
Using Component Metacontent to Support the
Regression Testing of Component-Based Software

Alessandro Orso
�

orso@cc.gatech.edu
Mary Jean Harrold

�

harrold@cc.gatech.edu
David Rosenblum

�

dsr@ics.uci.edu
Gregg Rothermel

�

grother@cs.orst.edu

Mary Lou Soffa
�

soffa@cs.pitt.edu
Hyunsook Do

�

dohy@cs.orst.edu

Abstract

Component-based software technologies are viewed as
essential for creating the software systems of the future.
However, the use of externally-provided components has se-
rious drawbacks for a wide range of software-engineering
activities, often because of a lack of information about
the components. In previous work, we proposed the use
of component metacontents—additional data and methods
provided with a component, to support software engineer-
ing tasks. In this paper, we present two new metacontent-
based techniques that address the problem of regression test
selection for component-based applications: a code-based
approach and a specification-based approach. First, we il-
lustrate the two techniques. Then, we present a case study
that applies the code-based technique to a real component-
based system. On the system studied, on average, 26% of the
overall testing effort was saved over seven releases, with a
maximum savings of 99% for one version.

1 Introduction

Interest in component-based software continues to grow
with the recognition of its potential in managing the growing
complexity of software systems [13, 21, 23].1 With increas-
ing frequency, software engineers are building systems by
integrating externally-developed software components with
application-specific code [3, 13, 23]. Although the use of
components provides many advantages, serious drawbacks
in that use are becoming apparent. These drawbacks im-
pinge on a wide range of software engineering activities.

�
College of Computing, Georgia Institute of Technology�
Information and Computer Science, University of California, Irvine�
Department of Computer Science, Oregon State University�
Department of Computer Science, University of Pittsburgh

1There are many existing definitions of component; for simplicity, and
without loss of generality where the proposed work is concerned, we adopt
an informal definition of a component as a system or subsystem developed
by one organization and deployed by one or more other organizations, pos-
sibly in different application domains [15].

For example, component usage threatens our ability to val-
idate software [24] and assess reliability [3], complicates
maintenance [23], causes problems in program understand-
ing [8], and introduces threats to security [12].

In many cases, the drawbacks of component-based soft-
ware technologies arise because of the lack of information
about externally provided components. Providing the com-
ponent’s source code is not a viable solution to this problem
because of intellectual property issues: Component devel-
opers often are unwilling to provide the required informa-
tion unless they can do so without revealing source code or
other sensitive details. Furthermore, not all the required in-
formation can be (easily and efficiently) derived from the
code alone: Some information, such as data dependences or
complexity metrics, may be expensive to compute; other in-
formation, such as documentation or changes with respect to
previous versions, must be provided in addition to the code.

A preferable approach is to provide information with
components that can be efficiently used “out-of-the-box,”
accommodates intellectual property needs, and yet, sup-
ports the full range of software engineering tasks for which
component users require assistance. We refer to such ad-
ditional information as component metacontent.2 Meta-
contents describe static and dynamic aspects of a compo-
nent, can be accessed by the component user, and can be
used for various tasks. Metacontents consist of information
(metadata) about components and utilities (metamethods)
for computing and retrieving such information. As a paral-
lel, consider battery manufacturers, who provide static in-
formation (metadata) such as battery size and voltage, with
their batteries (components), and dynamic retrieval facilities
(metamethods relying on “human” processors) that users
can exploit to determine the charge remaining in a battery.

Existing component standards and environments, includ-
ing DCOM [4], Enterprise JavaBeans [9], and .NET Com-
mon Language Runtime (CLR) [14], already supply some

2For the sake of brevity, in the rest of the paper we simply refer to
component metacontent as metacontent.

additional information about a component through meta-
data that are packaged with the component. The metadata
available so far, however, are typically limited to informa-
tion useful for compile-time and run-time type-checking
(e.g., the name of the component’s class, the names of its
functions, and the types of the functions’ parameters), and
for design-time customization (e.g., the shape or color of a
graphical user interface component, and the maximum size
of the internal buffer of a data storage component). Re-
searchers have proposed extending the use of such infor-
mation for specific tasks [5, 17, 22, 26], but the varieties of
metadata currently supported address only a limited range of
software engineering problems, such as providing deploy-
ment descriptions of components [5, 17] or enhancing self-
documentation [26]. None of the metadata proposed has ad-
dressed the important software engineering task of regres-
sion testing component-based software. Moreover, to the
best of our knowledge, none of the approaches presented so
far considers the use of metamethods to dynamically build
metadata at run-time.

In previous work, we introduced a general framework for
producing and consuming metacontents whose goals are (1)
to support the broad range of software engineering tasks that
depend on and can benefit from information about external
components, and (2) to accommodate component providers’
intellectual-property concerns [15]. This paper explores the
application of our metacontent framework to the problem
of regression test selection for component-based software.
More precisely, we investigate the following question:

Given (1) an application � that uses a set of
externally-developed (black-box) components �
and has been tested with a test suite � , and (2)
a new version of this set of components ��� , how
can we exploit metacontents to build a test suite
� ��� � that can reveal possible regression faults
in � due to changes in � � and that does not in-
clude test cases not impacted by such changes?

To address this question, there are several problems to
resolve. First, we must identify the metacontents needed to
perform the chosen task. To perform regression test selec-
tion, we need information about the coverage achieved by
the test suite on the original version of the software. We
also need information about the changes made to the set of
components. Second, we must determine how to adapt ex-
isting regression test selection techniques to incorporate the
use of metacontents. Different types of techniques must be
considered to demonstrate the general applicability of the
approach. Finally, we must demonstrate the value of using
metacontents for regression test selection on component-
based software; we must study the cost-effectiveness of us-
ing the regression test selection technique proposed.

