ECS 122A
Algorithm Design and Analysis

Instructor: Qirun Zhang

Course slides (partially) adopted from the notes by David Luebke.
Agenda

• Logistics
• Proof by induction
• Gentle introduction to analysis of algorithm
 - Insertion sort
The Course

• Purpose: a rigorous introduction to the design and analysis of algorithms
 - Not a lab or programming course
 - Not a math course, either

• Textbook: *Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein*
 - The “Big White Book”
 - Second edition: now “Smaller Green Book”
 - An excellent reference you should own

• Course website
The Course

• Instructor: Qirun Zhang
 - qrzhang@ucdavis.edu
 - Office: RM. 1031 ASB (Academic Surge Building)
 - Office hours: 2pm-4pm Wednesday

• TA: Thong Le
 - thmle@ucdavis.edu
 - Office: RM. 55 Kemper
 - Office hours: 2pm-4pm Monday

• No discussion TODAY!
The Course

• Format
 - Three lectures/week
 - One homework assignment/week
 • About 5 problems
 • No homework for the exam weeks
 • 4 homework assignments in total
 • Dates:
 - Release: Friday of week k
 - Due: Thursday of week (k+1)
 - Two exams
 • Midterm: 8/25
 • Final: 9/15
Submitting your homework

• We use the website gradescope
 - https://gradescope.com/
 - We will not mark your homework in the paper form or submitted via email.
 - Sign up using your UCD email and Student ID (very important!)
 • You are responsible for providing the correct UCD email and SID at sign-up, as incorrect information may affect your homework score.
The Course

- Grading policy:
 - Homework: 40%
 - Midterm: 30%
 - Final: 30%

- Academic integrity:
 - http://sja.ucdavis.edu/academic-integrity.html

- One suggestion for this course
Tentative Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Topics</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/7</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>8/9</td>
<td>Asymptotic notation</td>
<td>CLRS 3.1-3.2</td>
</tr>
<tr>
<td>8/11</td>
<td>Divide-and-conquer: recurrences (mergesort)</td>
<td>CLRS 4.1-4.3</td>
</tr>
<tr>
<td>8/14</td>
<td>Divide-and-conquer: master theorem</td>
<td>CLRS 4.5</td>
</tr>
<tr>
<td>8/16</td>
<td>Sorting: heapsort and priority queues</td>
<td>CLRS 6</td>
</tr>
<tr>
<td>8/18</td>
<td>Sorting: quicksort and its analysis</td>
<td>CLRS 7</td>
</tr>
<tr>
<td>8/21</td>
<td>Graph algorithms: basics</td>
<td>CLRS 22.1-22.3</td>
</tr>
<tr>
<td>8/23</td>
<td>Graph algorithms: minimum spanning trees</td>
<td>CLRS 23</td>
</tr>
<tr>
<td>8/25</td>
<td>Mid-term</td>
<td></td>
</tr>
<tr>
<td>8/28</td>
<td>Shortest paths: Bellman-Ford</td>
<td>CLRS 24.1</td>
</tr>
<tr>
<td>8/30</td>
<td>Shortest paths: Dijkstra</td>
<td>CLRS 24.2-24.3</td>
</tr>
<tr>
<td>9/1</td>
<td>Disjoint sets</td>
<td>CLRS 17</td>
</tr>
<tr>
<td>9/4</td>
<td>Holiday</td>
<td></td>
</tr>
<tr>
<td>9/6</td>
<td>Dynamic programming</td>
<td>CLRS 15.1 15.3</td>
</tr>
<tr>
<td>9/8</td>
<td>Dynamic programming: longest comment subsequence</td>
<td>CLRS 15.4</td>
</tr>
<tr>
<td>9/11</td>
<td>NP-completeness</td>
<td>CLRS 34.1 34.2</td>
</tr>
<tr>
<td>9/13</td>
<td>NP-completeness: reductions</td>
<td>CLRS 34.3</td>
</tr>
<tr>
<td>9/15</td>
<td>Np-completeness and review for final</td>
<td>CLRS 34.4</td>
</tr>
</tbody>
</table>
Review: Induction

- Suppose
 - $S(k)$ is true for fixed constant k
 - Often $k = 0$
 - $S(n) \rightarrow S(n+1)$ for all $n \geq k$
- Then $S(n)$ is true for all $n \geq k$
Proof By Induction

• **Claim:** $S(n)$ is true for all $n \geq k$

• **Base step:**
 - Show formula is true when $n = k$

• **Inductive hypothesis:**
 - Assume formula is true for an arbitrary n

• **Inductive step:**
 - Show that formula is then true for $n+1$
Induction Example:
Gaussian Closed Form
Induction Example:
Geometric Closed Form
Analysis of Algorithms

• Analysis is performed with respect to a computational model
• We will usually use a generic uniprocessor random-access machine (RAM)
 – All memory equally expensive to access
 – No concurrent operations
 – All reasonable instructions take unit time
 • Except, of course, function calls
 – Constant word size
 • Unless we are explicitly manipulating bits
An Example: Insertion Sort

• The sorting problem
 - Input: a sequence of n numbers \(\langle a_1, a_2, \ldots, a_n \rangle \)
 - Output: a permutation (reordering) \(\langle a'_1, a'_2, \ldots, a'_n \rangle \) of the input sequence such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n \)

• Insertion sort
 - Playing card
Insertion Sort
Input Size

• Time and space complexity
 - This is generally a function of the input size
 • E.g., sorting, multiplication
 - How we characterize input size depends:
 • Sorting: number of input items
 • Multiplication: total number of bits
 • Graph algorithms: number of nodes & edges
 • Etc
Running Time

- Number of primitive steps that are executed
 - Except for time of executing a function call most statements roughly require the same amount of time
 - \(y = m \times x + b \)
 - \(c = \frac{5}{9} \times (t - 32) \)
 - \(z = f(x) + g(y) \)
- We can be more exact if need be
Analysis

• Worst case
 - Provides an upper bound on running time
 - An absolute guarantee

• Average case
 - Provides the expected running time
 - Very useful, but treat with care: what is “average”?
 • Random (equally likely) inputs
 • Real-life inputs
Analyzing Insertion Sort

• \(T(n) = c_1 n + c_2(n-1) + c_3(n-1) + c_4 T + c_5(T - (n-1)) + c_6(T - (n-1)) + c_7(n-1) \)

 \[= c_8 T + c_9 n + c_{10} \]

• **What can \(T \) be?**

 - **Best case** -- inner loop body never executed

 \(t_i = 1 \Rightarrow T(n) \) is a linear function

 - **Worst case** -- inner loop body executed for all previous elements

 \(t_i = i \Rightarrow T(n) \) is a quadratic function
The End