
Fast Graph Simplification

for Interleaved Dyck-Reachability

Yuanbo Li
Georgia Institute of Technology

USA
yuanboli@gatech.edu

Qirun Zhang
Georgia Institute of Technology

USA
qrzhang@gatech.edu

Thomas Reps
University of Wisconsin-Madison

USA
reps@cs.wisc.edu

Abstract

Many program-analysis problems can be formulated as graph-
reachability problems. Interleaved Dyck language reachabil-
ity (InterDyck-reachability) is a fundamental framework to
express a wide variety of program-analysis problems over
edge-labeled graphs. The InterDyck language represents
an intersection of multiple matched-parenthesis languages
(i.e., Dyck languages). In practice, program analyses typically
leverage one Dyck language to achieve context-sensitivity,
and other Dyck languages to model data dependences, such
as field-sensitivity and pointer references/dereferences. In
the ideal case, an InterDyck-reachability framework should
model multiple Dyck languages simultaneously.

Unfortunately, precise InterDyck-reachability is undecid-
able. Any practical solution must over-approximate the exact
answer. In the literature, a lot of work has been proposed to
over-approximate the InterDyck-reachability formulation.
This paper offers a new perspective on improving both the
precision and the scalability of InterDyck-reachability: we
aim to simplify the underlying input graphG . Our key insight
is based on the observation that if an edge is not contributing
to any InterDyck-path, we can safely eliminate it from G.
Our technique is orthogonal to the InterDyck-reachability
formulation, and can serve as a pre-processing step with any
over-approximating approaches for InterDyck-reachability.
We have applied our graph simplification algorithm to pre-
processing the graphs from a recent InterDyck-reachability-
based taint analysis for Android. Our evaluation on three
popular InterDyck-reachability algorithms yields promis-
ing results. In particular, our graph-simplification method
improves both the scalability and precision of all three In-
terDyck-reachability algorithms, sometimes dramatically.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’20, June 15–20, 2020, London, UK

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00
https://doi.org/10.1145/3385412.3386021

CCS Concepts: • Mathematics of computing→ Graph

algorithms; • Theory of computation→ Program anal-

ysis.

Keywords: CFL-Reachability, Static Analysis

ACM Reference Format:

Yuanbo Li, Qirun Zhang, and Thomas Reps. 2020. Fast Graph Simpli-
fication for Interleaved Dyck-Reachability. In Proceedings of the 41st

ACM SIGPLAN International Conference on Programming Language

Design and Implementation (PLDI ’20), June 15–20, 2020, London,

UK. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3385412.3386021

1 Introduction

The L language-reachability (L-reachability) framework is
a popular model to formulate many program-analysis prob-
lems [14]. An L-reachability instance Reach⟨L,G⟩ contains
(1) a formal language L that formalizes the analysis problem,
and (2) an edge-labeled graphG that represents the program
under analysis. Two nodes are L-reachable in G iff there ex-
ists a path joining them, and the path string belongs to L. In
the literature, the most popular L-reachability formulation
is Dyck-reachability [11, 25]. A Dyck language essentially
generates well-balanced parentheses, which can be used to
capture well-paired program properties, such as function call-
s/returns [15, 16, 22], pointer references/dereferences [27,
28], locks/unlocks [10, 13], and field reads/writes [9, 24, 25].
A natural generalization of Dyck-reachability is Inter-

leaved Dyck-reachability (InterDyck-reachability) [9, 15,
26]. The Interleaved Dyck language denotes the intersec-
tion of multiple Dyck languages based on an interleaving
operator ⊙. For instance, let D1 and D2 be two Dyck lan-
guages that generate matched parentheses and matched
brackets, respectively. The string “L J L K M M” belongs to the
language InterDyck = D1 ⊙ D2, because both parentheses
and brackets are properly matched. InterDyck-reachability
is much more expressive than Dyck-reachability, and in prac-
tice, brings tremendous precision improvements in client
analyses. In particular, almost all recent work on context-
sensitive, field-sensitive analysis has adopted the InterDyck-
reachability formulation to achieve both the context- and
field-sensitivities simultaneously [9, 19, 26].

