
Automated Support for Development, Maintenance, and Testing
in the Presence of Implicit Control Flow

Saurabh Sinha, Alessandro Orso, and Mary Jean Harrold
College of Computing

Georgia Institute of Technology
{sinha,orso,harrold}@cc.gatech.edu

Abstract

Although object-oriented languages can improve pro-
gramming practices, their characteristics may introduce
new problems for software engineers. One important prob-
lem is the presence of implicit control flow caused by
exception handling and polymorphism. Implicit control
flow causes complex interactions, and can thus complicate
software-engineering tasks. To address this problem, we
present a systematic and structured approach, for support-
ing these tasks, based on the static and dynamic analyses of
constructs that cause implicit control flow. Our approach
provides software engineers with information for support-
ing and guiding development and maintenance tasks. We
also present empirical results to illustrate the potential use-
fulness of our approach. Our studies show that, for the
subjects considered, complex implicit control flow is always
present and is generally not adequately exercised.

1 Introduction

The use of object-oriented languages in industry has
grown considerably in the last decade. Today, object-
oriented languages, such as Java, C++, and C# are com-
monly used for developing a wide spectrum of software
ranging from desktop applications to web services.

Object-oriented languages can improve development ac-
tivities by enforcing good programming practices such as
encapsulation, information-hiding, and modularity. How-
ever, some features of these languages cause new problems
for software engineers. In particular, features such as excep-
tion handling and polymorphism can result in software be-
haviors that are difficult to understand and foresee. Abuses
or misuses of such features can thus result in code that is
faulty or difficult to understand, verify, and maintain [2, 9].

The main problem with exception handling and poly-
morphism is that they introduce implicit control flow—
control flow that is not obvious in the source code. Although
implicit control flow can occur also in procedural programs

(e.g., in C, with the use of setjump–longjump constructs
or function pointers), these occurrences are typically rare.
In contrast, all but trivial object-oriented programs contain
implicit control flow [11, 13].

Because of the complexity introduced by implicit con-
trol flow in object-oriented code, developers may overlook
important interactions in the programs. For example, the
propagation of an exception from a called method to a call-
ing method several levels up the call chain can create un-
intended data dependences in the program. As a result, the
effectiveness of software-engineering tasks such as code de-
velopment and maintenance can be adversely affected if the
presence of implicit control flow is not taken into account.

To address this problem, we have developed an approach
that leverages static and dynamic analyses to provide sup-
port and guidance to software engineers during develop-
ment and maintenance. The static analyses include tradi-
tional techniques, such as type inference and data-flow anal-
ysis, and newly developed techniques. The dynamic anal-
yses consist of new types of coverage analysis specifically
defined to capture implicit control flow.

This paper presents our approach as it applies to ex-
ception handling. During development, our technique
provides information about exception-related code entities
(e.g., throw and catch statements) and their interactions.
Using this information, developers can avoid inappropriate
coding patterns and produce code that is easier to under-
stand and maintain. During maintenance, the same infor-
mation can be used to restructure and refactor the program
to remove inappropriate coding patterns [9].

During testing, our approach provides guidance and sup-
port for identifying test requirements and generating test
data to satisfy such requirements. Testing requirements are
expressed in terms of interactions among exception-related
entities and are defined at different levels—higher-level re-
quirements are harder to satisfy but result in more thor-
oughly tested code. The approach guides the tester in se-
lecting a suitable level of testing by providing information
about the requirements at each level.

To evaluate our approach, we implemented it in a pro-
totype and performed empirical studies. The first set of
studies assessed the presence of coding patterns that lead to
complex implicit control flow in a set of real Java programs.
The results show that such patterns are present in all the
subjects we studied. The second set of studies investigated
the level of coverage of exception-related test requirements
achieved by test suites developed for and distributed with
the subjects. The results of this study show that coverage of
exception-related constructs is generally low. Both results
motivate the use of suitable approaches that provide auto-
mated support for development and maintenance of object-
oriented programs in the presence of implicit control flow.

The main contributions of this paper are:

• An approach to support/guide development and main-
tenance in the presence of implicit control flow based
on both new and existing program-analysis techniques.

• A description of a prototype that demonstrates the fea-
sibility of automating the approach.

• Two sets of studies that show that the presence of im-
plicit control flow in object-oriented programs is com-
mon and that exercising interactions caused by such
implicit control flow is a non-trivial task.

2 Support for Software-Engineering Tasks
Our approach performs static and dynamic analyses of

constructs that cause implicit control flow, and uses the re-
sults to support software-engineering tasks. The approach
provides information to help software engineers (1) identify
and eliminate inappropriate coding patterns during devel-
opment and maintenance, and (2) exercise constructs that
cause implicit control flow during testing. After defining
terms used in the paper, we describe how our approach sup-
ports development, maintenance, and testing tasks, and dis-
cuss the analysis techniques on which the approach is based.

2.1 Definitions
Exceptions in Java. In Java, there are two main kinds of
exceptions: checked and unchecked. A checked exception
is explicitly thrown in the code. An unchecked exception is
generated by the runtime system (e.g., access to an out-of-
bounds array element). In Java, exceptions are regular ob-
jects and are raised (in the case of checked exceptions) us-
ing the throw statement (e.g., line 23, Figure 1). Exception
handling in Java is supported by try-catch-finally
sequences. A try block consists of a group of statements
followed by one or more catch blocks, a finally block (e.g.,
lines 10–15, Figure 1), or both. A try block is executed until
completion or until an exception is thrown. A catch block is
associated with a try block and consists of a type and a set
of statements (e.g., lines 12–13, Figure 1). A finally block
is also associated with a try block and consists of a set of
statements (e.g., lines 14–15, Figure 1). If an exception of

public class Sum {
private static int i, j, sum, n;
public static void main() {

1. n = readInt();
2. j = readInt();
3. i = sum = 0;

try {
4. while (i < n) {
5. add();

