
ECS 122A
Algorithm Design and

Analysis

Instructor: Qirun Zhang

1Course slides (partially) adopted from the notes by David Luebke.

Agenda

• Heapsort

• Priority queue

2

Course updates

• About homework
– Will be posted tomorrow

3

The Master Theorem Revisited

• if T(n) = aT(n/b) + f(n) then

1

0

largefor)()/(

 AND)(

)(

)(

)(

log)(

log

log

log

log

log

c

nncfbnaf

nnf

nnf

nOnf

nf

nn

n

nT

a

a

a

a

a

b

b

b

b

b

Heap Operations: Heapify()

• Heapify(): maintain the heap property
– Given: a node i in the heap with children l and r
– Given: two subtrees rooted at l and r, assumed to be heaps

– Problem: The subtree rooted at i may violate the heap
property

– Action: let the value of the parent node “float down” so
subtree at i satisfies the heap property

5

Heap Operations: Heapify()

6

Analyzing Heapify()

7

Heap Operations: BuildHeap()

8

Analyzing BuildHeap()

9

Analyzing BuildHeap(): Tight

10

Heapsort

• Given BuildHeap(), an in-place sorting algorithm is
easily constructed:
– Maximum element is at A[1]

– Discard by swapping with element at A[n]
• Decrement heap_size[A]

• A[n] now contains correct value

– Restore heap property at A[1] by calling Heapify()

– Repeat, always swapping A[1] for A[heap_size(A)]

11

Analyzing Heapsort

• The call to BuildHeap() takes O(n) time

• Each of the n - 1 calls to Heapify() takes O(lg n)
time

• Thus the total time taken by HeapSort()
= O(n) + (n - 1) O(lg n)
= O(n) + O(n lg n)
= O(n lg n)

12

Priority Queues

• Heapsort is a nice algorithm, but in practice Quicksort
(coming up) usually wins

• But the heap data structure is incredibly useful for
implementing priority queues
– A data structure for maintaining a set S of elements, each

with an associated value or key
– Supports the operations Insert(), Maximum(), and
ExtractMax()

13

Priority Queue Operations

• Insert(S, x) inserts the element x into set S

• Maximum(S) returns the element of S with the
maximum key

• ExtractMax(S) removes and returns the element of S
with the maximum key

14

The End

15