Unfortunately, solving InterDyck-reachability is compu-
tationally hard because the InterDyck-reachability problem

https://doi.org/10.1145/3385412.3386021
https://doi.org/10.1145/3385412.3386021
https://doi.org/10.1145/3385412.3386021

PLDI ’20, June 15–20, 2020, London, UK Yuanbo Li, Qirun Zhang, and Thomas Reps

is, in general, undecidable [15]. Therefore, any practical anal-
ysismust approximate the exact answer. In practice, it is quite
challenging to develop a suitable over-approximative Inter-
Dyck-reachability framework that offers a sweet spot in the
trade-off between precision and scalability. InterDyck is a
prototypical example of a non-context-free language [8]. Tra-
ditional approaches employ less expressive but polynomial-
time decidable language-reachability frameworks, such as
context-free-language reachability (CFL-reachability) to over-
approximate InterDyck-reachability [9, 21, 24]. For exam-
ple, the recent work by Späth et al. proposed synchronized
pushdown systems to compute a sound solution for Inter-
Dyck-reachability [19]. The work by Zhang and Su proposed
linear-conjunctive-language reachability (LCL-reachability)
to precisely describe the InterDyck-reachability formula-
tion [26]. However, the LCL-reachability algorithm is inher-
ently an over-approximation. To the best of our knowledge,
all previous efforts on the InterDyck-reachability problem
attempt to improve either on the L-reachability formulation
or the L-reachability algorithm.

In this paper, we attack the InterDyck-reachability prob-
lem from a new angle. Consider an InterDyck-reachability
instance Reach⟨L,G⟩. Unlike existing approaches that im-
prove either the L-reachability formulation or the algorithm,
our approach focuses on simplifying the input graph G in
Reach⟨L,G⟩. Specifically, we give an efficient algorithm to
simplify the input graphs by eliminating “useless” graph
edges. The benefits of graph simplification are two-fold. First,
working with smaller graphs improves the scalability of all
existing approaches for InterDyck-reachability. Second, be-
cause all InterDyck-reachability algorithms are inherently
over-approximative, they could achieve better precision by
working with graphs that contain fewer edges. The techni-
cal challenge, however, is to design a graph-simplification
algorithm that is both effective (i.e., it should remove as
many “useless” edges as possible) and efficient (i.e., as a
pre-processing step, it should run much faster than the In-
terDyck-reachability algorithm itself).

Consider an InterDyck language L1 ⊙ L2 . . . ⊙ Lk , where
for each i ∈ [1,k], Li is a Dyck language. One enabling
insight is to decompose the InterDyck-reachability problem
in the input graph G into k Dyck-reachability problems in a
graphG ′, which is a relaxation ofG that makesG ′ bidirected.
It turns out that if an edge contributes to an InterDyck-path
inG , the corresponding edge must contribute to a Dyck-path
inG ′.G ′ contains more edges thanG , and hence more paths
than G. Therefore, we can safely delete all non-contributing

edges in G ′, as well as in G. The problem then becomes one
of identifying non-contributing edges in G ′.
One natural question to ask is why we identify the non-

contributing edges in G ′ and not in G itself. The reason is
that Dyck-reachability inG ′ has special properties that allow
us to identify non-contributing edges much faster than if it
were attempted in G. In particular, given an input graph G

with n nodes andm edges, we give an efficient algorithm that
simplifiesG inO(m logm) time withO(m) space. This graph-
simplification algorithm is asymptotically faster than the
fastest O(mn)-time InterDyck-reachability algorithm [26].
The technique is general, and can be used as a preprocessing
step for any existing InterDyck-reachability algorithms.

We have implemented the graph-simplification algorithm,
and evaluated it on a recent InterDyck-reachability-based
taint analysis for Android [9]. In particular, we tested graph
simplification with three popular InterDyck-reachability
algorithms, based on context-free language reachability (CFL-
reachability) [14], synchronized pushdown systems reacha-
bility (SPDS) [19], and linear conjunctive language reacha-
bility (LCL-reachability) [26]. The empirical results are en-
couraging: graph simplification significantly improves both
the performance and the precision of the client analyses.
• We found that, on average, it is 2.18× faster to (i) run
the simplification algorithm on digraph G—thereby
creating simplified digraph Gf —and then (ii) run an
InterDyck-reachability algorithm A onGf , compared
to running A directly on the original graph G.
• In the experiments with LCL-reachability, we found
that the cost of running the simplification algorithm
is recouped for all examples that require more than
seven seconds to run in the original graphs.
• The number of reachable pairs returned by the anal-
ysis based on the simplified graph Gf is reduced to
64.92% compared to the number obtained by running
the analysis on G. Moreover, the analysis run on Gf
uses 57.37% memory for the analysis running on G.

