Implied Feedback: Learning Nuances of User Behavior in Image Search

Devi Parikh (Virginia Tech) Kristen Grauman (UT Austin)

Intuition

In image search, a user’s (perhaps subconscious) search strategy leads him to comment on certain images rather than others.

Binary relevance feedback

Relative attribute-based feedback

“not like this” “like this” “less chubby than him”

Feedback is a function of both the chosen image and the reference images the user sees but does not choose to comment on.

Key idea

• Whereas existing methods take user feedback at face value, we propose to learn the implicit information it conveys.
• We improve the efficiency of interactive image search by reading between the lines.

Approach

1. Training:
 a. Record interactions when people search for a target (known to us)
 b. Extract features revealing implicit selection biases
 c. Train relevance ranking function

2. Testing:
 a. Extract features from observed interaction
 b. Apply learned relevance ranking function
 c. Sort images based on likelihood of being the target image
 d. Iterate till user satisfied

Model: Learning a relevance ranking function

We learn a relevance ranking function \(S \) that accounts for implied feedback

\[
\begin{align*}
S(t_i) &> S(x_i) \\
w^T \phi(t_i, \Omega_t) &> w^T \phi(x_i, \Omega_t)
\end{align*}
\]

Parameters to be learnt

Features characterizing interaction

We represent an interaction with a 4-tuple

\[
\Omega_t = \begin{cases}
\text{available reference images} & \text{natural} & \text{chosen reference} & \text{chosen statement (like/not-like or attribute) binary relevance} & +1
\end{cases}
\]

Features revealing implicit search strategies

We introduce an array of features \(\phi(t_i, \Omega_t) \) to capture the implicit user reactions, based on relationships between the selected and non-selected reference images.

Binary relevance feedback:

• Distance of selected reference image from target image
• Relative to distance of other reference images from target
• Relative to visual diversity of reference images
• Variations (total 5 features)

Relative attribute-based feedback:

• Whether target image satisfies user-specified constraint or not
• How comfortably the constraint is satisfied
• "Tightness" of specified constraint
• Similarity of selected reference to target w.r.t chosen attribute
• Relative to similarity along other attributes
• Variations (total 31 features)

Data collection

Scenes (2688 images, 3 attributes), Faces (900 images, 10 attributes), Shoes (1000 images, 10 attributes).

Amazon Mechanical Turk, 1200 interactions, ~60 subjects

Results

Comparison to traditional feedback processing

Do the implied cues generalize across domains?

Can we learn user-specific behavior?

Multiple feedback statements

Conclusion

✓ Implicit cues are embedded in existing forms of feedback
✓ We expose and leverage them for interactive image search
✓ Better accuracy, yet no additional overhead for user
✓ Results on multiple datasets with online image search users show clear impact