In this paper, we present metacontents and techniques
that use metacontents for regression test selection on

component-based software for two different types of ap-
proaches: code-based regression test selection, based on
edge-level and method-level regression test selection algo-
rithms [2, 7, 19]; and specification-based regression test se-
lection, based on the category-partition method [16]. For
both types of approaches, we (1) identify the metacontents
necessary to determine the test cases to rerun and (2) present
techniques for using the metacontents for regression test se-
lection. We also describe the results of a study, performed
on a real component-based system, that compares the costs
of regression test selection with and without metacontents.
The empirical results demonstrate that there can be signif-
icant savings in the number of test cases that must be re-
run for regression testing when component metacontents are
available, and thus indicate the usefulness of metacontents
for regression testing.

The main contributions of the paper are the following:

1. identification and use of metacontents for regression
test selection using a code-based technique;

2. identification and use of metacontents for regression
test selection using a specification-based technique;

3. demonstration of the usefulness of metacontents in
code-based regression test selection for a real program.

2 Component Metacontents for Regression
Test Selection

We present two approaches for providing and using com-
ponent metacontents for regression test selection: code-
based and specification-based. The approaches address the
general case of an application � that uses a set � of com-
ponents. To illustrate, we use an example consisting of a
component and an application that uses it. (For space rea-
sons, the example is limited to a single component.) The
component, Dispenser, and the application, Vending-
Machine, both in Java, are presented in Figure 1; note that,
whereas we show the source code of Dispenser in the
figure, we assume that the source code of Dispenser is
unavailable to the developer of VendingMachine.

The application models a vending machine that dispenses
specific items to a user. A user can (1) insert coins into
the machine, (2) ask the machine to return the coins in-
serted and not consumed, and (3) ask the machine to vend
a specific item. If the requested item is not available, the
credit is insufficient, or the selection is invalid, the machine
prints an error message and does not dispense the item.

We developed a test suite for VendingMachine
(shown in Table 1). Each test case is a sequence of
method calls.3 The test cases are grouped into three

3For brevity, in the call sequences, we do not show the initial call to
the constructor of class VendingMachine, which is implicitly invoked
when the class is instantiated.

1. public class VendingMachine {
2.
3. final private int COIN = 25;
4. final private int VALUE = 50;
5. private int totValue;
6. private int currValue;
7. private Dispenser d;
8.
9. public VendingMachine() {

10. totValue = 0;
11. currValue = 0;
12. d = new Dispenser();
13. }
14.
15. public void insert() {
16. currValue += COIN;
17. System.out.println("Current value = " + currValue);
18. }
19.
20. public void return() {
21. if (currValue == 0)
22. System.err.println("no coins to return");
23. else {
24. System.out.println("Take your coins");
25. currValue = 0;}
26. }
27.
28. public void vend(int selection) {
29. int expense;
30. expense = d.dispense(currValue, selection);
31. totValue += expense;
32. currValue -= expense;
33. System.out.println("Current value = " + currValue);
34. }
35. } // class VendingMachine
36.
37. public class Dispenser {
38.
39. final private int MAXSEL = 20;
40. final private int VAL = 50;
41. private int[] availSelectionVals = {2,3,13};
42.
43. public int dispense(int credit, int sel) {
44. int val=0;
45. if (credit == 0)
46. System.err.println("No coins inserted");
47. else if (sel > MAXSEL)
48. System.err.println("Wrong selection "+sel);
49. else if (!available(sel))
50. System.err.println("Selection "+sel+" unavailable");
51. else {
52. val = VAL;
53. if (credit < val)
54. System.err.println("Enter "+(val-credit)+" coins");
55. else
56. System.err.println("Take selection"); }
57. return val;
58. }
59.
60. private boolean available(int sel) {
61. for (int i = 0; i<availSelectionVals.length; i++)
62. if (availSelectionVals[i] == sel) return true;
63. return false;
64. }
65. } // class Dispenser

Figure 1. Application VendingMachine and
component Dispenser.

sets (1–16, 17–20, 21–25) based on the value of param-
eter selection that is passed to method Vending-
Machine.vend. The table indicates whether each test
case passed or failed. Test cases 4 and 14 failed be-
cause of an error in method Dispense.dispense: If
an available item is selected and the credit is insufficient,

Table 1. Test suite used to test VendingMachine.
Test Case # Test Case Result

Value passed to vend: 3 (i.e., valid selection, available item)
1 return Passed
2 vend Passed
3 insert, return Passed
4 insert, vend Failed
5 insert, insert, return Passed
6 insert, insert, vend Passed
7 insert, insert, insert, return Passed
8 insert, insert, insert, vend Passed
9 insert, insert, insert, insert, return Passed
10 insert, insert, insert, insert, vend Passed
11 insert, insert, return, vend Passed
12 insert, insert, vend, vend Passed
13 insert, insert, insert, return, vend Passed
14 insert, insert, insert, vend, vend Failed
15 insert, insert, insert, insert, return, vend Passed
16 insert, insert, insert, insert, vend, vend Passed
Value passed to vend: 9 (i.e., valid selection, unavailable item)
17 vend Passed
18 insert, vend Passed
19 insert, return, vend Passed
20 insert, vend, vend Passed
Value passed to vend: 35 (i.e., invalid selection)
21 vend Passed
22 insert, vend Passed
23 insert, insert, vend Passed
24 insert, insert, insert, vend Passed
25 insert, insert, insert, insert, vend Passed

but greater than zero, then variable value (set to VAL at
line 52) is not reset to zero; consequently, when control
returns from Dispense.dispense to VendingMa-
chine.vend, currValue is erroneously decremented.