Our work makes the following contributions:
• We propose a novel graph-simplification framework
for InterDyck-reachability. Our technique reduces
input-graph size, and is compatible with all existing
sound InterDyck-reachability algorithms.
• Given a graph with n nodes andm edges, we give a
fast simplification algorithm that runs in O(m logm)
time withO(m) space. In practice, our algorithm scales
linearly with the graph size.
• We evaluate our technique based on a variety of Inter-
Dyck-reachability algorithms for taint analysis. Our
empirical results show that graph simplification is ben-
eficial: running an analysis on a simplified graph (plus
graph simplification) is faster than running the analy-
sis on the original graph. With simplified graphs, all
evaluated algorithms yield more precise results and
use less memory as well.

The remainder of the paper is organized as follows: Sec-
tion 2 motivates graph simplification. Section 3 gives defi-
nitions and the problem formulation. Section 4 presents the
idea of eliminating non-contributing edges. Section 5 gives
the simplification algorithm. Section 6 describes our evalua-
tion. Section 7 discusses related work. Section 8 concludes.

Fast Graph Simplification for Interleaved Dyck-Reachability PLDI ’20, June 15–20, 2020, London, UK

2 Motivating Example

Wemotivate our graph-simplification method using a formu-
lation of taint analysis as an InterDyck-reachability prob-
lem [9]. Consider the simple Java-like program in Figure 1.
For every pair of variables, the taint analysis checks whether
a tainted value can potentially flow between them.

InterDyck-reachability for taint analysis. Figure 1b
gives the graph G that encodes the taint-analysis problem
for the program in Figure 1a as an InterDyck-reachability
problem. In particular, nodes in G represent the variables
in the program, and edges represent the assignments and
calls/returns. Each edge is labeled with either a bracket or
a parenthesis. Specifically, the brackets (i.e., J and K) repre-
sent field reads/writes, and parentheses (i.e., L, M) represent
calls and returns. For a path in G to represent the flow of a
tainted value, both brackets and parenthesis must be prop-
erly matched. Let Db and Dp be two Dyck languages. Due
to the work of Huang et al. [9], the taint analysis can be
formulated as an InterDyck-reachability problem over G,
where InterDyck = Db ⊙ Dp .

InterDyck-reachability algorithms. The problem of
precise InterDyck-reachability is undecidable [15].We briefly
mention three popular over-approximation algorithms for
the InterDyck-reachability problem.

• CFL-reachability algorithm [14]. The intersection of a
regular language and a context-free language is still
context-free. Therefore, we can over-approximate one
Dyck language in InterDyck using a regular language.
For instance, let Rb be the regular language that over-
approximates Db . The reachability problem could be
solved by a CFL-reachability algorithm based on the
CFL = Rb ∩ Dp .
• SPDS-reachability algorithm [19]. The synchronized
pushdown systems (SPDS) also over-approximates the
InterDyck-reachability. SPDS encodes calls/returns
and field reads/writes as separate CFL-reachability
problems, and intersects the results.
• LCL-reachability algorithm [26]. The InterDyck lan-
guages belong to the class of linear conjunctive lan-
guages (LCLs). Therefore, an LCL-reachability formu-
lation can precisely encode a InterDyck-reachability
problem. However, the LCL-reachability algorithm
only computes an over-approximating solution.

Graph simplification. Recall that our key idea for graph
simplification is to eliminate “useless” graph edges that are
not contributing to any InterDyck-paths. Our simplifica-
tion algorithm is iterative. Intuitively, the eliminated edges
identified by a previous iteration can be used to identify addi-
tional “useless” edges in later iterations. Figure 2 provides an
overview of the results for the taint-analysis example after
selected iterations of the edge-elimination algorithm.

Table 1. Precision improvement by graph simplification.

Graph InterDyck-Reachable Node Pairs
CFL LCL SPDS

Original
{
(vx , vz),
(va , vc)

}
{(va , vc)}

{
(vx , vz),
(va , vc)

}
Simplified {(va , vc)} {(va , vc)} {(va , vc)}

Benefits of graph simplification. The graph simplifica-
tion is iterative. Figures 2a and 2b give two intermediate
steps based on the first and second applications, respectively,
of our graph simplification algorithm (Algorithm 2 in Sec-
tion 5.2). Figure 2c shows the final graphGf . Compared with
the original graph in Figure 1b, the number of edges in Gf
has been reduced from 11 to 4, and the number of nodes has
been reduced from 11 to 5. It is immediate that any Inter-
Dyck-reachability algorithm runs faster on Gf becauseGf
is only half the size of the original graphG . Table 1 gives the
InterDyck-reachable node pairs. We can see that graph sim-
plification improves the precision of the results from various
InterDyck-reachability algorithms.

