ECS 122A
Algorithm Design and Analysis

Instructor: Qirun Zhang
Agenda

- Strassen’s method for matrix multiplication
- More on master theorem
- Introduction to heapsort
Course updates

• About midterm
Strassen’s method

- Strassen’s method – Step 1: Divide

\[A = \frac{n}{2} \begin{bmatrix} \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} \end{bmatrix} \quad \text{and} \quad B = \frac{n}{2} \begin{bmatrix} \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} \end{bmatrix} \]
Strassen’s method

- **Strassen’s method – Step 2:** Compute 10 matrices by ± only:

 \[
 \begin{align*}
 S_1 & = B_{12} - B_{22} \\
 S_2 & = A_{11} + A_{12} \\
 S_3 & = A_{21} + A_{22} \\
 S_4 & = B_{21} - B_{11} \\
 S_5 & = A_{11} + A_{22} \\
 S_6 & = B_{11} + B_{22} \\
 S_7 & = A_{12} - A_{22} \\
 S_8 & = B_{21} + B_{22} \\
 S_9 & = A_{11} - A_{21} \\
 S_{10} & = B_{11} + B_{12}
 \end{align*}
 \]
Strassen’s method

- Strassen’s method – Step 3: Compute 7 matrices by multiplication:

\[P_1 = A_{11} \cdot S_1 \]
\[P_2 = S_2 \cdot B_{22} \]
\[P_3 = S_3 \cdot B_{11} \]
\[P_4 = A_{22} \cdot S_4 \]
\[P_5 = S_5 \cdot S_6 \]
\[P_6 = S_7 \cdot S_8 \]
\[P_7 = S_9 \cdot S_{10} \]
Strassen’s method

- **Strassen’s method – Step 4:** Add and subtract the P_i to construct submatrices C_{ij} of the product C

\[
\begin{align*}
C_{11} &= P_5 + P_4 - P_2 + P_6 \\
C_{12} &= P_1 + P_2 \\
C_{21} &= P_3 + P_4 \\
C_{22} &= P_5 + P_1 - P_3 - P_7
\end{align*}
\]
The Master Theorem Revisited

• if \(T(n) = aT(n/b) + f(n) \) then

\[
T(n) = \begin{cases}
\Theta\left(n^{\log_b a}\right) & f(n) = O\left(n^{\log_b a - \varepsilon}\right) \\
\Theta\left(n^{\log_b a \log n}\right) & f(n) = \Theta\left(n^{\log_b a}\right) \\
\Theta\left(f(n)\right) & f(n) = \Omega\left(n^{\log_b a + \varepsilon}\right) \text{ AND } af(n/b) < cf(n) \text{ for large } n \\
\end{cases}
\]

\(\varepsilon > 0 \)
\(c < 1 \)
Sorting Revisited

• So far we’ve talked about two algorithms to sort an array of numbers
 - What is the advantage of merge sort?
 - What is the advantage of insertion sort?

• Next on the agenda: Heapsort
 - Combines advantages of both previous algorithms
Heaps

• A heap can be seen as a complete binary tree:

- What makes a binary tree complete?
- Is the example above complete?
Heaps

- A heap can be seen as a complete binary tree:

The book calls them “nearly complete” binary trees; can think of unfilled slots as null pointers.
Heaps

- In practice, heaps are usually implemented as arrays:

\[A = \begin{array}{cccccccc}
16 & 14 & 10 & 8 & 7 & 9 & 3 & 2 & 4 & 1
\end{array} \]

```plaintext
16
14
10
8
7
9
3
2
4
1
```

```
16
  \_ 14
    \_ 8 7
      \_ 3 2 4 1
```

```
16
  \_ 14
    \_ 8
      \_ 2 4
```

```
16
  \_ 14
    \_ 8
      \_ 2
```

```
16
  \_ 14
    \_ 8
```

```
16
  \_ 14
```

```
16
```

12
Heaps

• To represent a complete binary tree as an array:
 - The root node is $A[1]$
 - Node i is $A[i]$
 - The parent of node i is $A[i/2]$ (note: integer divide)
 - The left child of node i is $A[2i]$
 - The right child of node i is $A[2i+1]$

$A = \begin{bmatrix} 16 & 14 & 10 & 8 & 7 & 9 & 3 & 2 & 4 & 1 \end{bmatrix}$

$= \begin{bmatrix} 16 & 14 & 10 & 8 & 7 & 9 & 3 & 2 & 4 & 1 \end{bmatrix}$

$= \begin{bmatrix} 16 & 14 & 10 & 8 & 7 & 9 & 3 & 2 & 4 & 1 \end{bmatrix}$

$= \begin{bmatrix} 16 & 14 & 10 & 8 & 7 & 9 & 3 & 2 & 4 & 1 \end{bmatrix}$
Referencing Heap Elements

- So...

  ```java
  Parent(i) { return ⌊i/2⌋; }
  Left(i) { return 2*i; }
  right(i) { return 2*i + 1; }
  ```
The Heap Property

• Heaps also satisfy the *heap property*:
 \[A[\text{Parent}(i)] \geq A[i] \quad \text{for all nodes } i > 1 \]
 - In other words, the value of a node is at most the value of its parent
 - *Where is the largest element in a heap stored?*

• Definitions:
 - The *height* of a node in the tree = the number of edges on the longest downward path to a leaf
 - The height of a tree = the height of its root
Heap Height

- *What is the height of an n-element heap? Why?*
- This is nice: basic heap operations take at most time proportional to the height of the heap
The End