} }
6. catch (ValueExceededException ve) {
7. System.out.println(‘‘value exceeded’’);
8. return;

}
9. System.out.println(sum);

}
private static void add() throws

ValueExceededException {
try {

10. checkValue();
11. sum = sum + j;

}
12. catch (NegativeValueException iv) {
13. sum = sum - j;

}
14. finally {
15. System.out.println(‘‘current sum = ’’+sum);

}
16. j = readInt();
17. i = i + 1;

}
private static void checkValue() throws

NegativeValueException,
ValueExceededException {

AddException e;
18. if (j < 0)
19. e = new NegativeValueException();
20. else if (sum + j > MAXVAL)
21. e = new ValueExceededException();
22. if (e != null)
23. throw e;
} }

Figure 1. Program Sum illustrates exception handling.

type E is thrown within a try block, the catch blocks asso-
ciated with it are checked for a type match. (A type match
occurs when the type of the catch is E or a superclass of E.)
If a match occurs, the body of the catch block is executed
and the execution continues with the statement following
the try block. Otherwise, the call stack is unwound until a
catch block with a matching type is found or until the call
stack is empty—in which case, the program terminates. If
a finally block is present, its code is always executed after
control leaves its associated try block, whether the try block
terminates normally or is interrupted by an exception.

Finally Context. In Java, a finally block executes in a
normal context if (1) control reaches the end of a try block
or a catch block, or (2) control leaves a try statement be-
cause of an unconditional transfer statement (e.g., break,
continue, or return). A finally block executes in an ex-
ceptional context if control leaves a try statement due to
an unhandled exception. For example, the finally block in
method Sum.add() (Figure 1) executes in normal context
when either no exception or a NegativeValueException
is raised in the try block; the finally block executes in
an exceptional context if a ValueExceededException is
raised in the try block.

Exception Deactivation. A catch handler deactivates a
thrown exception. In Java, a finally block can also deacti-
vate a thrown exception when that block executes in an ex-
ceptional context, and a throw statement, a return statement,
or a break or continue statement (that transfers control out-
side the finally) is reached within the block. For example,
if the finally block in method add() in Sum (Figure 1) con-
tained a return statement, a ValueExceededException
that reached the return statement would be deactivated. We
differentiate the following semantics of a deactivation: (1)
ignore exception, (2) log error message and exit, (3) map
and rethrow exception, and (4) take recovery action.

Exception Flow. A reaching throw statement st is defined
with respect to a deactivation sd such that there exists an ex-
ecution path from st to sd and no statement along the path
deactivates the raised exception. A reaching exception type
sd for exception type T is defined with respect to a deactiva-
tion sd such that there exists an execution path from a throw
statement that can raise an exception of type T to sd and no
statement along the path deactivates the raised exception. A
reachable deactivation sd is defined with respect to a throw
statement st such that there exists an execution path from st

to sd and no statement along the path deactivates the raised
exception. The distance between a throw statement and a
reachable deactivation is the maximum number of meth-
ods through which a thrown exception can propagate before
reaching the deactivation. For example, in program Sum, the
throw statement in line 23 has two reachable catch handlers
The distance from the throw statement to the catch handler
in line 12 is 1, whereas the distance from the throw state-
ment to the catch handler in line 6 is 2.

Calling Context. For a catch handler sc that is reachable
from throw statement st, the calling contexts that are rele-
vant for st–sc are the calling sequences that start within the
lexical scope of sc and that cause the method containing st

to be reached. The relevant contexts for a reaching throw
statement at a catch handler are the sequences of calls that
originate in the try block for the catch handler and cause the
method containing the throw to be reached.

Precision and Safety. In Java, exceptions can be declared
in the method interfaces using the throws clause—each
method can declare the exceptions that can propagate out-
side the method. For such checked exceptions, the method
must declare the exceptions; for such unchecked excep-
tions, the method may or may not declare them. There-
fore, for unchecked exceptions, the throws declarations
can miss exceptions that can actually be propagated (i.e.,
they can be unsafe) and they can list exceptions that can-
not be propagated (i.e., they can be imprecise). For checked
exceptions, the compiler ensures than the throws declara-
tions are safe; however, even for checked exceptions, the
throws declarations can be imprecise.

2.2 Code development and maintenance

For development and maintenance, we address the sce-
nario in which a developer is inspecting the code either to
improve it, through refactoring, or to understand it, for ex-
ample while investigating a failure or planning a change.
Our approach supports developers in performing such tasks
by providing them with relevant information interactively.

There are several techniques for refactoring programs
and for providing developers with useful information about
a program. Some of these techniques are implemented in
widely distributed tools, such as Eclipse1 or Idea.2 Most of
these techniques and tools, however, provide limited infor-
mation. For example, a typical use of such tools is to iden-
tify syntactic errors while coding. These approaches, al-
though useful for developers and maintainers, do not lever-
age the power of existing program-analysis techniques.

In general, misuses of mechanisms, such as exception
handling, can make programs difficult to understand and
maintain. In some cases, they may also result in faults and
cause failures that are difficult to investigate. Reimer and
Srinivasan [9] mention several inappropriate usage patterns
of exception handling and provide evidence that the pres-
ence of those patterns complicates software reliability and
maintainability. Unfortunately, such usage patterns are dif-
ficult to identify by simply examining the code or by using a
purely syntactic analysis. However, by leveraging program-
analysis techniques, our approach can identify such pat-
terns in the code and report them to developers. For ex-
ample, if our analysis reports the presence of unreachable
catch blocks, the developer can inspect them to determine
whether they indicate programming errors (e.g., the wrong
types of exceptions being caught) or can be removed from
the program.

