CS8803 - EMS

Class 02 — Denial of Service: Backscatter

Paul Pearce

Georgia CS
Tech

Please wear a mask in this classroom

Welcome!

Overview of Today

- Course logistics and introductions
- Summary of the "Inferring Internet Denial of Service Activity
 - Moore, Voelker and Savage, USENIX Security 2001
- What do you think?
- Guided Discussion
- Action Items

Logistics

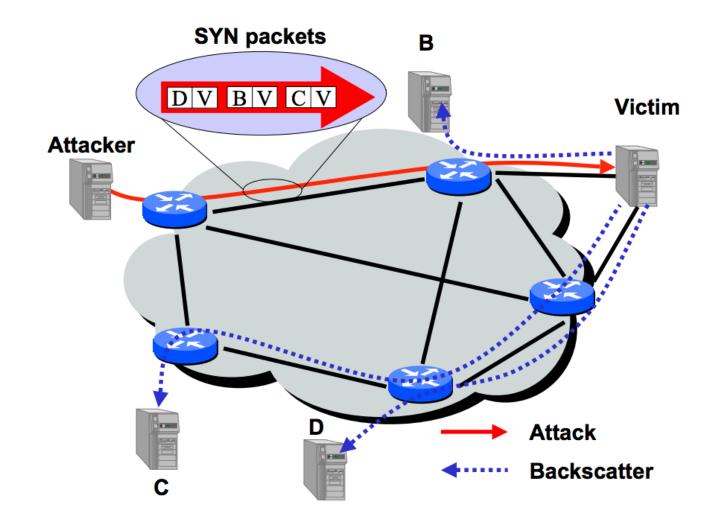
Introductions

- Me
 - Paul Pearce
 - Assistant Professor, School of Cybersecurity and Privacy, School of Computer Science
 - PhD UC Berkeley Computer Science, 2018
 - Advised by Vern Paxson
 - Worked closely with UC San Diego and Princeton
 - Spent a year as a visiting researcher Facebook
 - MS and BS also UC Berkeley
 - (Go Bears!)

Introductions

- You
 - Your name
 - Your program
 - How far into your program
 - Have you taken a graduate security course before?
 - An interesting fact (if you choose to share)
 - What do you hope to get out of this class?

Inferring Internet Denialof-Service Activity


Network Behaviors

Packet sent	Response from victim		
TCP SYN (to open port)	TCP SYN/ACK		
TCP SYN (to closed port)	TCP RST (ACK)		
TCP ACK	TCP RST (ACK)		
TCP DATA	TCP RST (ACK)		
TCP RST	no response		
TCP NULL	TCP RST (ACK)		
ICMP ECHO Request	ICMP Echo Reply		
ICMP TS Request	ICMP TS Reply		
UDP pkt (to open port)	protocol dependent		
UDP pkt (to closed port)	ICMP Port Unreach		
•••			

Table 1: A sample of victim responses to typical attacks.

Spoofing and Backscatter

• Expectation of observing an attack

•
$$E(X) = N * M * I / (2^32)$$

- Attack rate R
 - $R >= R' * 2^32 / N$

Results

	Trace-1	Trace-2	Trace-3					
Dates (2001)	Feb 01 – 08	Feb 11 – 18	Feb 18 – 25					
Duration	7.5 days	6.2 days	7.1 days					
Flow-based Attacks:								
Unique victim IPs	1,942	1,821	2,385					
Unique victim DNS domains	750	693	876					
Unique victim DNS TLDs	60	62	71					
Unique victim network prefixes	1,132	1,085	1,281					
Unique victim Autonomous Systems	585	575	677					
Attacks	4,173	3,878	4,754					
Total attack packets	50,827,217	78,234,768	62,233,762					
Event-based Attacks:								
Unique victim IPs	3,147	3,034	3,849					
Unique victim DNS domains	987	925	1,128					
Unique victim DNS TLDs	73	71	81					
Unique victim network prefixes	1,577	1,511	1,744					
Unique victim Autonomous Systems	752	755	874					
Attack Events	112,457	102,204	110,025					
Total attack packets	51,119,549	78,655,631	62,394,290					

Table 2: Summary of backscatter database.