Suppose that the component developer finds and
fixes this error in Dispenser by adding statement
“val = 0;” after statement 54, and releases a new ver-
sion Dispenser � of the component. When we integrate
Dispenser � into VendingMachine, we want to regres-
sion test the resulting application. For efficiency, we want
to rerun only those test cases in our test suite that exercise
modifications from Dispenser to Dispenser � . How-
ever, without information about the modifications to Dis-
penser and how they relate to our test suite, we are forced
to run all or most of the test cases in the test suite. At a
minimum, we must select all test cases in the test suite that
exercise the component (20 of the 25 test cases).

2.1 Code-based Selection Metacontents

We now illustrate a metacontent-based technique for re-
gression test selection for use with code-based testing tech-
niques. Code-based testing techniques select test cases
based on a coverage goal expressed in terms of some aspect
of the code. There are many entities that can be selected
for coverage, such as statements, edges, paths, methods, or
classes. Such coverage is usually used as an adequacy cri-

Table 2. Edge coverage for VendingMachine.
Test Case # Relevant Edges Covered

1 (9,10), (20,21), (21,22)
2 (9,10), (28,29)
3 (9.10), (15,16), (20,21), (21,23)
4 (9,10), (15,16), (28,29)
5 (9,10), (15,16), (20,21), (21,23)
6 (9,10), (15,16), (28,29)
7 (9,10), (15,16), (20,21), (21,23)
8 (9,10), (15,16), (28,29)
9 (9,10), (15,16), (20,21), (21,23)
10 (9,10), (15,16), (28,29)
11 (9,10), (15,16), (20,21), (21,23), (28,29)
12 (9,10), (15,16), (28,29)
13 (9,10), (15,16), (20,21), (21,23), (28,29)
14 (9,10), (15,16), (28,29)
15 (9,10), (15,16), (20,21), (21,23), (28,29)
16 (9,10), (15,16), (28,29)
17 (9,10), (28,29)
18 (9,10), (15,16), (28,29)
19 (9,10), (15,16), (20,21), (21,23), (28,29)
20 (9,10), (15,16), (28,29)
21 (9,10), (28,29)
22 (9,10), (15,16), (28,29)
23 (9,10), (15,16), (28,29)
24 (9,10), (15,16), (28,29)
25 (9,10), (15,16), (28,29)

terion for a test suite: the higher the coverage, the more
adequate the test suite.

In particular, for edge-coverage techniques, the program
is instrumented so that, when it executes, it records the rel-
evant edges traversed by each test case in the test suite � .
Relevant edges are method entries (edges (9,10), (15,16),
(20,21), and (28,29) for VendingMachine) and edges
from decision statements (edges (21,22) and (21,23) for
VendingMachine).4 With this information, we can as-
sociate the relevant edges in � , the program under test, with
each test case in � . Table 2 shows the relevant edges in
VendingMachine exercised by each of our test cases.

Code-based regression test selection techniques (e.g.,
[7, 10, 18, 20, 25]) construct some representation, such as a
control-flow graph, a call graph, or a class-hierarchy graph,
for a program � and record the coverage achieved by the
original test suite � with respect to some entities in that
representation. When a modified version � � of � becomes
available, these techniques construct the same representa-
tion for � � that they constructed for � . The algorithms
then use the representations for � and � � and compare them
to select the test cases from � for use in testing � � , based
on (1) differences between the representation for � and � � ,
with respect to the entities considered, and (2) information
about which test cases cover the modified entities.5

4Given the coverage of relevant edges, we can infer coverage of all other
edges in the program. For example, coverage of edges (29,30), (30,31),
(31,32), and (32,33) is implied by coverage of (relevant) edge (28,29).

5Regression test selection selects test cases from the original test suite
for use in testing the modified program ��� . However, modified or new

We use Rothermel and Harrold’s approach, which is
based on a graph-traversal of the representations of the
original and modified versions of the software, as a rep-
resentative of a code-based regression test selection tech-
nique [18]. In particular, we consider a specific implemen-
tation of Rothermel and Harrold’s approach: the DEJAVU

tool. DEJAVU uses a control-flow graph as the representa-
tion, and the entities are the edges in the graph. To select test
cases to be rerun, DEJAVU performs a synchronous traversal
of the control-flow graph (CFG) for � and the control-flow
graph (CFG �) for � � , identifies edges modified from CFG to
CFG � , and selects the test cases that cover such edges as the
test cases to be rerun.

For example, to perform regression test selection on
application VendingMachine when component Dis-
penser is changed to Dispenser � , DEJAVU constructs
a control-flow graph CFG � for VendingMachine � . How-
ever, because the code for Dispenser is unavailable to
the developer of VendingMachine, DEJAVU cannot con-
struct control-flow graphs for any of the methods in Dis-
penser. Therefore, DEJAVU can only select test cases
based on the analysis of CFG and CFG � for VendingMa-
chine by conservatively considering each edge that repre-
sents a call to component Dispenser to be modified. In
this case, when DEJAVU performs its synchronous traver-
sal of CFG and CFG � , it finds that edge (28,29) is affected
by the change, and selects all test cases that exercise this
edge— � 2,4,6,8,10–25 � .

