

α`i = |{v : ψ(v) = ` andv ∈ Ti}|

then for anyj∑
i,`

α`i(P`j − Pij)2 ≤ 128k|A− Â|2/sj

Proof: Let us call a nodev good if

|ATv − P bAÂTv | ≤ |A− P bAÂ|F /√sm/2

≤ 16σ
√
nk/sm

Claim 7 bounds the number of non-good nodes as fewer
thansm/2. The probability we pick a good node for each
of the firstk nodes can be crudely bounded as at least2−k.
A more refined analysis gives us a lower bound ofk−1/2.
Note that for each round, if we select a goodvi, Ti will
include all other good nodes fromvi’s part in ψ, and no
good nodes from other parts ofψ. With probabilityk−1/2,
after thekth iteration we have removed all the good nodes,
leaving fewer thansm/2 nodes.

At this point, we return to the inequality we are trying
to prove. Observe that as allTi are centered around good
nodes (thevi), everyv that contributes toα`i must satisfy

|ATv − P bAT Â
T
v | ≥ |AT` −ATi |/4

We will now consider a series of inequalities.∑
i,`

α`i(P`j − Pij)2 ≤
∑
i,`

α`i|AT` −ATi |2/sj

≤
∑
v

16|ATv − P bAT Â
T
v |2/sj

= 16|AT − P bAT Â
T |2F /sj

≤ 128k|A− Â|2/sj

which concludes the proof. 2

Lemma 16 For the terms defined above, and letting

Pbc = CProj(Â, k, sm, 32σ
√
nk/sm)

it is the case that

|PbcBi −Bi| ≤ 64σ
√
nk/si

Proof: If we let ŝi be the size of setTi, then we can write

ĉTi Bj = ŝiPij +
∑
`

α`i(P`j − Pij)

And so ifv ∈ Ti thevth coordinate ofPbcBj is

(PbcBj)v = Pij +
∑
`

α`i(P`j − Pij)/ŝi

Let us now break the vectorPbcBj along these lines. Assum-
ing v ∈ Ti, we defineEj andFj by defining their values at
each coordinatev.

Evj = Pij

Fvj =
∑
i,`

α`i(P`j − Pij)/ŝi



It should be clear thatPbcBj = Ej + Fj . Observe that

|Bj − Ej |2 =
∑
i,`

α`i(P`j − Pij)2

and that (lettingi vary withv)

|Fj |2 =
∑
v

∑
`

α2
`i(P`j − Pij)2/ŝ2i

=
∑
i

ŝi
∑
`

α2
`i(P`j − Pij)2/ŝ2i

≤
∑
i,`

α`i(P`j − Pij)2

We conclude, through the help of Lemma 15, that

|PbcBj −Bj | ≤ |Fj |+ |Ej −Bj |
≤ 64σ

√
nk/si

2

4 Observations and Extensions

4.1 Implementation Details

For the most part, the question of average case multisec-
tion, coloring, and clique is: “for what range of parameters
can we find a solution in poly-time?” The algorithm pre-
sented in this paper also has the desirable property that it is
not slow. Aside from the computation of the matrixP bA, we
requireO(nk2 +mk) time to partition and classify nodes.

Several recent papers have begun to address the prob-
lem of efficiently computing approximations toP bAÂ. The

optimality ofP bAÂ is not truly required; if one were to pro-

duce a rankk matrixX instead ofP bAÂk, the term|Â−X|
could be introduced into the bound, replacing occurrences
of |A − Â|. Achlioptas and McSherry [1] examine the
problem of quickly computing approximations which have
bounded spectral norm. Their technique adds random noise
to each entry, increasingσ but having no other effect on
our algorithm. Through a trivial analysis, their technique
enables partitioning in sub-linear time for a certain (non-
trivial) range of parameters.

4.2 General Graph Partitioning

Our restriction to unweighted graphs is purely artificial.
The bound of Theorem 10 applies equally well to weighted,
non-symmetric matrices (at the expense of a

√
2 term). Per-

haps even more interesting, at no point have we actually
required that our matrices be square. Our analyses have tac-
itly assumed this, but they can easily be rewritten in terms of
n1 andn2, should the input matrix ben1×n2 dimensional.

We can also analyze the case whereG is not of low rank,
but is well represented by a low rank matrix. In other words,
we can view it as a low rank matrix plus a small normdeter-
ministicerror. Our results do not immediately translate, due
principally to the arbitrary projection this error may have.
If this quantity is boundedour proofs will hold.

4.3 Parameterless Partitioning

The principal open questions in [8] involve the problem
of partitioning a graph when either the part sizes or number
of parts is unknown. In this paper we need only a lower
bound on the sizes, and an upper bound on the number of
parts. These two bounds do occur in the requisite lower
bound on|Gu − Gv|, and if they are too loose we risk not
satisfying this bound. Otherwise, the algorithm performs
properly, even without precise information about the size
and number of parts.

4.4 Future Directions

One significant open question with respect to this work
is: “Is CProj necessary?” Our analysis ofP bA was defeated
by our inability to analyze the projection of a low variance
random vector onto the perturbed singular vectors. It seems
reasonable to believe that with probability1− δ

|P bA(Bu − B̂u)| ∈ O(σ
√
k log(n/δ))

At present, this is only speculation.
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random symmetric matrices, Combinatorica1 (1981),
no. 3, 233–241.

[13] Gene Golub and Charles Van Loan,Matrix computa-
tions, third ed., The Johns Hopkins University Press,
Baltimore and London, 1996.

[14] Mark Jerrum and Gregory B. Sorkin,Simulated an-
nealing for graph bisection, IEEE Symposium on
Foundations of Computer Science, 1993, pp. 94–103.

[15] Ravi Kannan, Santosh Vempala, and Adrian Vetta,On
clusterings: good, bad and spectral, IEEE Sympo-
sium on Foundations of Computer Science, 2000.

[16] Richard Karp,The probabilistic analysis of some com-
binatorial search algorithms, Algorithms and Com-
plexity, New Directions and Recent Results (New

York) (J. F. Traub, ed.), Academic Press, 1976, pp. 1–
20.

[17] Michael Krivelevich and Van H. Vu,On the concen-
tration of eigenvalues of random symmetric matrices,
Microsoft Technical Report, no. 60, 2000.

[18] Ludek Kucera,Expected behavior of graph colour-
ing algorithms, Lecture Notes Comput. Sci 56, 1977,
pp. 447 – 451.

[19] Ludek KuceraExpected complexity of graph parti-
tioning problems, DAMATH: Discrete Applied Math-
ematics and Combinatorial Operations Research and
Computer Science57 (1995).

[20] Christos H. Papadimitriou, Hisao Tamaki, Prabhakar
Raghavan, and Santosh Vempala,Latent semantic in-
dexing: A probabilistic analysis, 1998, pp. 159–168.

[21] Daniel Spielman and Shang Hua Teng,Spectral par-
titioning works: Planar graphs and finite element
meshes, Proc. 37th Conf. on Foundations of Computer
Science, 1996, pp. 96–105.

[22] Jonathan Turner,Almost all k-colorable graphs are
easy to color, Journal of Algorithms9 (1988), no. 1,
63–82.