Time series data

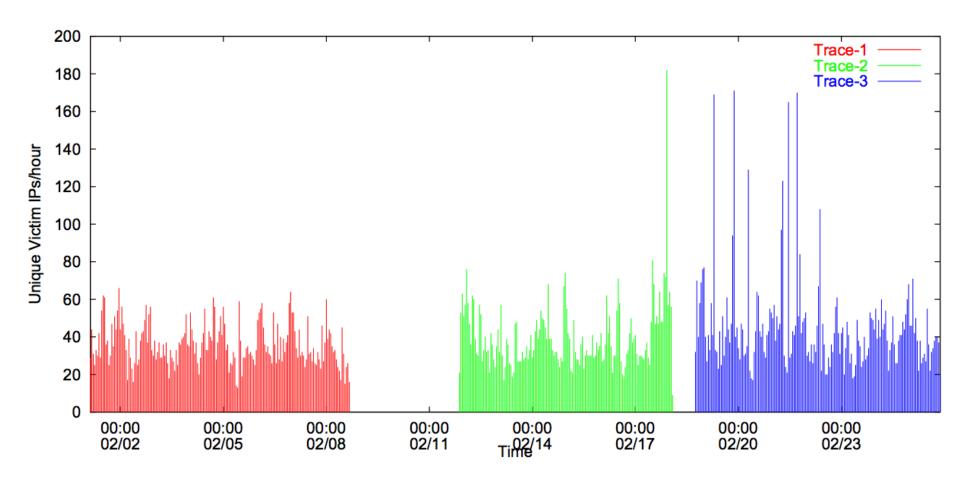
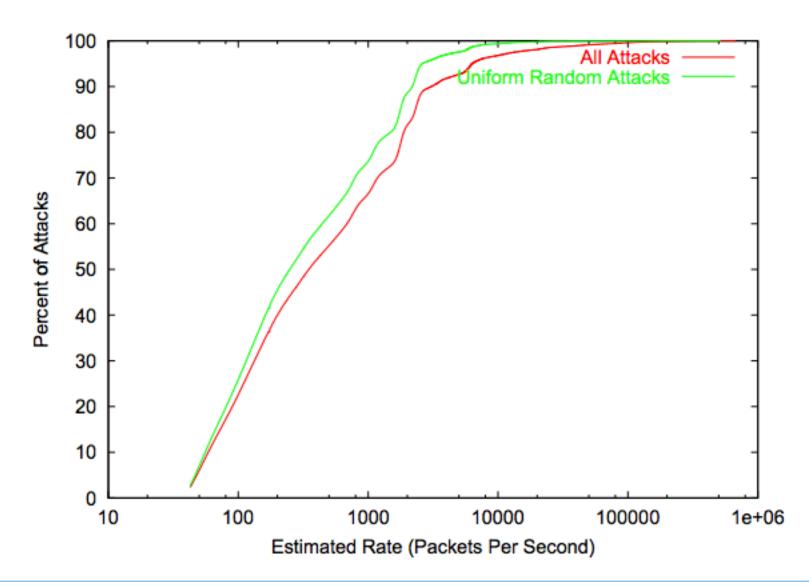


Figure 3: Estimated number of attacks per hour as a function of time (UTC).


Packet types

Kind	Trace-1		Trace-2		Trace-3	
	Attacks	Packets (k)	Attacks	Packets (k)	Attacks	Packets (k)
TCP (RST ACK)	2,027 (49)	12,656 (25)	1,837 (47)	15,265 (20)	2,118 (45)	11,244 (18)
ICMP (Host Unreachable)	699 (17)	2,892 (5.7)	560 (14)	27,776 (36)	776 (16)	19,719 (32)
ICMP (TTL Exceeded)	453 (11)	31,468 (62)	495 (13)	32,001 (41)	626 (13)	22,150 (36)
ICMP (Other)	486 (12)	580 (1.1)	441 (11)	640 (0.82)	520 (11)	472 (0.76)
TCP (SYN ACK)	378 (9.1)	919 (1.8)	276 (7.1)	1,580 (2.0)	346 (7.3)	937 (1.5)
TCP (RST)	128 (3.1)	2,309 (4.5)	269 (6.9)	974 (1.2)	367 (7.7)	7,712 (12)
TCP (Other)	2 (0.05)	3 (0.01)	0 (0.00)	0 (0.00)	1 (0.02)	0 (0.00)

Table 3: Breakdown of response protocols.

Uniform Assumption

Attack Duration

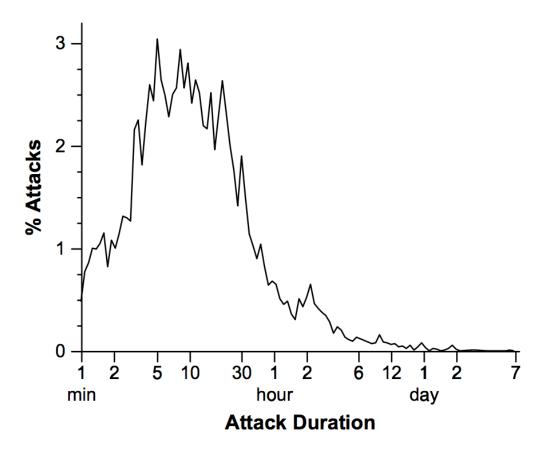


Figure 6: Probability density of attack durations.

Validation

Next, we were able to duplicate a portion of our analysis using data provided by Vern Paxson taken from several University-related networks in Northern California. This new dataset covers the same period, but only detects TCP backscatter with the SYN and ACK flags set. The address space monitored was also much smaller, consisting of three /16 networks $(\frac{3}{65536})$'s of the total IP address space). For 98% of the victim IP addresses recorded in this smaller dataset, we find a corresponding record at the same time in our larger dataset. We can think of no other mechanism other than backscatter that can explain such a close level of correspondence.

Your Thoughts

Guided Discussion

Action Items

- Summary and questions for class 3 (Mirai botnet) will go online tonight
 - Questions for Tuesday class will go online by the end of Thursdays (at the latest)
 - Questions for Thursday will go online by the end of Sunday (at the latest)
- Summary and questions for class 3 are due Monday at noon
 - How's that time sound for you all?
- Discussion lead signup forms will go online at 5pm (~1.75hr from now)
 - A Canvas note will be sent with the URL

Thank You

Questions?

Paul Pearce https://cc.gatech.edu/~pearce/