In this section, we describe the inappropriate coding pat-
terns addressed by our approach and discuss how the ap-
proach lets developers identify and eliminate, or prevent,
such patterns. The approach is based on providing develop-
ers with information that is derived from the analysis of the
program and that can be interactively navigated. Figures 2,
3, and 4 show a schematic view of the kinds of information
provided at throw points, catch points, and throws decla-
rations. (Although the approach is meant to be integrated
within an IDE (Integrated Development Environment), in
this paper, we present it without referring to any specific
implementation.) We refer to these figures in the rest of the
section while discussing inappropriate coding patterns. Our
technique identifies 11 inappropriate coding patterns, re-
lated to exception handling (see Table 1). For space limita-
tions, we discuss only four of these patterns in this paper—
the ones in bold font. Reference [14] discusses all patterns.

1http://www.eclipse.org/
2http://www.intellij.com/idea/

Table 1. Inappropriate coding patterns.

Construct at which
Inappropriate coding pattern info. can be provided

Unreachable catch handlers catch
Ignored exceptions throw, catch, finally
Large distance between throw and catch throw, catch
Imprecise or unsafe throws declarations method interface
Imprecise types of catch handlers catch
Imprecise declared types of references throw, polymorphic call
Inappropriate contexts throw, catch
Unhandled exceptions throw, method interface
Mapping multiple exception types to the catch
same type

Unreachable catch handlers. The presence of a stati-
cally unreachable catch handler may indicate a fault: the
handler type may be incorrect, which could cause it to catch
no exceptions. If this is not the case, the handler is simply
useless and can be removed from the program.

To let developers identify unreachable catch handlers,
our approach provides them with information, for each
catch block, about reaching exception types. Developers
can use this information to check whether a catch handler
is statically reachable—a catch handler that has no reaching
exception types is statically unreachable.

Figure 2 shows the developer’s interaction with an
IDE to get this information: after selecting a catch han-
dler, the reaching exception types are presented in a
box (reaching exception types). In the figure, the box
shows that the catch handler can be reached by exceptions
of type java.lang.IllegalArgumentException and
java.lang.RuntimeException.

To determine whether a catch handler is unreachable be-
cause of an incorrect type (and is thus failing to handle ex-
ceptions), the developer can change the type of the handler
to java.lang.Throwable (which, because all exceptions
are subtypes of java.lang.Throwable, would cause the
handler to catch any exceptions) and then compute the in-
formation about reaching types. If no types reach the han-
dler, it can be removed. However, if some types reach
the handler, using information about where those excep-
tion originate (box reaching throw statements in the figure),
the developer can determine whether the type of the handler
should be changed to handle some or all of those exceptions.

Ignored exceptions. In Java, an exception can be ignored
in one of two ways: either the exception is handled by an
empty catch handler or the exception is deactivated within
a finally block. In most cases, ignoring exceptions is un-
desirable: no corrective action or logging code executes in
response to the exception. The deactivation of exceptions
in finally blocks may be unintentional and, therefore, erro-
neous. In these cases, developers can, after identifying the
ignored exceptions, modify the deactivation points.

.

.

.

.

.

.

.

 try {

public void catchMethod()

java.lang.IllegalArgumentException

 }
 catch (Exception e) {

 }

java.lang.RuntimeException

{
reaching exception types

Distance ContextsLineMethod

 reaching throw statements

jaba.sym.Class.getType()

1425jaba.graph.cfg.CFG.load()

232 3

1 260

jaba.graph.cfg.CFG.load()

...

3

4

21

3

5
6

4

method3

throwMethod

catchMethod

method2

method1

context

Figure 2. Schematic view of information about catch han-
dlers that is provided using our approach.

To support developers in identifying ignored excep-
tions, our approach provides them with information, for
each throw statement, about reachable deactivations and the
properties of those deactivations. These properties include
the semantics of the deactivation, which can be used to iden-
tify points where exceptions are ignored—all deactivations
whose semantics is “ignore exception.”

Figure 3 shows the developer’s interaction with an IDE
to get this information: after selecting a throw statement,
the IDE provides information about all types that may be
thrown at a statement (box reaching exception types).3 For
each type, box reachable deactivations shows the informa-
tion about reachable deactivations. The box shows, for each
deactivation, (1) where the deactivation occurs, (2) whether
the deactivation occurs at a catch handler or a finally block,
(3) the type of the deactivation, if the deactivation occurs at
a catch handler, (4) the semantics of the deactivation, and
(5) the distance between the throw and the deactivation. In
the figure, the box shows that there are three deactivations,
for exception e of type java.lang.RuntimeException,
one of which ignores the exception.

Large distance between throw and catch. In general,
if exceptions are propagated a long way on the call stack,
the exception handling may be less meaningful and debug-
ging more difficult [9]. As lower-level exceptions propa-
gate to higher-level methods, they can cause the higher-
level methods to raise exceptions that are inappropriate to
the higher-level abstraction. To avoid this problem, higher
layers should map lower-level exceptions to exceptions that
are explainable in terms of the higher-level abstraction [2].

Our approach supports developers in identifying throw–
catch pairs whose distance may complicate maintenance

3In most cases, the exception being thrown is created at the throw state-
ment and there is only one type of exceptions that can be thrown (i.e., the
throw is in the form throw new E()).

.

.

.

.

.

.

.

.

.

public void throwMethod()
{

 if (e != null) {
 throw e;

}

 Exception e=checkArgs();

 }

java.lang.IllegalArgumentException

java.lang.RuntimeException

reaching exception types

DistanceMethod SemanticsTypeIs CatchLine

reachable deactivations

2

1

3

jaba.graph.Node.getType()

jaba.main.JABADriver.init()

jaba.tools.Factory.getCFG()

...

