Computer Vision Lab

  


       

[view by topic] [view by year]

 

[latest] [2017] [2016] [2015] [2014] [2013] [2012] [2011] [2010] [2009] [2008] [2007] [2006] [2005] [2004] [2002]

 


      

Latest arXiv Manuscripts

       

      T. Batra and D. Parikh

      Cooperative Learning with Visual Attributes    

      arxiv.org/abs/1705.05512, 2017


      A. Agrawal, A. Kembhavi, D. Batra, and D. Parikh

      C-VQA: A Compositional Split of the Visual Question Answering (VQA) v1.0 Dataset

      arxiv.org/abs/1704.08243, 2017
     

      A. Chandrasekaran, D. Parikh, and M. Bansal

      Punny Captions: Witty Wordplay in Image Descriptions

      arxiv.org/abs/1704.08224, 2017

  

      A. Chandrasekaran*, D. Yadav*, P. Chattopadhyay*, V. Prabhu*, and D. Parikh
      * equal contribution
      It Takes Two to Tango: Towards Theory of AI's Mind
      arxiv.org/abs/1704.00717, 2017

  
  
   

2017 [back to top]

  

     J. Lu, A. Kannan, J. Yang, D. Parikh, and D. Batra

     Best of Both Worlds: Transferring Knowledge from Discriminative Learning to a Generative Visual Dialog Model

     Neural Information Processing Systems (NIPS), 2017

         

     R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra
     Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via Gradient-based Localization
     International on Conference Computer Vision (ICCV), 2017

     [code, demo]


     P. Chattopadhyay*, D. Yadav*, V. Prabhu, A. Chandrasekaran, A. Das, S. Lee, D. Batra, and D. Parikh

     Evaluating Visual Conversational Agents via Cooperative Human-AI Games

     AAAI Conference on Human Computation and Crowdsourcing (HCOMP), 2017

     

     M. Lewis, D. Yarats, Y. N. Dauphin, D. Parikh, and D. Batra

     Deal or No Deal? End-to-End Learning for Negotiation Dialogues     

     Conference on Empirical Methods in Natural Language Processing (EMNLP), 2017

          

     A. Vijayakumar, R. Vedantam, and D. Parikh

     Sound-Word2Vec: Learning Word Representations Grounded in Sounds

     Conference on Empirical Methods in Natural Language Processing (EMNLP), 2017

 

     A. Miller, W. Feng, A. Fisch, J. Lu, D. Batra, A. Bordes, D. Parikh, and J. Weston
     ParlAI: A Dialog Research Software Platform
    
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2017 (Demo paper)


     A. Das, S. Kottur, K. Gupta, A. Singh, D. Yadav, J. Moura, D. Parikh, and D. Batra
     Visual Dialog
    
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. (Spotlight)
     [www.visualdialog.org] [video]


     J. Lu*, C. Xiong*, D. Parikh, and R. Socher

     * equal contribution

     Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning
     IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. (Spotlight)
     [code coming soon!]


     R. Vedantam, S. Bengio, K. Murphy, D. Parikh, and G. Chechik
     Context-aware Captions from Context-agnostic Supervision
    
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. (Spotlight)


     P. Chattopadhyay*, R. Vedantam*, R. R. Selvaraju, D. Batra, and D. Parikh

     Counting Everyday Objects in Everyday Scenes

     IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. (Spotlight)


     Y. Goyal*, T. Khot*, D. Summers-Stay, D. Batra, and D. Parikh
     Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering (a.k.a. The VQA v2.0 Dataset)

     * equal contribution

     IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
     [project page] [video]


     J. Yang, A. Kannan, D. Batra, and D. Parikh

     LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation
     International Conference on Learning Representations (ICLR), 2017

   

     R. Feris, C. Lampert, and D. Parikh (Editors)

     Visual Attributes (Book)

     Series on Advances in Computer Vision and Pattern Recognition, Springer, 2017

     [springer link]

  


2016 [back to top]

   