We now briefly discuss the impact of graph simplification
on different InterDyck-reachability algorithms.

• CFL-reachability algorithm. The CFL-reachability algo-
rithm in Figure 1b computes a false-positive reachable
pair (vx ,vz). This pair is introduced by the path p1 =

vx
Jд
−−→ va

Jf
−−→ vb

L8
−→ vt

Kf
−−→ ret1

M8
−→ vc

Kh
−−→ vz . In the

simplified graph Gf (Figure 2c), the CFL-reachability
algorithm gives an exact solution.
• SPDS-reachability algorithm. In Figure 1b, the SPDS-
reachability algorithm computes a non-InterDyck-
reachable pair (vx ,vz). In particular, the field-insensitive

pushdown system accepts the path p1 = vx
Jд
−−→ va

Jf
−−→

vb
L8
−→ vt

Kf
−−→ ret1

M8
−→ vc

Kh
−−→ vz and the context-

insensitive pushdown system accepts the path p2 =

vx
Jд
−−→ vy

L11
−−→ vs

Kд
−−→ ret2

M12
−−→ vz . After synchro-

nization, the SPDS system concludes that vz is Inter-
Dyck-reachable from vx . In Gf (Figure 2c), neither
path exists, and consequently the SPDS-reachability
algorithm produces a precise solution.
• LCL-reachability algorithm. The LCL-reachability al-
gorithm computes the exact solution in this example
because the graph is acyclic. In practice, graph sim-
plification allows the LCL-reachability algorithm to
run faster and consume less memory. It also eliminates
some cycles in the graph, and improves the precision
of LCL-reachability. Moreover, the cost is not prohibi-
tive: in the experiments with LCL-reachability, the cost
of running the simplification algorithm is recouped—
often dramatically—for all examples that require more
than seven seconds to run in the original graphs.

PLDI ’20, June 15–20, 2020, London, UK Yuanbo Li, Qirun Zhang, and Thomas Reps

1 class T { T f; T g; T h; }

2 T getF(T vt){ return vt .f; }

3 T getG(T vs){ return vs .g; }

4

5 T va , vb , vc , vy , vz , vw ; ...

6 va .g = vx ;
7 vb .f = va ;
8 vc = getF(vb);
9 vz = vc .h
10 vy .g = vx ;
11 getG(vy)
12 vz = getG(vw)

(a) Example Java code.

vw

vx vy vs ret2 vz

va vb vt ret1 vc

L12

Jд L11 Kд M12

Jд

Jf L8 Kf M8

Kh

(b) InterDyck-reachability graph for taint analysis. Bracket edges
(i.e., Jf and Kf) represent field reads and writes w.r.t. a field name f .
Parenthesis edges (i.e., Ll and Ml) represent calls and returns w.r.t. the
line number l of the call-sites.

Figure 1. Motivating taint-analysis example.

vw

vx vy vs ret2 vz

va vb vt ret1 vc

L12

Jд Kд M12

Jf L8 Kf M8

(a) Graph G1 after the first iteration. The

field-write edge vx
Jд
−−→ va , the field-read

edge vc
Kh
−−→ vz , the call edge vy

L11
−−→ vs

have been eliminated.

vw

vs ret2 vz

va vb vt ret1 vc

L12

M12

Jf L8 Kf M8

(b) Graph G2 after the second iteration.

The field-write edge vx
Jд
−−→ vy , the field-

read edgevs
Kд
−−→ ret2, and the correspond-

ing nodes have been eliminated.

va vb vt ret1 vc
Jf L8 Kf M8

(c) Final graph Gf . This iteration elimi-

nates the call edge vw
L12
−−→ vs and the re-

turn edge ret2
M12
−−→ vz . There are no more

edges to eliminate from Gf .

Figure 2. Overview of the graph-simplification procedure on the taint-analysis example.

3 Preliminaries

This section introduces definitions used in the paper. Sec-
tion 3.1 reviews Dyck languages and the graph-reachability
framework. Section 3.2 describes InterDyck-reachability.
Section 3.3 defines the graph-simplification problem.