...

...

jaba.sym.Program.load()

jaba.graph.Node.getType()

49

151

LineMethod

type creation points

rethrow

exit

ignore

java.lang.RuntimeException

java.lang.Exception

All exceptions

yes

yes

no

126

61

232

Method2

throwMethod

catchMethod

distance

Method1

Figure 3. Schematic view of information about throw
statements that is provided using our approach.

and testing. The approach supports this task by providing
information about the distance between a reaching throw
statement and a catch handler (Figure 2) and between a
reachable deactivation and a throw statement (Figure 3).

Box reachable throw statements in Figure 2 shows how
the information could be presented to developers and how
they could further inspect throw–catch pairs with great dis-
tance. Developers can select each such throw–catch and be
provided with information about the call paths along which
the throw–catch can occur (box context). For the example
in the figure, developers would see that the throw statement
occurring at line 232 of jaba.graph.cfg.CFG.load()
and the selected catch statement are separated by a call
chain of maximum length three—the one consisting of
methods method1, method3, and throwMethod.

In cases in which developers consider the distance too
great, they can reduce it by refactoring the code. For ex-
ample, developers may decide to add an intermediate catch
handler, in one or more methods within the call chain, that
logs relevant information and remaps the exception [9].

Imprecise or unsafe throws declarations. In Java,
throws declarations alert a method’s users to exceptions
that can propagate out of the method. The presence of im-
precise/unsafe exception declarations can provide mislead-
ing information to the API’s clients: an imprecise exception
declaration can cause the client code to contain unreachable
catch handlers; an unsafe exception declaration can cause
the client code to propagate exceptions unintentionally.

To aid developers in identifying unsafe or imprecise
exception declarations, our approach provides information
about the types of exceptions that can reach method exits.
Figure 4 presents the method-interface information that can
be provided using our approach. Using this information,
the developer can ensure that the exception declarations in
method interfaces are safe and precise. Moreover, this in-
formation can be useful for verifying whether all exceptions
that can propagate out of a method should in fact propagate.

.

.

. .
.
.

public void someMethod()
 throws
{

}

java.lang.IllegalArgumentException

java.lang.RuntimeException

reaching exception types

Figure 4. Schematic view of information about method
interfaces that is provided using our approach.

2.3 Testing

During testing, our approach provides support in identi-
fying test requirements4 for exception handling and gener-
ating test data to satisfy the requirements. In this section,
we first present techniques for generating test requirements
to obtain levels of exception-handling coverage. Then, we
discuss how our approach presents information to the testers
to guide them in testing exception handling constructs.

2.3.1 Test requirements for exception handling
The presence of exception handling causes interactions that
can be verified at different levels of thoroughness. Figure 5
presents levels of coverage for exception handling orga-
nized hierarchically—the higher levels require more thor-
ough testing (at a higher cost), and thus provide more con-
fidence in the correctness than lower levels. The levels of
coverage can be used to generate test requirements, which
can be verified using testing or inspection.

The simplest exception-handling coverage level, throw-
statement coverage, requires coverage of the statements that
contain a throw instruction. At this level, the test require-
ments ignore the different types of exceptions that can be
raised at a throw statement and the different catch handlers
that are reachable from a throw statement. This coverage
level, called (throw) in Figure 5, is shown at the bottom-
left corner in the figure. Throw-statement coverage can
be strengthened by (1) considering the types of exceptions
that can be raised at a throw statement, and (2) considering
the catch handlers that are reachable from a throw state-
ment. These levels of coverage, called (throw,type) and
(throw,catch) in Figure 5, require more thorough testing
of exception handling than throw-statement coverage.

The arrows in Figure 5 represent the subsumption rela-
tions among the levels. A level of coverage subsumes an-
other if the test requirements generated at the first level in-
clude the test requirements generated at the second level.
(throw,type,catch) is a stronger level of coverage
that subsumes both (throw,type) and (throw,catch);
it requires exercising a throw statement for each type

4A test requirement consists of an item (for code-based testing, one or
more code entities) that must be exercised during testing and some con-
straints on how it must be exercised. For example, a test requirement for a
(throw, catch) pair requires, to be satisfied, the execution of both the throw
statement and the catch statement, such that the exception caught by the
catch is the one raised by the throw.

(paths in finally)
throw and catch
paths between

contexts for throw−catch

paths in catch

(throw, type)

(throw, catch)

(throw, type, catch)

(throw)

Figure 5. Levels of coverage for exception handling.

of exception that can be raised at the statement and for
each catch handler that is reachable from the throw state-
ment. (throw,catch) and (throw,type,catch) can
be strengthened further along three dimensions: (1) by con-
sidering the paths between a throw statement and a reach-
able catch handler (i.e., paths in finally blocks that occur
between the throw and the catch), (2) by considering the
paths within the catch blocks, and (3) by considering the
relevant contexts for reaching throw statements.

2.3.2 Support for testing
Our approach guides testers in (1) exploring test require-
ments to select a suitable coverage level, and (2) generating
test data to exercise the selected test requirements.

Select the level of coverage
Our approach uses static analysis to let testers interac-
tively assess the effort required to attain various levels of
exception-handling coverage. The approach presents the
hierarchy (Figure 5) and provides information about test re-
quirements that need to be covered to move from one level
of coverage to a higher one. If no additional test require-
ments need to be covered to move to a higher level, the two
levels of coverage are equivalent.

The approach lets the tester select the percentage of
test requirements that might be targeted for coverage at a
given level of coverage (level n). Given the percentage of
test requirements that are covered at level n, the approach
uses static analysis to compute a safe estimate of the
percentage of test requirements that would be covered at
level n + 1. Figure 6 presents the information provided
to help select a level of coverage. The figure shows four
types of coverage, and for each type, the number of test
requirements. The tester can select a level of coverage and
a target coverage percentage for the test requirements and,
using the information provided by our approach, can select
the appropriate level of coverage for the program under test.