To achieve better regression test selection when the
source code of the component is unavailable, we can use
component metacontents. To support test selection for code-
based regression testing, we need three types of metacon-
tents for each component. First, we need to know the edge
coverage achieved by the test suite with respect to the com-
ponent so that we can associate test cases with edges. Sec-
ond, we need to know the component version. Third, we
need a way to query the component for the edges affected
by changes in the component between two given versions.
The component developer can provide this information in
the form of metadata and metamethods, and package them
with the component.

We could then construct, for example, a metacontent-
aware version DEJAVU ��� of DEJAVU. This tool would
build the matrix “test cases”–“edges covered” by gathering
the component coverage data for each test case. Accord-
ing to the framework presented in Reference [15], a pos-
sible interaction of DEJAVU ��� with component 	 for in-
crementally populating the matrix “test cases”–“edges cov-
ered” could consist of the following steps:6

code from � to � � may not be exercised by test cases in
 . In this case,
the test suite must be augmented by developing new test cases that cover
these unexercised parts of the program.

6This scenario assumes the existence of some hierarchical scheme for
naming and accessing available metacontents, as described in [15].

1. Get the list of types of coverage metacontents provided by
the component:
List lmd = c.getMetacontents(“analysis/dynamic/coverage”)

2. Check whether ����� contains the metacontent needed (i.e.,
“analysis/dynamic/coverage/edge”); assume that it does.

3. Get information on how to access the metadata through
metamethods:
MetacontentUsage mu = c.getMetacontentUsage(“analy-

sis/dynamic/coverage/edge”)
4. Based on information in ��� , fetch the coverage metadata by

first enabling the built-in coverage facilities:
c.enableCoverage(“analysis/dynamic/coverage/edge”)

5. At this point, the built-in coverage facilities provided with
component � are enabled, so we can start producing coverage
information; for each test case � in the test suite:
	 Reset the built-in coverage to get the coverage for � :

c.resetCoverage(“analysis/dynamic/coverage/edge”)
	 Run test case �
	 Get the coverage for � :

Metadatum md = getCoverage(“analysis/dynamic/cov-
erage/edge”)

Now, when Dispenser � is acquired, DEJAVU ��� (1)
retrieves from Dispenser its version, (2) using this in-
formation, queries Dispenser � about which edges are af-
fected by the changes between it and Dispenser, and (3)
selects the test cases to rerun, based on the affected edges
and the matrix. In this case, the differences between Dis-
penser and Dispenser � affect only edge (53,54), which
is exercised only by test cases 4 and 14. Therefore, only test
cases 4 and 14 are selected to be rerun, which is a substantial
savings over the approach that does not use metacontents.

The technique for code-based regression testing that we
have just illustrated is defined at the edge level. When the
size of the code increases, the edge-level approach may be-
come impractical. However, the technique can be defined
at different levels of granularity. In particular, possible al-
ternatives are to define the technique at the method level,
at the class level, or at the subsystem level. In such cases,
both the coverage and change information provided through
metamethods would be defined at the method, class, or sub-
system levels, respectively, rather than at the edge level. In
our experiments, we used the method-level approach, as de-
scribed in Section 3.

2.2 Specification-based Selection Metacontents

We now illustrate a second metacontent-based technique
for regression test selection, defined for a specification-
based approach. Specification-based testing techniques de-
velop test cases based on a functional description of the
system. One such technique, the category-partition method
[16], produces test frames that represent a test specification
for the functional units in the system. The technique is com-
posed of several phases. In the first phase, the tester ana-
lyzes the specification to identify the individual functional

units in the system; for each unit, the tester identifies param-
eters (inputs to the unit) and environment factors (elements
outside of the code that affect the behavior of the unit). In
the second phase, the tester partitions each parameter and
environment entity into mutually exclusive choices. In the
third phase, the tester identifies constraints among choices,
based on their mutual interactions. Finally, in the fourth
phase, the tester develops a set of test frames for each unit
by computing the cross-product of the different choices; in
this phase, the constraints among choices are used to elim-
inate meaningless or contradictory combinations and to re-
duce the number of frames, possibly through re-iteration of
the third phase.

Analogous to code-based regression test selection tech-
niques, specification-based techniques record the coverage
of the original test suite � with respect to entities in the
functional representation. In the case of the category-
partition method, we can consider the test frames as the en-
tities to be covered. A test case in � covers a test frame tf if
(1) the parameters of calls to single functionalities match the
corresponding choice in tf, and (2) the state of the compo-
nent matches the environment characteristics in tf. To com-
pute the coverage of the component achieved by a given test
case in terms of test frames, the code must be instrumented
according to the identified test frames. In this way, for each
test case in � we can identify the test frames that it cov-
ers. Therefore, we are able to associate a subset of � with
each test frame. This information can be used when per-
forming regression testing of component � � . If we know
which frames are affected by the changes, then we can re-
run only the test cases associated with such frames. Each
test frame identifies a family of test cases that satisfy it.
Such test cases, in turn, identify a family of paths within
the component—the paths traversed by the execution of the
test cases. These paths can therefore be associated with the
frame. We say that a change affects a test frame tf if at least
one of the paths associated with tf traverses a statement ei-
ther changed or eliminated in the new version of the com-
ponent. The component developer can, based both on anal-
ysis of the component and on his or her knowledge, identify
which frames are affected by the changes between two ver-
sions of a given component.

Figure 2 illustrates, for method dispense, a possible
set of categories, choices, and constraints on the choices de-
rived by applying the category-partition method to the com-
ponent Dispenser. Figure 3 shows a set of test frames
derived from the test specifications in Figure 2.