     A. Agrawal*, J. Lu*, S. Antol*, M. Mitchell, C. L. Zitnick, D. Parikh, and D. Batra

     * equal contribution

     VQA: Visual Question Answering

     Special Issue on Combined Image and Language Understanding

     International Journal of Computer Vision (IJCV), 2016

 

     J. Lu, J. Yang, D. Batra, and D. Parikh

     Hierarchical Question-Image Co-Attention for Visual Question Answering
     Neural Information Processing Systems (NIPS), 2016

 

     H. Agrawal, A. Chandrasekaran, D. Batra, D. Parikh and M. Bansal

     Sort Story: Sorting Jumbled Images and Captions into Stories

     Conference on Empirical Methods in Natural Language Processing (EMNLP), 2016

  

     A. Ray, G. Christie, M. Bansal, D. Batra, and D. Parikh

     Question Relevance in VQA: Identifying Non-Visual And False-Premise Questions

     Conference on Empirical Methods in Natural Language Processing (EMNLP), 2016

 

      A. Agarwal, D. Batra, and D. Parikh

      Analyzing the Behavior of Visual Question Answering Models

      Conference on Empirical Methods in Natural Language Processing (EMNLP), 2016


      A. Das, H. Agrawal, C. L. Zitnick, D. Parikh, and D. Batra

      Human Attention in Visual Question Answering:

      Do Humans and Deep Networks Look at the Same Regions?

      Conference on Empirical Methods in Natural Language Processing (EMNLP), 2016
      Also presented at:
      Workshop on Visualization for Deep Learning at
      International Conference on Machine Learning (ICML), 2016

      Best student paper

 

      Y. Goyal, A. Mohapatra, D. Parikh, and D. Batra

      Towards Transparent AI Systems: Interpreting Visual Question Answering Models

      Workshop on Visualization for Deep Learning at
      International Conference on Machine Learning (ICML), 2016

      Best student paper

 

      X. Lin and D. Parikh

      Leveraging Visual Question Answering for Image-Caption Ranking

      European Conference on Computer Vision (ECCV), 2016

   

      A. Dubey, N. Naik, D. Parikh, R. Raskar, and C. Hidalgo.
      Deep Learning the City: Quantifying Urban Perception at a Global Scale
      European Conference on Computer Vision (ECCV), 2016.

 

      C. L. Zitnick, A. Agrawal, S. Antol, M. Mitchell, D. Batra, and D. Parikh

      Measuring Machine Intelligence Through Visual Question Answering

      AI Magazine (2016)

    

      A. Chandrasekaran, A. Kalyan, S. Antol, M. Bansal, D. Batra, C. L. Zitnick, and D. Parikh

      We Are Humor Beings: Understanding and Predicting Visual Humor

      IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. (Spotlight)

 

      P. Zhang*, Y. Goyal*, D. Summers-Stay, D. Batra, and D. Parikh

      * equal contribution

      Yin and Yang: Balancing and Answering Binary Visual Questions

      IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

    
      S. Kottur*, R. Vedantam*, J. Moura, and D. Parikh

      * equal contribution

      Visual Word2Vec (vis-w2v): Learning Visually Grounded Word Embeddings Using Abstract Scenes

      IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

      [project page (including code)]

  

      J. Yang, D. Parikh, and D. Batra

      Joint Unsupervised Learning of Deep Representations and Image Clusters

      IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

       

       T. Huang, F. Ferraro, N. Mostafazadeh, I. Misra, J. Devlin, A. Agrawal,

       R. Girshick, X. He, P. Kohli, D. Batra, C. L. Zitnick, D. Parikh, L. Vanderwende, M. Galley, and M. Mitchell

       Visual Storytelling
       Conference of the North American Chapter of the Association for Computational Linguistics:

       Human Language Technologies (NAACL HLT), 2016.