Figure 7 presents a schematic view of the types of in-
formation that can be presented in an IDE during testing.
The upper part of the box on the left shows the type of cov-
erage selected by the tester ((throw,type,catch) in the
example) and statistics about them, in terms of covered and

 throw, catchCoverage type

(throw, catch, P(c))

Number of test
requirements

% covered

% covered

Number of test

(throw, catch, P(f))

Number of test
requirements

requirements

% covered

Percentage

(throw,catch)

requirements

% covered

(throw)

Number of test
513

234

100

46

261

100 90

72

Figure 6. Information provided to testers to guide them
in selecting a level of coverage.

532 if (e != null) {

533 throw e;

531 Exception e=checkArgs();
 throw−catch distance

.

.

.

 semantics of deactivation

 condition for throw

Order by

534 }

1

4

29

28

65

27

pagui
instrumentation

jigi2j

map

Coverage type

Number of requirements:: 694

18

jaba

junit

derive

configparserresource

dejavoo

primitive

block

i2j

 throw, type, catch

Covered requirements: 455 (66%)

symboltable

11

Requirements to be covered: 239 (34%)

24

31

11

42
37

 2

15

 7

11

Coverage

 ignore

 exit

 normal

 rethrow

jaba.sym.Program:44,dejavoo.Loader:1516,jaba.MalformedProgram

jaba.Buffer:533,dejavoo.Notification:103,jaba.InvalidFormat
dejavoo.Iterator:142,parser.Filter:117,dejavoo.NameMismatch

dejavoo.Notification.create(String)

...

 78 try {

103 catch (Exception e) {
104 }

102 }

135 }

1 2

3

5
6

4

java.Buffer.checkSize()

method1

method3

method3

Notification.create

buffer.checkSize

context

.

.

.

.

.

.

Figure 7. Schematic view of testing-requirements infor-
mation for exceptions that is provided using our approach.

uncovered requirements. The lower part of the box on the
left shows a treemap view5 of the code, in which each node
represents a module and the numbers in the nodes indicate
the number of uncovered throw–catch pairs involving that
module (a throw–catch pair involves a module if the throw,
the catch, or both occur in the module).

The IDE can also provide detailed information for a spe-
cific module. The box in the lowest left part of Figure 7
lists the set of throw–catch pairs for module dejavoo. As
shown in the right part of the figure, for each entry, the user
can get information about the location of the throw (method
java.Buffer.checkSize, in the example), the location
of the catch (method dejavoo.Notification.create,
in the example), and the possible calling paths between
them (the context box). Such information supports users
while they inspect the pairs and develop test cases.

5The treemap visualization is a two-dimensional, space-filling ap-
proach to visualizing a tree structure in which each node is a rectangle
whose area is proportional to some attribute of that node.

Table 2. Subject programs.
Subject Description Methods
DAIKON[6] Dynamic invariant detector 7887
JABA[1] Program analysis framework 2673
NANOXML[12] XML parsing library 232
SIENA[3] Publish subscribe system 195

2.4 Underlying Analyses

In this section, we briefly discuss the underlying analyses
that lets us compute the information described in Sections
2.2 and 2.3. Reference [14] provides further details.
Exception flow analysis. We use exception-flow analy-
sis to compute reaching exception types and throw state-
ments at catch handlers and reachable deactivations at throw
statements. The analysis first builds an interprocedural con-
trol flow graph (ICFG) that represents both intraprocedural
and interprocedural control flow caused by exceptions [13].
Then, it traverses forward in the ICFG starting at each throw
statement and computes reachable catch handlers and reach-
able deactivations within finally blocks.
Context analysis. To determine relevant contexts for a
reaching throw statement, our approach builds the call
graph of the program being analyzed. Using the call graph,
we determine the set of methods that are both reachable
from the method containing the catch and are reaching at
the method containing the throw, and construct a reduced
call graph. Finally, to enumerate the contexts, we compute
acyclic paths in the reduced call graph. By examining the
lengths of these paths, we compute the distance between a
throw statement and reaching deactivation.
Type-inference analysis. Type-inference analysis (e.g.,
[8]) is required to determine the types of exceptions that
can be raised at throw statements. Type-inference analysis
can be performed at different levels of precision—a more
precise algorithm can compute fewer spurious types than
an imprecise algorithm. For the empirical results reported
in this paper, we used class hierarchy analysis, augmented
with local flow-sensitive analysis [13].
Coverage analysis. We use coverage analysis to identify
which requirements are satisfied during testing. To this
end, we instrument the code during execution so as to trace
(1) execution of throw statements and type of exception(s)
thrown, and (2) execution of catch blocks and type of ex-
ception(s) caught. This information is matched during ex-
ecutions to compute (throw,type,catch) tuples and identify
which test requirements have been satisfied.

3 Empirical Results

To evaluate our approach, we built a prototype tool that
identifies several of the inappropriate coding patterns men-
tioned in Section 2.2. The tool also computes test require-
ments and coverage according to the four basic coverage

Table 3. Unreachable catch handlers.
Number of occurrences by considering

Subject Checked exceptions All exceptions
DAIKON 35/536 (6.5%) 19 (3.5%)
JABA 1/127 (0.8%) 0 (0%)
NANOXML 1/13 (7.7%) 0 (0%)
SIENA 0/29 (0%) 0 (0%)

levels in Figure 5. In this section, we present the results of
two empirical studies that we performed using the tool. In
the first study, we examined the occurrences of bad coding
patterns in real Java programs. In the second study, we stud-
ied the coverage of exception handling by test suites gener-
ated using traditional testing techniques. For both studies,
we used the subject programs listed in Table 2.

