ECS 122A Algorithm Design and Analysis

Instructor: Qirun Zhang

Agenda

- NP-Completeness
 - Subset-sum

Updates

- Final on Friday
 - Similar to the midterm
 - Bring your photoID
 - Closed book & closed notes
 - Coverage: From 8/28 lecture to today's lecture
 - 5 Problems
 - One bonus problem
 - Hard. Unlikely to get partial credit.
- If you want additional help, send me an email *directly*

Fundamentals

- Know how algorithm works
 - All algorithms mentioned in the lecture
- For graph algorithms, you can assume the graph is connected

- Variants of shortest-path problems
- Bellman-Ford
 - How it works? When it works? Complexity?
- Single-source shortest path in a DAG
 - Basic idea
- Dijikstra's algorithm
 - How? When? Complexity?

- All-pairs shortest path: Floyd-Warshall
 - How? When? Complexity?
 - Dynamic programming: recursive formulation
- Transitive closure
 - Floyd-Warshall (simple way)
 - A better way
 - How? Complexity?

- Union-Find
 - Operations
 - Representations
 - Linked list representation
 - Disjoint-set forest
 - Difference?
 - Heuristics for union
 - How? Complexity?

- Dynamic programming
 - Rod cutting
 - Recursive formulation
 - Algorithm: How? Complexity?
 - Chain matrix multiplication
 - Recursive formulation
 - Algorithm: How? Complexity?

- Dynamic programming
 - Longest common sequence
 - Recursive formulation: formal proof
 - Algorithm: How? Complexity?
 - Similar problems

- NP-Completeness
 - Definitions of: P, NP, NPC, NP-Hard
 - Relationship
- Reduction \leq_p
 - In poly time
 - Yes in A <=> Yes in B
- NP-Completeness proof
 - Show in NP
 - Show it's NP-Hard
 - Using reduction

- NP-Complete Problems
 - Directed Hamiltonian cycle
 - Subset-Sum
- Two additional NPC problems
 - Undirected Hamiltonian cycle
 - Set-Partition