       [project page with dataset]


       N. Mostafazadeh, N. Chambers, X. He, D. Parikh, D. Batra, L. Vanderwende, P. Kohli, and J. Allen

       A Corpus and Cloze Evaluation for Deeper Understanding of Commonsense Stories

       Conference of the North American Chapter of the Association for Computational Linguistics:

       Human Language Technologies (NAACL HLT), 2016. (Oral)

       [project page with data and evaluation]

 

        S. Lad, B. Romera Paredes, J. Valentin, Philip Torr, and D. Parikh
        Knowing Who To Listen To: Prioritizing Experts from a Diverse Ensemble for Attribute Personalization
        International Conference on Image Processing (ICIP), 2016.

 

        C. L. Zitnick, R. Vedantam and D. Parikh

        Adopting Abstract Images for Semantic Scene Understanding

        Special Issue on the best papers at the

        2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

        IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2016.

        [project page, data, slides, video, etc.]       
   
  

       R. Mottaghi, S. Fidler, A. Yuille, R. Urtasun, and D. Parikh.

       Human-Machine CRFs for Identifying Bottlenecks in Scene Understanding

       IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2016.

       [supplementary material]

 

 

2015 [back to top] 

   

       S. Antol*, A. Agrawal*, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh

       * equal contribution

       VQA: Visual Question Answering

       International Conference on Computer Vision (ICCV), 2015.

       [project page]

         

       R. Vedantam*, X. Lin*, T. Batra, C. L. Zitnick, and D. Parikh

       * equal contribution

       Learning Common Sense Through Visual Abstraction

       International Conference on Computer Vision (ICCV), 2015.

       [supplementary material] [project page (under construction)]

      

        X. Lin and D. Parikh

       Don't Just Listen, Use Your Imagination: Leveraging Visual Common Sense for Non-Visual Tasks

       IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015. (Oral)

       [extended abstract] [talk (video)] [project page with code, data, slides, etc.]
               

       M. Jas and D. Parikh

       Image Specificity

       IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015. (Oral)

       [extended abstract] [talk (video)] [project page with code, data, slides, etc.]

  

       A. Deza and D. Parikh

       Understanding Image Virality
       IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
 
     [extended abstract] [project page with code, data, etc.]
  
  

        R. Vedantam, C. L. Zitnick, and D. Parikh

       CIDEr: Consensus-based Image Description Evaluation

       IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

       [extended abstract] [project page with code, data, etc.]

         

        A. Kovashka, D. Parikh and K. Grauman

        WhittleSearch: Interactive Image Search with Relative Attribute Feedback

        International Journal of Computer Vision (IJCV), 2015

  

2014 [back to top] 

       

       S. Antol, C. L. Zitnick and D. Parikh

       Zero-Shot Learning via Visual Abstraction.

       European Conference on Computer Vision (ECCV), 2014.

       [project page]

 

       S. Lad and D. Parikh

       Interactively Guiding Semi-Supervised Clustering via Attribute-based Explanations.

       European Conference on Computer Vision (ECCV), 2014.

       [project page]

 

       A. BansalA. Farhadi and D. Parikh

       Towards Transparent Systems: Semantic Characterization of Failure Modes

       European Conference on Computer Vision (ECCV), 2014.

       [project page]

   

       P. Isola, D. Parikh, J. Xiao, A. Torralba and A. Oliva

       What makes a photograph memorable?

       IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2014.

 

       P. Zhang, J. Wang, A. Farhadi, M. Hebert and D. Parikh

       Predicting Failures of Vision Systems

       IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

       [project page]

 

       G. Christie, A. Parkash, U. Krothapalli and D. Parikh

       Predicting User Annoyance Using Visual Attributes

       IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

       [project page]

 

       X. Lin, M. Cogswell, D. Parikh and D. Batra

       Propose and Re-rank Semantic Segmentation via Deep Image Classification

       Big Vision workshop

       IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

       [project page]

  

 

2013 [back to top] 

        

       A. Bansal, A. Kowdle, D. Parikh, A. C. Gallagher and C. L. Zitnick

       Which Edges Matter?

       Workshop on 3D Representation and Recognition (3dRR)
       International Conference on Computer Vision (ICCV), 2013.

 

       D. Parikh

       Visual Attributes for Enhanced Human-Machine Communication (Invited paper)

       Allerton Conference on Communication, Control and Computing, 2013. (Oral)

 

       N. Turakhia and D. Parikh

       Attribute Dominance: What Pops Out? 