For the specification-based approach, to perform regres-
sion test selection when Dispenser is modified, we need
to (1) know the test frames for the component, (2) have a
way of computing which test cases for application Vend-
ingMachine cover which test frames of componentDis-
penser, and (3) have information about the test frames

functionality dispense
� Params:

credit
– zero [if Available]
– insufficient [if Available]
– sufficient [if Available]
– over [if Available]

selection
– correct [property Correct]
– incorrect [error]

� Environment

availability
– available [if Correct] [property Available]
– unavailable [if Correct] [error]

Figure 2. A possible set of categories, choices, and
constraints for the component

�������	��
�����
.

functionality dispense

1 selection: incorrect, availability: X, credit: X
2 selection: correct, availability: unavailable, credit: X
3 selection: correct, availability: available, credit: zero
4 selection: correct, availability: available, credit: insufficient
5 selection: correct, availability: available, credit: sufficient
6 selection: correct, availability: available, credit: over

Figure 3. Test frames for component Dispenser
(value “X” indicates “don’t care” values).

affected by the changes in the component. When a speci-
fication for the component is available, we can define test
frames for the component. However, because the code for
Dispenser is unavailable, we cannot compute the cov-
erage information (because we need access to the state of
the component to check which environmental conditions are
satisfied by each test) and cannot identify which test frames
are affected by the changes in Dispenser.

Therefore, to support test selection for specification-
based regression testing, we need three types of metacon-
tents. First, we need to know the coverage achieved by the
test suite with respect to the test frames for the component,
so that we can associate test cases with frames. Second,
we need to know the component version. Third, we need
a way to query the component to retrieve the test frames
affected by the changes in the component between two ver-
sions. Again, the component developer will provide this in-
formation in the form of metadata and metamethods, pack-
aged with the component.

We could now construct a metacontent-aware tool, anal-
ogous to the DEJAVU ��� tool of Section 2.1, that would
build the matrix “test cases”–“test frames covered” by en-
abling the coverage computation and gathering the data for
each test case. Like DEJAVU ��� , this tool would be based
on the framework presented in Reference [15], and could
consists of the following steps:

1. Get the list of types of coverage metacontents provided by
the component:

Table 3. Test frames for the Dispenser component
covered by the test cases for the vending machine.

Test Test Frames Test Test Frames
Case # Covered Case # Covered

1 14 4, 6
2 3 15 3
3 16 3, 6
4 4 17 2
5 18 2
6 5 19 2
7 20 2
8 6 21 1
9 22 1
10 6 23 1
11 3 24 1
12 3, 5 25 1
13 3

List lmd = c.getMetacontents(“analysis/dynamic/coverage”)
2. Check whether ����� contains the metacontent needed

(i.e., “analysis/dynamic/coverage/testframes”); assume that
it does.

3. Get information on how to access the metadata through
metamethods:
MetacontentUsage mu = c.getMetacontentUsage(“analy-

sis/dynamic/coverage/testframes”)
4. Based on information in ��� , fetch the coverage metadata by

first enabling the built-in coverage facilities:
c.enableCoverage(“analysis/dynamic/coverage/testframes”)

5. At this point, the built-in coverage facilities provided with
component � are enabled, so we can start producing coverage
information; for each test case � in the test suite:

	 Reset the built-in coverage facilities to get the cover-
age for � :
c.resetCoverage(“analysis/dynamic/coverage/test-
frames”)

	 Run test case �
	 Get the coverage for � :

Metadatum md = getCoverage(“analysis/dynamic/cov-
erage/testframes”)

When a new version of the component is acquired, the
tool (1) gathers the metadatum about the version from the
old component, (2) using this information queries the new
component for the test frames affected by the changes be-
tween its version and the version currently in the system,
and (3) selects the test cases to rerun, based on the affected
frames and the matrix.

Suppose we apply this technique to the Vending-
Machine example. First, we run the 25 test cases for the
application and gather the test-frame coverage information;
Table 3 shows how the different test frames in Figure 3 are
covered by the test cases for the vending machine. Second,
when we acquire Dispenser � , we determine which test
frames are affected by the changes between the two versions
of the component; we discover that only test frame 4 is af-

fected. Finally, we use the matrix “test cases”–”test frames
covered” to select the test cases to be rerun; according to the
information in Figure 3, we select test cases 4 and 14.

As with the code-based approach, the specification-based
approach provides a meaningful reduction in the number of
test cases to be rerun for the new version of VendingMa-
chine.

3 Case Study

To investigate whether the use of metacontents can ben-
efit regression test selection of applications built with exter-
nal components, we performed a case study. Specifically,
we investigated the following research question:

Let � be a program created by an application de-
veloper using a set of externally-developed com-
ponents � . Let � be a test suite created to test � .
Suppose a new version � � of � is created through
modifications to one or more of the components in
� , and suppose the developer of � then wishes to
adopt ��� for use in � . If metacontents are avail-
able with � and � � , can the developer reuse � to
regression test � more efficiently than if metacon-
tents are not available?

In this study, we restricted our attention to the use of
metacontents for code-based regression test selection tech-
niques, as described in Section 2, and we focused on two
specific regression test selection techniques:

No metacontents. The developer of � knows only that one
or more of the components in � have been modified,
but not which. Therefore, to selectively retest � safely,
the developer must rerun any test case in � that exer-
cises code in one or more of the components in � . We
refer to this as the NOMETA technique.