3.1 Occurrences of inappropriate coding patterns

We present empirical results to illustrate the occurrences
of inappropriate coding patterns in Java programs. To show
the usefulness of the information, we used it, where possi-
ble, to eliminate the patterns from JABA. We used JABA be-
cause we are familiar with its code—the scenario in which
the information would typically be used by developers.

Unreachable catch handlers. Table 3 presents data about
the occurrences of unreachable catch handlers. It shows the
number of occurrences of such catch handlers in the sub-
jects by considering (1) checked exceptions, and (2) all ex-
ceptions. Column 2 of the table shows the number of catch
handlers that may be intended to handle only unchecked ex-
ceptions; such handlers are, therefore, unreachable if we
analyze only checked exceptions. Column 3 lists the num-
ber of catch handlers that either are truly unreachable (and,
therefore, should be removed from the code) or have an in-
correct type (which is causing them to be unreachable).

The data in column 2 can be useful for applications that
do not handle unchecked exceptions. For such applications,
the handlers listed in Column 2 may actually have an incor-
rect type or can be removed. As the data in the table shows,
all the subjects, except DAIKON, contained handlers for
only unchecked exceptions. From our knowledge of JABA,
we expected it to have no such catch handler. Therefore,
we examined the catch handler that was reported to handle
only unchecked exceptions and found that it was handling
unchecked exceptions by accident; it was actually meant to
handle exceptions propagated by another method in JABA.
However, according to the analysis, the called method prop-
agated no exceptions. On examining the called method, we
realized that the exception declaration of the method was
imprecise, that is, it listed exceptions that were not propa-
gated by the method. Probably, the programmer who coded
the calling method relied on the API documentation to de-
termine potential exceptions and added a handler for those
exceptions. Thus, using this information, we removed the
unnecessary handler.

Table 4. Ignored exceptions.
Subject Empty catch handlers Deactivations in finally
DAIKON 19 0
JABA 2 0
NANOXML 2 0
SIENA 0 0

Ignored exceptions. Table 4 presents data about the oc-
currences of ignored exceptions. It presents data about both
ways that exceptions can be ignored: by being deactivated
at an empty catch handler or within a finally block. The
table shows the number of occurrences of such exception
deactivations; for empty catch handlers, the table presents
data about only those handlers that were reachable. None
of our subjects contain deactivations in finally blocks, but
all, except SIENA, contain empty catch handlers: DAIKON
contains as many as 19 empty catch handlers, whereas JABA
and NANOXML contain two each.

We examined the two empty catch handlers in JABA to
determine whether the exceptions deactivated by those han-
dlers should indeed be ignored and, if so, whether they
could be programmed using constructs for normal condi-
tional control flow. In one case, a method that propagated an
exception was being called from several different contexts
and in all but one of those contexts the propagated excep-
tion represented an error. In that one context, the exception
represented a condition that was expected, required no error
recovery, and could be safely ignored. In another case, the
exception being ignored should not have been ignored and
added a suitable logging message for the error.

Distance between throw and catch. Table 5 presents
data about the distances between throw statements and catch
handlers. The table shows, for each subject, the range of
distances, and the number of throw–catch pairs that had dif-
ferent ranges of distances: 0, 1–2, 3–5, 6–10, and greater
than 10. To limit the cost of the analysis, while gathering
the distance, we excluded paths in the call graph with more
than 30 nodes. Therefore, for DAIKON, we only report that
the distance ranges from 0 to some value greater than 30.
The data in the table show that the distances for NANOXML
and SIENA, although fairly low in absolute terms, may be
high relative to the sizes of those subjects. In JABA, ex-
ceptions can be propagated as many as 26 levels up the call
chain. Also, for more than 50% of the throw-catch pairs, the
distance is greater than 10. Although such large distances
may be unreasonable in other applications, for JABA they
are not. JABA parses class files to perform different anal-
yses and most exceptions in JABA represent unrecoverable
errors during parsing. Therefore, these exceptions are prop-
agated all the way to the top of the call chain to the driver
class that invoked the JABA API, and reported to the user.

Imprecise or unsafe throws declarations. Figure 8
presents data about the occurrences of unsafe or imprecise

Table 5. Distance between throws and catch handlers.
Range of Throw–catch pairs with distance

Subject distance 0 1–2 3–5 6–10 > 10

DAIKON 0–(>30) 11 27 98 105 644
JABA 0–26 6 14 73 133 239
NANOXML 3–8 0 0 13 3 0
SIENA 2–4 0 31 16 0 0

exception declarations in method interfaces. For this study,
we computed the data by considering only checked excep-
tions.The figure contains two segmented bars for each sub-
ject, the first for unsafe declarations and the second for im-
precise declarations. The height of each bar represent 100%
of the unsafe/imprecise declarations in a subject; the per-
centage values at the top of the bar indicate the percent-
age of methods whose throws declarations are unsafe and
imprecise, respectively. For example, for JABA, 35.5% of
the methods contain unsafe declarations and 1.9% contain
imprecise declarations. The segments within a bar parti-
tion the unsafe/imprecise declarations by the extent of un-
safety (missing exception types)/imprecision (redundant ex-
ception types). For example, for JABA, 42% of the unsafe
declarations missed 1–2 exception types, 33% missed 6–
10 types, and the remaining 25% missed more than 10 ex-
ception types. For DAIKON, 58% of the methods contain
unsafe declarations, out of which 82% miss more than 10
exceptions. For SIENA, no methods contained unsafe dec-
larations and about 7% contained imprecise declarations, all
of which contained 1–2 redundant types.