       International Conference on Computer Vision (ICCV), 2013.

       [project page and data] [poster]

    

       A. Sadovnik, A. C. Gallagher, D. Parikh and T. Chen

       Spoken Attributes: Mixing Binary and Relative Attributes to Say the Right Thing

       International Conference on Computer Vision (ICCV), 2013.

       [project page and data] [poster]

   
      
D. Parikh and K. Grauman

       Implied Feedback: Learning Nuances of User Behavior in Image Search

       International Conference on Computer Vision (ICCV), 2013.

       [supp material] [poster]

   

       C. L. Zitnick, D. Parikh and L. Vanderwende

       Learning the Visual Interpretation of Sentences

       International Conference on Computer Vision (ICCV), 2013.

       [project page, data, slides, video, etc.]

    

       C. L. Zitnick and D. Parikh

       Bringing Semantics Into Focus Using Visual Abstraction

       IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013 (Oral)

       [project page, data, slides, video, etc.]

 

       R. Mottaghi, S. Fidler, J. Yao, R. Urtasun and D. Parikh

       Analyzing Semantic Segmentation Using Hybrid Human-Machine CRFs

       IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013

       [poster]

  

       A. Biswas and D. Parikh

       Simultaneous Active Learning of Classifiers & Attributes via Relative Feedback

       IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013

       [project page and data] [poster] [demo]

  

       M. Rastegari, A. Diba, D. Parikh and A. Farhadi

       Multi-Attribute Queries: To Merge or Not to Merge?

       IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013

       [poster]

 

        N. Agrawal, A. Biswas, A. Kovashka, K. Grauman and D. Parikh

        Relative Attributes for Enhanced Human-Machine Communication

        Demo at IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013

   

2012 [back to top] 

      

       A. Parkash and D. Parikh

       Attributes for Classifier Feedback

       European Conference on Computer Vision (ECCV), 2012 (Oral)

       [slides] [talk (video)[project page and data] [demo]

  

       D. Parikh, A. Kovashka, A. Parkash and K. Grauman

       Relative Attributes for Enhanced Human-Machine Communication (Invited paper)

       AAAI Conference on Artificial Intelligence (AAAI) 2012 (Oral)

       [demos]

 

       C. Li, D. Parikh and T. Chen

       Automatic Discovery of Groups of Objects for Scene Understanding

       IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012

       [project page[poster]

 

       A. Kovashka, D. Parikh and K. Grauman

       WhittleSearch: Image Search with Relative Attribute Feedback

       IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012

       [project page and data[poster] [demo] [video]

  

       K. Duan, D. Parikh, D. Crandall and K. Grauman

       Discovering Localized Attributes for Fine-grained Recognition

       IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012

       [project page[poster]

  

        C. L. Zitnick and D. Parikh

       The Role of Image Understanding in Contour Detection

       IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012

       [project page] [data] [poster]

  

       D. Parikh, P. IsolaA. Torralba and A. Oliva

       Understanding the Intrinsic Memorability of Images (Abstract)

       Visual Sciences Society (VSS), 2012

       [project page[MIT news]

 

       D. Parikh, C. L. Zitnick and T. Chen

       Exploring Tiny Images: The Roles of Appearance and Contextual Information for Machine and Human Object Recognition

       Pattern Analysis and Machine Intelligence (PAMI), 2012

    

2011 [back to top] 

          

       D. Parikh and C. L. Zitnick

       Human-Debugging of Machines

       Second Workshop on Computational Social Science and the Wisdom of Crowds

       Neural Information Processing Systems (NIPS), 2011

          

       D. Batra, A. Kowdle, D. Parikh, J. Luo, T. Chen

       Interactive Co-segmentation of Objects in Image Collections (Book)

       SpringerBriefs in Computer Science, 2011.