3.1 Dyck Language and L-Reachability

ADyck language is a context-free language that describes the
set of well-balanced-parenthesis strings. LetCFG = (Σ,N , P, S)
be a context-free grammar for the Dyck language with k
kinds of parentheses. The CFG has the alphabet Σ = {Li , Mi |
i ∈ [1..k]}, the nonterminal symbol set N = {Dk }, the start
symbol set S = {Dk }, and the following productions P :

Dk → Dk Dk | L1 Dk M1 | . . . | Lk Dk Mk | ε . (1)

Given a context-free grammar CFG = (Σ,N , P, S) and
a directed graph G = (V , E) with each edge u

t
−→ v in E

labeled by a terminal t ∈ Σ, we say that a path p = v0
t0
−→

v1
t1
−→ v2

t2
−→ ...

tm−1
−−−→ vm in G realizes a string R(p) over

the alphabet by concatenating the edge labels in the path in
order, i.e., R(p) = t0t1t2 . . . tm−1. A path in G is an S-path if
the realized string can be derived from the start symbol S in
CFG. Node v is S-reachable from node u iff there exists an

S-path from u to v in G. Because S denotes the start symbol
of language L, we also say that node v is L-reachable from
u. The L-reachability problem Reach⟨L,G⟩ is to compute all
L-reachable node pairs in graph G.

3.2 InterDyck-Reachability

This paper focuses on the reachability problem related to
the interleaved Dyck language (InterDyck language). The
InterDyck language is a prototypical example of a non-
context-free language. Informally, the InterDyck language
describes the intersection of multiple Dyck languages, where
the parentheses in each Dyck language can be arbitrarily
interleaved. For example, consider two Dyck strings “J K” ∈
Db and “L M” ∈ Dp . All of “J L K M”, “L J M K”, and “J K L M” belong
to the InterDyck language based on Db and Dp .
We formally define the class of InterDyck languages

based on an interleaving operation ⊙. Formally, ⊙ : Σ∗×Σ∗ →
P(Σ∗) is a binary operator that takes two strings and returns
a set of strings, where P(·) denotes the power-set operator.
The operator ⊙ is inductively defined as follows: for every
u ∈ Σ∗, we have u ⊙ ϵ = ϵ ⊙ u = {u}. Moreover, for every
α1,α2,u1,u2 ∈ Σ

∗, α1u1 ⊙ α2u2 = {α1w | w ∈ (u1 ⊙ α2u2)} ∪
{α2w | w ∈ (α1u1 ⊙ u2)}. The interleaving operator can be

Fast Graph Simplification for Interleaved Dyck-Reachability PLDI ’20, June 15–20, 2020, London, UK

extended to languages with

L1 ⊙ L2 =
⋃

u1∈L1,u2∈L2

u1 ⊙ u2.

Note that ⊙ is associative—i.e., (L1⊙L2)⊙L3 = L1⊙(L2⊙L3)—
and hence can be extended to k Dyck languages with disjoint
alphabets. If L1, L2, . . . , Lk are k Dyck languages with dis-
joint alphabets, we define InterDyck := L1 ⊙ L2 ⊙ . . . ⊙ Lk .
The InterDyck-reachability problem is an L-reachability
problem by restricting L to InterDyck. In particular,

Definition 3.1 (InterDyck-Reachability). Given an edge-
labeled digraph G = (V , E) and an InterDyck language,
compute all InterDyck-reachable node pairs in G.

3.3 Problem Formulation

Our technique eliminates graph edges to improve solving
InterDyck-reachability. To determine the set of edges to
eliminate, we formally define the “usefulness” of each edge.

Definition 3.2 (L-Contributing Edges). Given an instance
Reach⟨L,G⟩ of L-reachability, an edge u → v ∈ G is con-
tributing to L-reachability iff it is in an L-path inG , i.e., there
exists a path “p = . . .→ u → v → . . .” in G and R(p) ∈ L.

Example 3.3. In the motivating example from Section 2

(Figure 1b), the contributing edges are va
Jf
−−→ vb , vb

L8
−→ vt ,

vt
Kf
−−→ ret1, and ret1

M8
−→ vc that appear in the simplified

graph Gf in Figure 2c.

In this paper, we consider the following graph-simplification
problem for InterDyck-reachability:

Given an InterDyck-reachability problem instance
Reach⟨InterDyck,G⟩, simplify graphG by eliminating
non-InterDyck-contributing edges.

It is interesting to note that there is a correspondence
between the reachability problem in Definition 3.1 and the
graph-simplification problem stated above. Intuitively, based
on Definition 3.2, the problem of deciding all InterDyck-
contributing edges should be as hard as computing the In-
terDyck-reachability. We now establish the undecidabil-
ity of computing all InterDyck-contribution edges via a
reduction from InterDyck-reachability. Note that Inter-
Dyck-reachability is undecidable even when restricted to
the single-source-single-sink variant [15].

