ECS 122A Algorithm Design and Analysis

Instructor: Qirun Zhang

Agenda

- Substitution method
- Master method

Course updates

- Feedback
- About homework
- Will be posted today
- Submit 5 separate solutions on gradescope (i.e., one for each problem)
- Prerequisite petition
- Reply my email

The Master Theorem

- if $T(n)=a T(n / b)+f(n)$ then

$$
T(n)=\left\{\begin{array}{ll}
\Theta\left(n^{\log _{b} a}\right) & f(n)=O\left(n^{\log _{b} a-\varepsilon}\right) \\
\Theta\left(n^{\log _{b} a} \log n\right) & f(n)=\Theta\left(n^{\log _{b} a}\right) \\
\begin{array}{ll}
\Theta(f(n)) & f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right) \mathrm{AND}
\end{array} \\
\begin{array}{ll}
& a f(n / b)<c f(n) \text { for large }
\end{array} & n
\end{array}\right\}
$$

Using The Master Method

- $T(n)=9 T(n / 3)+n$
$-a=9, b=3, f(n)=n$
$-n^{\log _{b} a}=n^{\log _{3} 9}=\Theta\left(n^{2}\right)$
- Since $f(n)=O\left(n^{\log 3-\varepsilon}\right)$, where $\varepsilon=1$, case 1 applies:
- Thus the solution is $T(n)=\Theta\left(n^{2}\right)$

$$
\boldsymbol{T}(\boldsymbol{n})=\Theta\left(\boldsymbol{n}^{\log _{b} a}\right) \text { when } \boldsymbol{f}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\log _{b} a-\varepsilon}\right)
$$

The End

