Agenda

• NP-Completeness
 - Subset-sum
Updates

• Final on Friday
 - Similar to the midterm
 - Bring your photoID
 - Closed book & closed notes
 - Coverage: From 8/28 lecture to today’s lecture
 - 5 Problems
 • One bonus problem
 - Hard. Unlikely to get partial credit.

• If you want additional help, send me an email directly
Fundamentals

• Know how algorithm works
 - All algorithms mentioned in the lecture
• For graph algorithms, you can assume the graph is connected
Lecture 9

- Variants of shortest-path problems
- Bellman-Ford
 - How it works? When it works? Complexity?
- Single-source shortest path in a DAG
 - Basic idea
- Dijkstra’s algorithm
 - How? When? Complexity?
Lecture 10

• All-pairs shortest path: Floyd-Warshall
 - How? When? Complexity?
 - Dynamic programming: recursive formulation

• Transitive closure
 - Floyd-Warshall (simple way)
 - A better way
 - How? Complexity?
Lecture 11

- Union-Find
 - Operations
 - Representations
 - Linked list representation
 - Disjoint-set forest
 - Difference?
 - Heuristics for union
 - How? Complexity?
Lecture 12

• Dynamic programming
 - Rod cutting
 • Recursive formulation
 • Algorithm: How? Complexity?
 - Chain matrix multiplication
 • Recursive formulation
 • Algorithm: How? Complexity?
Lecture 13

• Dynamic programming
 - Longest common sequence
 • Recursive formulation: formal proof
 • Algorithm: How? Complexity?
 • Similar problems
Lecture 14

• NP-Completeness
 - Definitions of: P, NP, NPC, NP-Hard
 - Relationship
• Reduction \leq_p
 - In poly time
 - Yes in A \iff Yes in B
• NP-Completeness proof
 - Show in NP
 - Show it’s NP-Hard
 • Using reduction
Lecture 14

• NP-Complete Problems
 - Directed Hamiltonian cycle
 - Subset-Sum

• Two additional NPC problems
 - Undirected Hamiltonian cycle
 - Set-Partition
The End