The data in Figure 8 show that unsafe and imprecise dec-
larations can be pervasive in Java programs. This is not
surprising given that exception flow is complex; such dec-
larations can easily degrade as the software evolves. Un-
safe and imprecise declarations are undesirable, especially
in methods that can be used externally, because they pro-
vide misleading information to clients of the API. Imprecise
declarations can cause the client API to contain unreachable
catch handlers. As discussed earlier, the unreachable catch
handler in JABA was in fact caused by an imprecise throws
declaration. Unsafe declarations can cause the client API to
propagate exceptions unintentionally. However, listing all
potential exception types for each method may be cumber-
some, and this decision should be based on the visibility of
the method to external clients and the ability of the clients
to recover from the propagated exceptions. Using our ap-
proach, this process can be automated to present the list of
potential exceptions to the developer, who can then decide
which exceptions to list in the interface.

3.2 Coverage of exception handling using tradi-
tional testing techniques

In the second study, we examined the coverage of ex-
ception handling using existing test suites for our subjects.
These test suites were generated either during the devel-

[11,)

[6,10]

[3,5]

[1,2]

58
.2%

0

20

40

60

80

100

20

100

nanoxmljabadaikon
0

siena

40

60

80

1.1
%

35
.5%

1.9
%

12
.1%

24
.1%

0% 6.7
%

Figure 8. Imprecise or unsafe exception declarations in
method interfaces.

opment of those applications or, for NANOXML, post-
development, based on functional specifications. The test
suites were not designed to cover exception handling.

To determine the extent of exception coverage by
these test suites, we generated test requirements, at the
(throw,type,catch) coverage level, for the subjects.
Column 2 of Table 6 lists the number of test requirements
for each subject. Next, we eliminated from the requirements
all (throw, type, catch) tuples for which the test suites cov-
ered neither the throw method nor the catch method. In
other words, we considered only requirements such that the
test suite achieved 100% method coverage for the methods
involved in the requirements (thus eliminating the risk of
getting low coverage just because of a poor test suite). Col-
umn 3 of Table 6 lists the number of considered test re-
quirements. As the data shows, few test requirements were
eliminated—17% for DAIKON, 13% for SIENA, less than
1% for JABA, and none for NANOXML. Finally, we exam-
ined the percentage of considered (throw, type, catch) tu-
ples that were covered by the tests (column 4 of Table 6).
The data show that—except for NANOXML, which does
not have many (throw, type, catch) tuples—very small per-
centages of the (throw, type, catch) tuples are covered.

The study, although limited in nature, indicates that test
suites that are not designed for covering exception handling
may not achieve good coverage of exception handling; test
requirements for exception handling need to be explicitly
considered to ensure adequate coverage.

4 Related Work
Several researchers have investigated the analysis of

exception-handling constructs for development and main-
tenance. Robillard and Murphy [10] developed a tool that
analyzes exception flow in Java programs to provide infor-
mation for program understanding and detection of coding

Table 6. Coverage of throw-catch pairs.
(throw, type, catch) Filtered Covered filtered

Subject tuples tuples tuples
DAIKON 3000 2498 7 (0.28%)
JABA 465 464 6 (1.29%)
NANOXML 16 16 4 (25.0%)
SIENA 47 41 0 (0%)

inconsistencies. The tool generates views that help a devel-
oper to understand the flow of exceptions across modules,
and identify program points where exceptions are caught
unintentionally, or where finer-grained exception handling
may be possible. Their approach provides limited informa-
tion about the flow of exceptions. Also, they do not investi-
gate how the information about exception flow can be used
to identify and eliminate inappropriate coding patterns. Fi-
nally, they do not address testing of exception handling.

Yi and Chang [4, 16] present a set-constraint-based ap-
proach for analyzing exception flow in Java programs to
enable the identification of uncaught exceptions, and un-
reachable and imprecise catch handlers. Like Robillard and
Murphy’s technique, their technique identifies a subset of
the kinds of exception flow computed by our approach and
provides an ad hoc, instead of an integrated, approach to the
analysis. Additionally, unlike our approach, their approach
does not identify inappropriate coding patterns.

Reimer and Srinivasan [9] identified several inappropri-
ate exception usage patterns in large J2EE applications that
have made maintenance of the applications difficult. They
proposed several ways to identify and remove these usage
patterns, including integration of static analysis into an IDE.
Our approach for supporting development and testing is
similar to theirs in that it performs static analysis and uses
the results to assist in locating and removing inappropriate
exception use patterns. However, their approach targets log-
ging and debugging activities instead of supporting code de-
velopment and refactoring and of understanding exception
flow. Also, our approach provides a more extensive classifi-
cation of inappropriate coding patterns than their approach.
Finally, they do not address testing of exception handling.

Other researchers have investigated the testing of
exception-handling constructs. Chatterjee and Ryder [5]
identify definition-use associations that are caused by ex-
ception variables or that arise along exceptional control-
flow paths for use in data-flow testing. Unlike our approach,
their approach does not investigate the interactions caused
by exception-handling constructs or how to generate test re-
quirements to exercise those interactions.

Tracey and colleagues [15] discuss the automated gener-
ation of test data for exceptions. They consider exception
handling in Ada and target the coverage of each raise state-
ment and each exception handler. They use genetic algo-
rithms to generate test data automatically. Their technique
is applicable to Ada, whose exception semantics are a sub-

set of those in Java. Additionally, their coverage criteria do
not consider the interactions among the statements to gen-
erate the test requirements.