       [springer link]

     

       P. Isola, D. ParikhA. Torralba and A. Oliva

       Understanding the Intrinsic Memorability of Images

       Neural Information Processing Systems (NIPS), 2011

       [project page[MIT news]

 

       D. Parikh and K. Grauman

       Relative Attributes

       International Conference on Computer Vision (ICCV), 2011  (Oral)

       Marr Prize (Best Paper Award) Winner

       [project page] [data] [code] [slides] [talk (video)] [poster] [demos]

  

       D. Parikh

       Recognizing Jumbled Images: The Role of Local and Global Information in Image Classification

       International Conference on Computer Vision (ICCV), 2011

       [poster] [slides]

 

       C. Li, D. Parikh and T. Chen

       Extracting Adaptive Contextual Cues from Unlabeled Regions

       International Conference on Computer Vision (ICCV), 2011

       [project page]

 

       D. Parikh and C. L. Zitnick

       Finding the Weakest Link in Person Detectors

       IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011

       [project page] [data] [poster] [slides]

      

       D. Parikh and K. Grauman

       Interactively Building a Discriminative Vocabulary of Nameable Attributes

       IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011

       [supplementary material] [project page] [poster] [slides]

 

       D. Parikh and K. Grauman

       Interactive Discovery of Task-Specific Nameable Attributes (Abstract)

       First Workshop on Fine-Grained Visual Categorization (FGVC)

       held in conjunction with 

       IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011 (Best Poster Award)

       [project page] [poster]

 

        A. Gallagher, D. Batra and D. Parikh

        Inference for Order Reduction in MRFs

        IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011

         

        D. Batra, A. Kowdle, D. Parikh, J. Luo, T. Chen

        Interactively Co-segmenting Topically Related Image with Intelligence Scribble Guidance

        International Journal of Computer Vision (IJCV), January 2011

        [project page and dataset]

 

        C. L. Zitnick and D. Parikh

        Color Source Separation for Enhanced Pixel Manipulations

        MSR-TR-2011-98, Microsoft Research, 2011

 

2010 [back to top]

 

        D. Parikh and C. L. Zitnick

        The Role of Features, Algorithms and Data in Visual Recognition

        IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010

        [poster] [slides]

 

        D. Batra, A. Gallagher, D. Parikh, T. Chen

        Beyond Trees: MRF Inference via Outer-Planar Decomposition

        IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010

        [poster]

 

        D. Batra, A. Kowdle, D. Parikh, J. Luo, T. Chen

        iCoseg: Interactive Co-segmentation with Intelligent Scribble Guidance

        IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010 

        [poster] [project page and dataset]

 

2009 [back to top]

 

        D. Parikh

        Modeling Context for Image Understanding: When, For What, and How?

        Ph.D. Thesis, Carnegie Mellon University, 2009

 

        D. Batra, D. Parikh, A. Kowdle, T. Chen and J. Luo

        Seed Image Selection in Interactive Cosegmentation

        IEEE International Conference on Image Processing (ICIP), 2009

 

        D. Parikh, C. L. Zitnick and T. Chen

        Unsupervised Learning of Hierarchical Spatial Structures in Images

        IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009

        [poster] [slides]

 

        D. Batra, A. Kowdle, D. Parikh and T. Chen

        Cutout-Search: Putting a name to the Picture

        Workshop on Internet Vision, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009

   

        D. Batra, A. Kowdle, K. Tang, D. Parikh, J. Luo, T. Chen

        Interactive Cosegmentation by Touch.

        Demo at IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009

        [project page]

    

        C. Mao, H. Lee, D. Parikh, T. Chen and S. Huang

        Semi-Supervised Cotraining and Active Learning based Approach for Multi-view Intrusion Detection

        ACM Symposium on Applied Computing (SAC), 2009

   

2008 [back to top]

   

        D. Parikh and T. Chen

        Unsupervised Modeling of Objects and their Hierarchical Contextual Interactions

        EURASIP Journal on Image and Video Processing

        Special Issue on Patches in Vision, 2008

        [slides]

   

        D. Parikh and T. Chen

        Data Fusion and Cost Minimization for Intrusion Detection

        IEEE Transactions on Information Forensics and Security

        Special Issue on Statistical Methods for Network Security and Forensics, August 2008

