ECS 122A Algorithm Design and Analysis

Instructor: Qirun Zhang

Course slides (partially) adopted from the notes by David Luebke.

Agenda

- Logistics
- Proof by induction
- Gentle introduction to analysis of algorithm
 - Insertion sort

- Purpose: a rigorous introduction to the design and analysis of algorithms
 - Not a lab or programming course
 - Not a math course, either
- Textbook: Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein
 - The "Big White Book"
 - Second edition: now "Smaller Green Book"
 - An excellent reference you should own
- Course website
 - <u>http://helloqirun.github.io/course/122A/index.html</u>

- Instructor: Qirun Zhang
 - qrzhang@ucdavis.edu
 - Office: RM. 1031 ASB (Academic Surge Building)
 - Office hours: 2pm-4pm Wednesday
- TA: Thong Le
 - thmle@ucdavis.edu
 - Office: RM. 55 Kemper
 - Office hours: 2pm-4pm Monday
- No discussion TODAY!

- Format
 - Three lectures/week
 - One homework assignment/week
 - About 5 problems
 - No homework for the exam weeks
 - 4 homework assignments in total
 - Dates:
 - Release: Friday of week k
 - Due: Thursday of week (k+1)
 - Two exams
 - Midterm: 8/25
 - Final: 9/15

Submitting your homework

- We use the website gradescope
 - <u>https://gradescope.com/</u>
 - We will *not* mark your homework in the paper form or submitted via email.
 - Sign up using your UCD email and Student ID (very important!)
 - You are responsible for providing the correct UCD email and SID at sign-up, as incorrect information may affect your homework score.

- Grading policy:
 - Homework: 40%
 - Midterm: 30%
 - Final: 30%
- Academic integrity:
 - <u>http://sja.ucdavis.edu/academic-integrity.html</u>
- One suggestion for this course

Tentative Schedule

Date	Topics	Reading
8/7	Introduction	
8/9	Asymptotic notation	CLRS 3.1-3.2
8/11	Divide-and-conquer: recurrences (mergesort)	CLRS 4.1-4.3
8/14	Divide-and-conquer: master theorem	CLRS 4.5
8/16	Sorting: heapsort and priority queues	CLRS 6
8/18	Sorting: quicksort and its analysis	CLRS 7
8/21	Graph algorithms: basics	CLRS 22.1-22.3
8/23	Graph algorithms: minimum spanning trees	CLRS 23
8/25	Mid-term	
8/28	Shortest paths: Bellman-Ford	CLRS 24.1
8/30	Shortest paths: Dijkstra	CLRS 24.2-24.3
9/1	Disjoint sets	CLRS 17
9/4	Holiday	
9/6	Dynamic programming	CLRS 15.1 15.3
9/8	Dynamic programming: longest comment subsequence	CLRS 15.4
9/11	NP-completeness	CLRS 34.1 34.2
9/13	NP-completeness: reductions	CLRS 34.3
9/15	Np-completeness and review for final	CLRS 34.4

Review: Induction

- Suppose
 - S(k) is true for fixed constant k
 - Often k = 0
 - $S(n) \rightarrow S(n+1)$ for all $n \ge k$
- Then S(n) is true for all n >= k

Proof By Induction

- Claim:S(n) is true for all n >= k
- Base step:
 - Show formula is true when n = k
- Inductive hypothesis:
 - Assume formula is true for an arbitrary n
- Inductive step:
 - Show that formula is then true for n+1

Induction Example: Gaussian Closed Form

Induction Example: Geometric Closed Form

Analysis of Algorithms

- Analysis is performed with respect to a computational model
- We will usually use a generic uniprocessor randomaccess machine (RAM)
 - All memory equally expensive to access
 - No concurrent operations
 - All reasonable instructions take unit time
 - Except, of course, function calls
 - Constant word size
 - Unless we are explicitly manipulating bits

An Example: Insertion Sort

- The sorting problem
 - Input: a sequence of n numbers $\langle a_1, a_2, \dots, a_n \rangle$
 - Output: a permutation (reordering) $\langle a'_1, a'_2, ..., a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n \rangle$
- Insertion sort
 - Playing card

Insertion Sort

Input Size

- Time and space complexity
 - This is generally a function of the input size
 - E.g., sorting, multiplication
 - How we characterize input size depends:
 - Sorting: number of input items
 - Multiplication: total number of bits
 - Graph algorithms: number of nodes & edges
 - Etc

Running Time

- Number of primitive steps that are executed
 - Except for time of executing a function call most statements roughly require the same amount of time
 - y = m * x + b
 - c = 5 / 9 * († 32)
 - z = f(x) + g(y)
- We can be more exact if need be

Analysis

- Worst case
 - Provides an upper bound on running time
 - An absolute guarantee
- Average case
 - Provides the expected running time
 - Very useful, but treat with care: what is "average"?
 - Random (equally likely) inputs
 - Real-life inputs

- $T(n) = c_1 n + c_2(n-1) + c_3(n-1) + c_4 T + c_5(T (n-1)) + c_6(T (n-1)) + c_7(n-1)$
 - $= c_8 T + c_9 n + c_{10}$
- What can T be?
 - Best case -- inner loop body never executed
 - $t_i = 1 \rightarrow T(n)$ is a linear function
 - Worst case -- inner loop body executed for all previous elements
 - $t_i = i \rightarrow T(n)$ is a quadratic function

