ECS 122A Algorithm Design and Analysis

Instructor: Qirun Zhang

Agenda

- Asymptotic notations
- Merge sort

Course updates

- About homework
- Homework 1 has 5 problems
- Submit 5 separate solutions on gradescope (i.e., one for each problem)
- Prerequisite petition
- Send me a reminder email next week

Why asymptotic notation?

- Asymptotic efficiency

Recap

- Simplifications
- Ignore actual and abstract statement costs
- Order of growth is the interesting measure:
- Highest-order term is what counts
- Remember, we are doing asymptotic analysis
- As the input size grows larger it is the high order term that dominates

Upper Bound Notation

- We say InsertionSort's run time is $O\left(n^{2}\right)$
- Properly we should say run time is in $O\left(n^{2}\right)$
- Read O as "Big-O" (you'll also hear it as "order")
- In general a function
- $f(n)$ is $O(g(n))$ if there exist positive constants c and n_{O} such that $f(n) \leq c \cdot g(n)$ for all $n \geq n_{0}$
- Formally
- $O(g(n))=\left\{f(n): \exists\right.$ positive constants c and n_{0} such that $f(n) \leq$ c. $g(n) \forall n \geq n_{0}$

Lower Bound Notation

- We say InsertionSort's run time is $\Omega(\mathrm{n})$
- In general a function
- $f(n)$ is $\Omega(g(n))$ if \exists positive constants c and n_{0} such that $0 \leq$ $c \cdot g(n) \leq f(n) \quad \forall n \geq n_{0}$

Asymptotic Tight Bound

- A function $f(n)$ is $\Theta(g(n))$ if \exists positive constants c_{1}, c_{2}, and n_{0} such that

$$
c_{1} g(n) \leq f(n) \leq c_{2} g(n) \forall n \geq n_{0}
$$

- Theorem
- $f(n)$ is $\Theta(g(n))$ iff $f(n)$ is both $O(g(n))$ and $\Omega(g(n))$

Practical Complexity

Other Asymptotic Notations

- A function $f(n)$ is $o(g(n))$ if \forall positive constants c, there exists n_{0} such that

$$
f(n)<c g(n) \forall n \geq n_{0}
$$

- A function $f(n)$ is $\omega(g(n))$ if \forall positive constants c, there exists n_{0} such that

$$
c g(n)<f(n) \forall n \geq n_{0}
$$

- Intuitively,
- o() is like <
- $\omega()$ is like $>$
- $\Theta()$ is like $=$
- O() is like \leq
- $\Omega()$ is like \geq

Summary

```
Growth
O(1)
O}(\operatorname{log}n
O}(\mp@subsup{\operatorname{log}}{}{k}n), for some k\geq
o(n)
O(n)
O}(n\operatorname{log}n
O}(n\mp@subsup{\operatorname{log}}{}{k}n),\mathrm{ for some k}\geq
O}(\mp@subsup{n}{}{k})\mathrm{ for some }k\geq
\Omega(\mp@subsup{n}{}{k}), for every k\geq1
\Omega(\mp@subsup{a}{}{n})\mathrm{ for some }a>1
Terminology
constant growth
logarithmic growth
polylogarithmic growth
sublinear growth
linear growth
log-linear growth
polylog-linear growth polynomial growth superpolynomial growth exponential growth
```

Merge Sort

Merge Sort: Example

Analysis of Merge Sort

The End