Metacontents for method-level regression test selection.
The developer of � possesses metacontents provided
by the developer of � , sufficient to support selection of
test cases that exercise methods changed in producing
� � from � using the procedure described in Section 2.
We refer to this as the META technique.

3.1 Measures

Regression test selection techniques achieve savings by
reducing the effort required to regression test a modified
program. Thus, one method used to compare such tech-
niques [2] is to measure and compare the degrees to which
the techniques reduce test suite size for given modified ver-
sions of a program. We adopt this approach. For each re-
gression test selection technique � that we consider, and for
each (version, subsequent-version) pair (��� , �������) of pro-
gram � , where � � is tested by test suite � , we measure the
percentage of � selected by � to test � ����� .

3.2 Study Subject

As a subject for our study we used several versions of the
Java implementation of the SIENA server [6]. SIENA (Scal-
able Internet Event Notification Architecture) is an Internet-
scale event notification middleware for distributed event-
based applications deployed over wide-area networks, re-
sponsible for selecting notifications that are of interest to
clients (as expressed in client subscriptions) and then deliv-
ering those notifications to the clients via access points.

To investigate the effects of using component metacon-
tents for regression test selection, we required an applica-
tion program that was constructed using external compo-
nents. SIENA is logically divided into a set of six compo-
nents (consisting of nine classes of about 1.5KLOC), which
constitute “a set of external components � ,” and a set of 17
other classes of about 2KLOC, which constitute an applica-
tion that could be constructed using � .

We obtained the source code for all the different versions
of SIENA, from its first to its last release (about 15 differ-
ent releases), in the form of an RCS repository. From the
SIENA repository, we extracted eight different sequentially
released versions of � (versions 1.8 through 1.15), which
we refer to as � �	� ��
 ������� ��� , respectively. Each version
provides enhanced functionality or bug fixes over the pre-
vious version. The net effect of this process was the provi-
sion of eight successive versions of SIENA, ��� � �
 ������ � � ,
constructed using ��� � �
 ������ � � , respectively. These ver-
sions of SIENA represent a succession of versions, each of
which the developer of � would want to retest. The pairs
of versions (��� � ��� ���), ��������� , formed the (version,
modified-version) pairs for our study.

To investigate the impact of metacontents on regression
test selection we also required a test suite for our base ver-
sion � � of SIENA that could be reused in retesting subse-
quent versions. Such a test suite did not already exist for
the SIENA release we considered, so we created one. To
provide test cases in an unbiased manner, one of the authors
of this paper, who is involved in defining the requirements
and design of SIENA but is unfamiliar with its implemen-
tation details, independently created a black-box test suite,
based on the functionality of SIENA, that consists of 138 test
cases. This set of test cases served as the subject regression
test suite for our study.

3.3 Procedure

Because the creation of metamethods and support tools
for directly implementing our target techniques would be
expensive, our goal was to discover a way to address our
research question without creating such infrastructure. We
designed a procedure by which we could determine pre-
cisely, for a given test suite and (program, modified-version)
pair, which test cases would be selected by our two tar-
get techniques. For each (program, modified-version) pair

(��� � �������), we used the Unix diff utility and inspection of
the code to locate differences between � � and ������� , includ-
ing modified, new, and deleted code. In cases where vari-
able or type declarations differed, we found the methods in
which those variables or types were used, and treated those
methods as if they had been modified. We used this informa-
tion to determine the methods in � � that would be reported
changed for the META technique. We instrumented each
such method so that, when executed, the method outputs the
text “selected”, and we then constructed an executable of
the application from this instrumented code.

Given this procedure, to determine which test cases in �
would be selected by the META technique for (� � � � �����) it
was sufficient to execute all test cases in � on our instru-
mented version of � � , and record which test cases caused
� � to output (one or more times) the text “selected”. By
construction, these are exactly the test cases that would be
selected by an implementation of the META technique.

Determining the test cases that would be selected by
the NOMETA technique required a similar, but simpler ap-
proach. We instrumented the application developer’s por-
tion of the code for � , inserting code that outputs “selected”
prior to any invocation of any method in � , and then exe-
cuted the test cases in � on that instrumented version.

The foregoing procedures require us to execute all test
cases in � to determine which test cases would be selected
by an actual regression test selection tool; thus, the ap-
proaches are of use only for experimentation. However, the
approaches let us determine exactly the test cases that would
be selected by the techniques.

We applied this approach to each of the seven (program,
modified-version) pairs of the SIENA system with our given
test suite, and recorded, for each of the two regression test
selection techniques, the percentage of the test suite selected
by that technique for that (program, modified-version) pair.
These percentages served as the data set for our analysis.

3.4 Results and Discussion

Figure 4 depicts the test selection results obtained in this
study. In the graph, each modified version of SIENA occu-
pies a position along the x-axis, and the test selection data
for that version are represented by a vertical bar, black for
the NOMETA technique and grey for the META technique.
The height of the bar depicts the percentage of tests selected
by the technique on that version.

As the figure shows, the NOMETA technique always se-
lected 97% of the test cases. Only 3% of the test cases do not
exercise components in � (the set of external components),
and thus all others must be re-executed. Also, because the
NOMETA technique selects all test cases that executed any
components in � , and the test cases in our test suite that en-
counter � do not vary across versions, the NOMETA tech-
nique selected the same test cases for each version.

C2 C3 C4 C5 C6 C7 C8

modified version

pc
t.

of
 te

st
s

se
le

ct
ed

10

20

30

40

50

60

70

80

90

100

0

Figure 4. Test selection results for the NOMETA
(black) and META (grey) techniques.