   

        R. Polikar, A. Topalis, D. Parikh, D. Green, J. Kounios and C. Clark

        An Ensemble Based Data Fusion for Early Diagnosis of Alzheimer's Disease

        Information Fusion, Special Issue on Applications of Ensemble Methods, January 2008

   

        D. Parikh, C. L. Zitnick and T. Chen

        Determining Patch Saliency Using Low-Level Context

        European Conference on Computer Vision (ECCV), 2008

        [poster[slides]

   

        D. Parikh, C. L. Zitnick and T. Chen

        From Appearance to Context-Based Recognition: Dense Labeling in Small Images

        IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008

        [poster[slides]

 

        D. Parikh and T. Chen

        Bringing Diverse Classifiers to Common Grounds: dtransform

        International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2008

        [slides]

 

        D. Parikh and G. Jancke

        Localization and Segmentation of a 2D High Capacity Color Barcode

        Workshop on Applications in Computer Vision (WACV), 2008

        [slides] 

  

2007 [back to top]

   

        D. Parikh and R.Polikar

        An Ensemble Based Incremental Learning Approach to Data Fusion

        IEEE Transactions on Systems, Man and Cybernetics, April 2007

   

        D. Parikh and T. Chen

        Unsupervised Identification of Multiple Objects of Interest from Multiple Images: dISCOVER

        Asian Conference in Computer Vision (ACCV), 2007

        [poster]

 

        D. Parikh and T. Chen

        Hierarchical Semantics of Objects (hSOs)

        IEEE International Conference in Computer Vision (ICCV), 2007

        [poster[slides]

 

        D.Parikh and T. Chen

        Classification-Error Cost Minimization Strategy: dCMS

        IEEE Statistical Signal Processing Workshop, 2007

        [poster]

 

        D.Parikh and T. Chen

        Unsupervised Learning of Hierarchical Semantics of Objects (hSOs)

        Beyond Patches Workshop

        IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2007 (Best Paper Award)

        [slides]

 

        D. Parikh, R. Sukthankar, T. Chen and M. Chen

        Feature-based Part Retrieval for Interactive 3D Reassembly

        IEEE Workshop on Applications of Computer Vision (WACV), 2007

        [poster] [slides]

 

2006 [back to top]

 

        R. Polikar, D. Parikh and S. Mandayam

        Multiple Classifiers System for Multisensor Data Fusion

        IEEE Proceedings on Sensors Applications Symposium, 2006

 

2005 [back to top]

 

        Y. Mehta, K. Jahan, J. Laicovsky, L. Miller, D. Parikh and A. Lozano

        Evaluate the Effect of Coarse and Fine Rubber Particles on Laboratory Rutting Performance of Asphalt Concrete Mixtures

        The Journal of Solid Waste Technology And Management, 2005

 

        D. Parikh, N. Stepenosky, A. Topalis, D. Green, J. Kounios, C. Clark and R.Polikar

        Ensemble Based Data Fusion for Early Diagnosis of Alzheimer's Disease

        IEEE Proceedings on The Engineering in Medicine and Biology, 2005

 

        D. Parikh and R.Polikar

        A Multiple Classifier Approach for Multisensor Data Fusion

        IEEE Proceedings on Information Fusion, 2005

 

2004 [back to top]

 

        D. Parikh, M. Kim, J. Oagaro, S.Mandayam and R.Polikar

        Combining Classifiers for Multisensor Data Fusion

        IEEE Proceedings on Systems, Man and Cybernetics, 2004

   

        D. Parikh, M. Kim, J. Oagaro, S.Mandayam and R.Polikar

        Ensemble of Classifiers Approach for NDT Data Fusion

        IEEE Proceedings on Ultrasonics, Ferroelectrics and Frequency Control, 2004

 

2002 [back to top]

   

        D. Parikh, Y. Mehta and K. Jahan

        Evaluate the Effect of Ground Tire Rubber on Laboratory Rutting Performance of Asphalt Concrete Mixtures

        Proceedings of Industrial and Hazardous Waste Conference, 2002

free web
stats