Fu and colleagues [7] present an approach for exercis-
ing catch blocks based on compiler-directed fault injection.
They identify code blocks that are vulnerable to hardware
and operating system faults, and injects faults at these loca-
tions to exercise the associated error recovery code. They
also define a fault-catch coverage metric, which is the ratio
of the number of faults for which a catch block has been
exercised to the number of all possible faults for which the
catch block can execute. Their approach is orthogonal to
our approach for testing of exception handling. They focus
on the software’s ability to handle hardware and operating
system faults only; they do not focus more generally on the
interactions caused by the presence of exception handling.

5 Summary and Future Work
We have presented an integrated and systematic ap-

proach for providing automated support for the develop-
ment, maintenance, and testing of programs that contain
implicit control flow. The approach uses static and dy-
namic program analyses to gather information that can be
presented to developers in an IDE. The approach helps the
developers in identifying and possibly removing inappro-
priate usage patterns of exception handling. During testing,
the approach guides the testers in computing test require-
ments for exception handling and generating test data to sat-
isfy those requirements. We have also presented empirical
results to illustrate the occurrences of some inappropriate
usage patterns of exception handling. In some of the cases,
the approach helped us to identify parts of code in which
exception handling could be improved. Our study on the
coverage of exception handling using existing test suites in-
dicated that test suites that are not explicitly designed to
cover exception handling will likely achieve poor coverage
of exception handling. Our approach for computing test re-
quirements for exception handling constructs can be used to
help achieve adequate coverage of such constructs.

There are several directions for future work. First, fu-
ture work could further investigate visualization techniques
for presenting the information to developers. The schematic
views presented in this paper represent one approach, which
we are currently implementing in Eclipse. Second, future
work could investigate ways to generalize or modularize the
underlying analysis so that the set of patterns can be eas-
ily extended to include user-defined patterns. Third, future
work could investigate different approaches that would be
useful for generating test data for covering exception han-
dling. Fourth, future work could investigate ways to support
automated or semi-automated code refactoring to eliminate
inappropriate coding patterns. Finally, future work could in-
vestigate how the exception structure of a program evolves
over time and affects the maintainability of the program.

Acknowledgments
This work was supported in part by National Science

Foundation awards CCR-0306372, CCR-0205422, CCR-
9988294, CCR-0209322, and SBE-0123532 to Georgia
Tech. The anonymous reviewers provided useful feedback
that helped us improve the paper. Michael Ernst provided
access to DAIKON’s CVS.

References
[1] Aristotle Research Group. JABA: Java Architecture for Bytecode

Analysis. http://www.cc.gatech.edu/aristotle/
Tools/jaba.html, 2003.

[2] J. Bloch. Effective Java: Programming Language Guide. Addison-
Wesley, Reading, MA, 2001.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and eval-
uation of a wide-area event notification service. ACM Transactions
on Computer Systems, 19(3):332–383, August 2001.

[4] B. M. Chang, J. W. Jo, K. Yi, and K. M. Choe. Interprocedural
exception analysis for Java. In Proceedings of the 16th ACM Sym-
posium on Applied Computing, pages 620–625, Mar. 2001.

[5] R. Chatterjee and B. G. Ryder. Data-flow-based testing of object-
oriented libraries. Technical Report DCS-TR-382, Department of
Computer Science, Rutgers University, Mar. 1999.

[6] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynami-
cally discovering likely program invariants to support program evo-
lution. 27(2):1–25, Feb. 2001.

[7] C. Fu, R. P. Martin, K. Nagaraja, T. D. Nguyen, B. G. Ryder, and
D. Wonnacott. Compiler directed program-fault coverage for highly
available Java internet services. In Proceedings of the 2003 Inter-
national Conference on Dependable Systems and Networks, pages
595–604, June 2003.

[8] J. Palsberg and M. Schwartzbach. Object-oriented type inference.
In Conference Proceedings on Object-Oriented Programming Sys-
tems, Languages, and Applications, pages 146–161, Oct. 1991.

[9] D. Reimer and H. Srinivasan. Analyzing exception usage in large
Java applications. In Proceedings of the ECOOP 2003 Workshop on
Exception Handling in Object-Oriented Systems: Towards Emerg-
ing Application Areas and New Programming Paradigms, pages 10–
19, July 2003.

[10] M. P. Robillard and G. C. Murphy. Analyzing exception flow in
Java programs. In Proceedings of ESEC/FSE ’99 7th European Soft-
ware Engineering Conference and 7th ACM SIGSOFT Symposium
on the Foundations of Software Engineering, volume 1687 of Lec-
ture Notes in Computer Science, pages 322–337. Springer-Verlag,
Sept. 1999.

[11] B. G. Ryder, D. Smith, U. Kremer, M. Gordon, and N. Shah. A static
study of Java exceptions using JSEP. In Proceedings of the 9th In-
ternational Conference on Compiler Construction, volume 1781 of
Lecture Notes in Computer Science, pages 67–81. Springer-Verlag,
Apr. 2000.

[12] M. D. Scheemaecker. NANOXML: A small XML parser for Java.
http://nanoxml.n3.net, 2002.

[13] S. Sinha and M. J. Harrold. Analysis and testing of programs with
exception-handling constructs. IEEE Trans. Softw. Eng., 26(9):849–
871, Sept. 2000.

[14] S. Sinha, A. Orso, and M. J. Harrold. Analysis and testing of pro-
grams with exception-handling constructs. Technical Report GIT-
CC-03-48, Georgia Institute of Technology, Sept. 2003.

[15] N. Tracey, J. Clark, K. Mander, and J. McDermid. Automated test-
data generation for exception conditions. Software—Practice and
Experience, 30(1):61–79, Jan. 2000.

[16] K. Yi and B. M. Chang. Exception analysis for Java. In Proceedings
of the ECOOP ’99 Workshop on Formal Techniques for Java Pro-
grams, volume 1743 of Lecture Notes in Computer Science, pages
111–112. Springer-Verlag, June 1999.