As the figure also shows, the META technique always
selected a smaller subset of the test suite than the NOMETA
technique. In the case of version C7, the difference was ex-
treme: the META technique selected only 1.5% of the test
cases in the test suite, whereas the NOMETA technique se-
lected 97% of the test cases. This large difference arose be-
cause the changes within C7 are minor, involving few meth-
ods, and methods encountered by only a few test cases. On
the other versions, differences in selection were more mod-
est, ranging from 6% to 37% of the test suite.

On versions C3, C5 and C6, the META technique se-
lected identical test cases, even though the code changes
in those versions differed. This occurred because the code
changes involved the same sets of methods. Theoretically,
if we had used edge-level regression test selection, the test
cases selected for these versions could have differed.

The fact that a regression test selection technique reduces
the number of test cases that must be run does not guaran-
tee that the technique will be cost-effective. That is, even
though we reduce the number of test cases that need to be
rerun, if this does not produce savings in testing time, the re-
duction in number of test cases will be meaningless. More-
over, savings in testing time might not be proportional to
savings in number of test cases (if, for example, the test
cases excluded are all inexpensive, while those not excluded
are expensive). (See [11] for an applicable cost model.)

In the absence of implementations of the testing tech-
niques and measurements of analysis costs, we cannot de-
termine such savings precisely for this case study; however,
we can still gain some insights by considering test execution
times. Thus, we recorded execution times for the test cases
selected by each technique on each version. Table 4 shows
these times.

The table shows, for each version, the minutes and sec-
onds required to test that version. The columns show the

NOMETA META
Version Test Execution Time Test Execution Time

C2 19:44 18:45
C3 19:51 16:57
C4 19:51 13:07
C5 19:52 17:44
C6 19:52 16:40
C7 19:51 00:15
C8 19:49 19:26

average 19:50 14:07
total 138:50 102:54

Table 4. Execution times (minutes:seconds) for test
cases selected by the NOMETA and META tech-
niques.

version number, the time required to run the test cases se-
lected by the NOMETA technique, and the time required to
run the test cases selected by the META technique. The last
two rows show average and total times. On average over
the seven modified versions, the META technique reduced
testing time from 19 minutes and 50 seconds to 14 minutes
and 7 seconds. The total time savings over the sequence
of seven versions was 35 minutes and 59 seconds (26% of
total time.) In the worst case, for version C8, the META
technique saved only 23 seconds (2%) of testing time. In
the best case, for version C7, it saved 19 minutes and 36
seconds (99%) of testing time.

Note that these times do not factor in the cost of the anal-
ysis required to perform test selection, but in other studies
of test selection, those costs have been shown to be quite
low [19]. Furthermore, these times include only the times
required to execute, and not validate test cases; validation
would further inflate the times, and increase the savings.

Of course, savings of a few minutes and seconds, such as
those exhibited in the differences in testing time seen in this
study, may be unimportant. In practice, however, regression
testing can require hours, days, or even weeks of effort, and
much of this effort may be human-intensive. If results such
as those demonstrated by this study scale up, a savings of
26% of the overall testing effort for a sequence of seven
releases may be substantial, and a savings of 99% of the
testing effort for a version may be a huge win. These results
thus provide evidence that testing with metacontents could
save significant costs and that metacontents could be useful
for regression test selection in component-based software.

3.5 Limitations of this Study

Like any empirical study, this study has limitations. We
have considered the application of only two regression test
selection techniques to a single program and test suite and
seven subsequent modified versions of the components that
make up that program. Furthermore, we have considered

only one measure of test selection effectiveness: percent-
age reduction in test suite size (although we have buttressed
this measure by also considering test execution cost data).
Other costs, such as the cost of providing metacontents and
performing test selection, may be important in practice.

On the other hand, the program and modified versions
we used are derived from an actual implementation, and
our specification-based test suite represents a test suite that
could be used in practice. Furthermore, previous work
[2, 19] has illustrated the applicability of our cost measure.
Our results thus support an “existence argument”: Cases ex-
ist in which metacontents can produce benefits in regression
testing. Thus, these results motivate further research, and
the implementation of tools to support the techniques, fol-
lowed by carefully controlled experimentation, to investi-
gate whether such results will generalize.

4 Conclusion

We have introduced two new techniques for regres-
sion testing of component-based applications. The first
technique is code-based, and the second technique is
specification-based. Both techniques are based on the use of
metadata and metamethods to package additional informa-
tion together with a component. The presence of metacon-
tents lets component developers provide information useful
for regression test selection without disclosing the source
code of the components they distribute. In particular, only
version information, coverage measurement facilities, and
information about changes between versions of components
need be provided for the techniques to be applicable.

To assess the applicability and potential effectiveness of
the proposed techniques in practice, we have presented a
case study performed on a real system using the code-based
approach. Although there are some limitations to the re-
sults of our study, the study does show that cases exist in
which the use of metacontents can reduce the costs of re-
gression testing component-based applications. In particu-
lar, our code-based technique resulted in an average savings
of 26% of the testing effort over seven subsequent releases
of the considered set of components, with a maximum sav-
ing of 99% of the testing effort for one of the versions.

Because of these promising initial results, we plan to per-
form further research on the use of metacontents for regres-
sion testing. Our first goal is to build a set of tools that allow
us to automate the application of the presented techniques
and to integrate them into the ARISTOTLE analysis system
[1]. As a first step in this direction, we are currently de-
veloping DEJAVU ��� , the metacontent-aware version of the
DEJAVU tool. In this way, we will be able to run extensive
experiments to further validate the code-based approach. In
parallel, we will study the applicability of the specification-
based approach on real examples. Finally, we will study

other applications of component metacontents and their ef-
fectiveness for software engineering tasks.