Theorem 3.4. It is undecidable to compute all InterDyck-

contributing edges in a graph G.

Proof. We show a reduction from the single-source-single-
sink variant of InterDyck-reachability. Given any single-
source-single-sink InterDyck-reachability problem instance
Reach⟨InterDyck,G⟩, we first introduce a new Dyck lan-
guageDp with an alphabet ΣDp = {L, M} and ΣDp∩ΣInterDyck =

∅. Define InterDyck′ = InterDyck ⊙Dp . Let s and t be the
source and sink in graphG , respectively. We construct a new

graphG ′ by inserting two additional edges s ′
L
−→ s and t

M
−→ t ′.

Based on the reduction, we can see that the edge s ′
L
−→ s is

an InterDyck′-contributing edge in G ′ iff t is InterDyck-
reachable from s inG . It is straightforward to verify that the
reduction is in polynomial time. □

To side-step the undecidability of graph simplification,
we describe two novel relaxations in Section 4. Here we de-
fine the notion of correctness of graph simplification, which
is similar to the concept of soundness in static analysis.
Let ϕ be the set of all InterDyck-contributing edges in G.
Intuitively, a graph-simplification algorithm computes an
over-approximating solution ϕ ′ (of “apparently contribut-
ing” edges). Therefore, if it determines an edge to be non-
InterDyck-contributing, the edge can be safely eliminated
graph G. To sum up,

Definition 3.5 (Correctness). A graph-simplification algo-
rithm is correct if and only if it computes a solution ϕ ′ to
the contributing-edge problem such that ϕ ′ ⊇ ϕ.

4 Identifying Contributing Edges

Central to our graph-simplification approach is the idea of
eliminating non-InterDyck-contributing edges in G. Due
to Theorem 3.4, identifying non-L-contributing edges is as
hard as computing the L-reachability problem, and solving
InterDyck-reachability in general is undecidable [15].

Our key idea is to cast the undecidable problem (i.e., iden-
tifying InterDyck-contributing edges in a digraph G) to an
easier problem (i.e., identifying Dyck-contributing edges in a
bidirected graphG ′) that admits an efficient polynomial-time
solution. In particular, we give two forms of relaxation:
• Graph Relaxation.We first relax the general directed
graph G to a bidirected graph G ′ by introducing in-
verse edges (Section 4.1); and
• Formulation Relaxation. We then relax the InterDyck-
reachability problem in the bidirected graph G ′ to the
Dyck-reachability problem in a contracted graph (Lx -
graph) derived from G ′, where Lx represents a Dyck
language in InterDyck (Section 4.2).

The benefit of our relaxations is that Dyck-reachability can
be efficiently solved in O(m logm) time on a bidirected Lx -
graph withm edges and n nodes [25]. The Dyck-reachability
algorithm also identifies an anchor-node property in Lx -
graph. We utilize the anchor-node property to identify the
non-Dyck-contributing edges in the Lx -graph (Section 4.3).
Finally, if an edge is not a Dyck-contributing edge in the
Lx -graph, its corresponding edge inG is a not an InterDyck-
contributing edge. Graph simplification can be performed
safely by eliminating those edges in G.
Figure 3 provides a roadmap to this section: it summa-

rizes the relations among various lemmas. Combining these
lemmas together, it provides a criterion for identifying—and
removing—non-contributing edges in G.

PLDI ’20, June 15–20, 2020, London, UK Yuanbo Li, Qirun Zhang, and Thomas Reps

u
t
−→ v is an InterDyck-

contributing edge in
G

u
t
−→ v is an InterDyck-

contributing edge in
G′

If t ∈ Σo , v is an anchor
node in Lx -graph;
If t ∈ Σc , u is an anchor node
in Lx -graph

u
t
−→ v is a Dyck-

contributing edge in
Lx -graph

Corollary 4.2

Lemma 4.7

Lemma 4.4

Figure 3. Summary of lemmas used in Section 4. Let Lx be a
Dyck language in InterDyck. The alphabet ΣLx = Σo ∪ Σc
of Lx can be partitioned into Σo and Σc representing open
and close parentheses, respectively. Let t ∈ ΣLx .

4.1 Graph Relaxation: From G to G ′

Given an edge-labeled input graphG = (V , E), we construct a
relaxed graphG ′ = (V , E ′) by introducing additional inverse
edges. In particular, the node set V ∈ G remains unmodified.
Let Li and Mi be two matched open and close parentheses in
InterDyck. The edge set E ′ ∈ G ′ is constructed as follows:

• For each edgeu
Li
−→ v ∈ E, we insert both edgesu

Li
−→ v

and v
Mi
−→ u into E ′;

• For each edgeu
Mi
−→ v ∈ E, we insert both edgesu

Mi
−→ v

and v
Li
−→ u into E ′.