Acknowledgements

Antonio Carzaniga provided the source code for the
Siena system and helped with its installation. This work
was supported in part by grants from Boeing, and by NSF
awards EIA-0196145 and CCR-0096321 to Georgia Insti-
tute of Technology, by NSF Award CCR-9703108 to Ore-
gon State University, by NSF Award CCR-9808590 to the
University of Pittsburgh, and by NSF Award CCR-9701973
to UC Irvine. The work was also supported by the ES-
PRIT Project TWO (EP n.28940), by the Italian Minis-
tero dell’Università e della Ricerca Scientifica e Tecnolog-
ica (MURST) in the framework of the MOSAICO Project.
This effort was also sponsored by the Air Force Office of
Scientific Research, Air Force Materiel Command, USAF,
under grant number F49620-98-1-0061 to UC Irvine.

References

[1] Aristotle Research Group. ARISTOTLE: Software
engineering tools. http://www.cc.gatech.edu/
aristotle/, 2000.

[2] J. Bible, G. Rothermel, and D. S. Rosenblum. A compar-
ative study of coarse- and fine-grained safe regression test-
selection techniques. ACM Transactions on Software Engi-
neering and Methodology, 10(2):149–183, Apr. 2001.

[3] P. Brereton and D. Budgen. Component-Based Systems:
A Classification of Issues. IEEE Computer, 33(11):54–52,
November 2000.

[4] N. Brown and C. Kindel. Distributed Component Object
Model protocol: DCOM/1.0. January 1998.

[5] C. Canal, L. Fuentes, J. Troya, and A. Vallecillo. Extending
CORBA interfaces with p-calculus for protocol compatibil-
ity. In Technology of Object-Oriented Languages and Sys-
tems (TOOLS’00), pages 208–225, June 2000.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
Transactions on Computer Systems, 19(3):332–383, August
2001.

[7] Y. Chen, D. Rosenblum, and K. Vo. TestTube: A system for
selective regression testing. In 16th Int’l. Conf. Softw. Eng.,
pages 211–222, May 1994.

[8] R. Cherinka, C. M. Overstreet, and J. Ricci. Maintaining a
COTS integrated solution — Are traditional static analysis
techniques sufficient for this new programming methodol-
ogy? In Int’l. Conf. Softw. Maint., pages 160–169, Novem-
ber 1998.

[9] Enterprise JavaBeans technology. http://java.sun.
com/products/ejb/index.html, October 2000.

[10] M. J. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M. Pen-
nings, S. Sinha, S. Spoon, and A. Gujarathi. Regression test
selection for java software. In Proceedings of the ACM Con-
ference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA 2001). ACM Press, Oc-
tober 2001. (to appear).

[11] H. K. N. Leung and L. J. White. A cost model to compare
regression test strategies. In Conf. Softw. Maint., pages 201–
208, October 1991.

[12] U. Lindquist and E. Jonsson. A map of security risks associ-
ated with using COTS. IEEE Computer, 31(6):pages 60–66,
June 1998.

[13] P. M. Maurer. Components: What if they gave a revolution
and nobody came. IEEE Computer, 33(6):28–34, June 2000.

[14] Microsoft .NET Platform. http://www.microsoft.
com/net/, February 2001.

[15] A. Orso, M. J. Harrold, and D. S. Rosenblum. Compo-
nent metadata for software engineering tasks. In W. Em-
merich and S. Tai, editors, EDO ’00, volume 1999 of Lecture
Notes in Computer Science, pages 126–140. Springer-Verlag
/ ACM Press, November 2000.

[16] T. Ostrand and M. Balcer. The category-partition method
for specifying and generating functional tests. Comm. ACM,
31(6), June 1988.

[17] G. Piccinelli and S. Lynden. Concept and tools for e-service
development. In 7th Workshop HP Openview Univesity As-
sociation (OVUA’00), June 2000.

[18] G. Rothermel and M. Harrold. A safe, efficient regression
test selection technique. ACM Trans. on Softw. Eng.and
Meth., 6(2):173–210, April 1997.

[19] G. Rothermel and M. Harrold. Empirical studies of a safe
regression test selection technique. IEEE Trans. Softw. Eng.,
24(6):401–419, June 1998.

[20] G. Rothermel, M. J. Harrold, and J. Dedhia. Regression test
selection for C++ software. J. Softw. Testing, Verif., and Rel.,
10(2), June 2000.

[21] C. Szyperski. Component Oriented Programming. Addison-
Wesley, first edition, 1997.

[22] J. Troya and A. Vallecillo. On the addition of properties to
components. In J. Bosch and S. Mitchell, editors, Object-
Oriented Technology: ECOOP’97 Workshop Reader, vol-
ume 1357 of Lecture Notes in Computer Science, pages 374–
378. Springer, 1997.

[23] J. Voas. The challenges of using COTS software in
component-based development. IEEE Computer, 31(6):44–
45, June 1998.

[24] E. Weyuker. Testing component-based software: A caution-
ary tale. IEEE Software, 15(5):54–59, Sept–Oct 1998.

[25] L. White and H. Leung. A firewall concept for both control-
flow and data-flow in regression integration testing. In Conf.
Softw. Maint., pages 262–270, November 1992.

[26] XOTcl - extended object Tcl. http://nestroy.
wi-inf.uni-essen.de/xotcl/, November 2000.