Each edge e ∈ G is mapped to two corresponding edges

in G ′, denoted as set h(e). Based on the construction of G ′,
it follows immediately that InterDyck-reachability in G ′

over-approximates InterDyck-reachability in G.

Lemma 4.1 (Relaxed Reachability inG ′). Given two nodes u
and v , if v is InterDyck-reachable from u in G, node v must

be InterDyck-reachable from u in G ′.

Corollary 4.2. If an edge e = u → v is an InterDyck-

contributing edge in G, the corresponding edges in h(e) are
InterDyck-contributing in G ′.

4.2 Formulation Relaxation: From

InterDyck-Reachability to Dyck-Reachability

We now describe how to relax the problem of determining In-
terDyck-contributing edges to the problem of determining
Dyck-contributing edges in the bidirected graph G ′.
Let InterDyck be InterDyck = L1 ⊙ L2 ⊙ . . . ⊙ Ln .

Note that each Li in InterDyck represents a Dyck lan-
guage for all i ∈ [1,n]. Let Lx be a Dyck language and
ΣLx = {L1, M1, . . . , Lk , Mk }. Given a valid InterDyck string s ,
we could indeed “extract” a substring s ′ by concatenating all
Lx terminals in s . The resulting string s ′ is always a valid
Dyck string. For example, let s be a valid InterDyck string
“L1J2L2K2M2M1”. The “extracted” substring is “L1L2M2M1”, which
is a valid Dyck string. In general, let L be a terminal in ΣLx .
It is straightforward to see that if L is in a valid InterDyck
string, L must belong to a valid Dyck (Lx) string as well.

We extend the discussion about InterDyck strings to
the InterDyck-reachability problem on graphs. Consider
an InterDyck-reachability instance Reach⟨InterDyck,G ′⟩.
Rather than “extracting” an Lx substring from an InterDyck
string, we build a contracted graph called the Lx -graph from
G ′. Intuitively, an Lx -graph is derived fromG by maintaining
only Lx -edges inG ′, merging the nodes joined by any t-edge,
and deleting any t-edges where t < Lx .

Definition 4.3 (Lx -Graph). LetLx be aDyck language. Given
an input graphG ′, we construct the Lx -graph by contracting
all u

t
−→ v edges in G ′ where t < Lx .

Lemma 4.4. Let Lx ∈ InterDyck and t ∈ ΣLx . If an edge

u
t
−→ v is InterDyck-contributing inG ′, it is a Dyck-contributing

edge in the Lx -graph.

4.3 Identifying Dyck-Contributing Edges

According to Definition 3.2, identifying Dyck-contributing
edges requires computing Dyck-reachability. The Lx -graph
is essentially a bidirected graph with each edge labeled by a
terminal t in a Dyck language Lx . Dyck-reachability on bidi-
rected graphs can be solved in linear-logarithmic time [25].

4.3.1 Computing Dyck-Reachability in Lx -Graphs In
general, Dyck-reachable node pairs (u,v) in a graph G =
(V , E) can be described as a binary relation Dyck overV ×V .
Specifically, a pair (u,v) ∈ Dyck iff nodev is Dyck-reachable
from u inG . The relaxed Lx -graph is a bidirected graph. One
property that is special for bidirected Dyck-reachability is
that theDyck relation on a bidirected graph is an equivalence
relation [25]: (i) it is reflexive and transitive based on the
Dyck grammar given in Eqn. (1) (see Section 3.1); and (ii) it is
symmetric based on theG ′ construction given in Section 4.1.1
Due to the equivalence property, we can collapse all nodes
that belong to the Dyck relation into a single representative
node, i.e., node v is Dyck-reachable from u in G ′ iff u and
v belong to the same representative node in the Lx -graph.
However, we have only the Lx -graph rather than the Dyck
relation itself, so we are not in a position to find and collapse
all Dyck-reachable nodes. Instead, the collapsing can be done
on-the-fly as Dyck-reachability is computed.

Following the work of Zhang et al. [25], we summarize the
algorithm for solving Dyck-reachability in Lx -graphs. The
principal idea is to collapse the nodes in the Dyck relation.
There are two major steps.

• Edge merging: Identifying two edges u
Li
−→ w and v

Li
−→

w , and merging one edge with the other based on the
degrees of u and v ;
• Node collapsing: Collapsing two nodes u and v into
a single representative node n {u ,v } and updating all
adjacency edges of node n {u ,v } based on u and v .

1The Dyck relation in a general digraph is not symmetric. Therefore, it is
not an equivalence relation in the general case.

Fast Graph Simplification for Interleaved Dyck-Reachability PLDI ’20, June 15–20, 2020, London, UK

Repeating node collapsing and edge merging introduces
additional Dyck-reachable node pairs in the graph. Therefore,
we continue the process until there are no newly introduced
Dyck-reachable nodes. We refer to such an algorithm as
procedure Fast-Dyck().

Lemma 4.5 (Correctness of Fast-Dyck [25]). In a bidirected

Lx -graph, node v is Dyck-reachable from node u iff u and v
are in the same representative node after running Fast-Dyck()

on the Lx -graph.

To facilitate further discussion, letGf denote the resulting
graph after running Fast-Dyck() onG .We define rep_node[·]
as a mapping from a node in G to its representative node in
Gf . For example, if u ∈ V (G) is merged to the representative
node uf ∈ V (Gf), we write rep_node[u] = uf .

4.3.2 AnchorNodes Lemma 4.5 indicates that everyDyck-
path in the Lx -graph is obtained via edge merging in Fast-
Dyck(). To identify Dyck-contributing edges in the Lx -graph,

we leverage the anchor node w of the two edges u
Lk
−−→ w and

v
Lk
−−→ w merged by Fast-Dyck(). Intuitively, every Dyck-

path computed by Fast-Dyck() is associated with at least
one such anchor node. Formally, we have

Definition 4.6 (Anchor Node). Nodew is an anchor-k node
in an Lx -graph iff there exist nodes u,v,w ′ in the Lx -graph,
such that rep_node[w] = rep_node[w ′] after running Fast-

Dyck(), and the two edges u
Lk
−−→ w and v

Lk
−−→ w ′ also exist

in the Lx -graph.

Lemma 4.7. An edge u
Lk
−−→ v is a contributing edge for Dyck-

reachability in a bidirected Lx -graph iff v is an anchor-k node

in the Lx -graph. Similarly, an edge u
Mk
−−→ v is a contributing

edge for Dyck-reachability in an Lx -graph iff u is an anchor-k
node in the Lx -graph.

Proof. Without loss of generality, we consider the u
Lk
−−→ v

case. We prove the forward direction by induction on the

length of the Dyck-path that involves the edge u
Lk
−−→ v .

Base case. The contributing edge u
Lk
−−→ v is involved in

a Dyck-path of length 2. There must exist another node w

such that v
Mk
−−→ w . Because Lx -graph is bidirected, we have

w
Lk
−−→ v ∈ E. Therefore, v is an anchor-k node.
Inductive step. Assume that the lemma holds for con-

tributing edges involved in a Dyck-path with length less than

or equal to 2p. Suppose that a contributing edge e = u
Lk
−−→ v

is involved in a Dyck-path of length 2p + 2 and not involved
in any Dyck-path with length less or equal to 2p. Consider
the Dyck grammar rule S → LiSMi | SS .
• If the Dyck-path is generated based on the first rule,
edge e is the first edge in the Dyck-path. There must

exist nodes v ′,w in the same Dyck-path such that the
subpath between v and v ′ is also a Dyck-path, and

v ′
Mk
−−→ w ∈ E. By Lemma 4.5, we have rep_node[v] =

rep_node[v ′]. Based on the bidirectedness, we have

u
Lk
−−→ v,w

Lk
−−→ v ′ ∈ E. By the definition of anchor-k

nodes, we conclude that v is an anchor-k node.
• If the Dyck-path is generated by the second rule, edge
e is involved in a Dyck-path with length less than or
equal to 2p, thus v is an anchor-k node.

Nowwe prove the backward direction. Suppose thatv is an
anchor-k node in the Lx -graph. According to the definition,
there exists a node v ′ such that rep_node[v] = rep_node[v ′],

and there exists another nodew withw , u and edgew
Lk
−−→

v ′ ∈ E(Lx). Because rep_node[v] = rep_node[v ′], i.e., v and
v ′ are merged by Fast-Dyck(), there exists a Dyck-path
p = v → v ′. By utilizing the bidirectedness of the Lx -graph,

we have v ′
Mk
−−→ w ∈ E(Lx), as well. Then, u

Lk
−−→ v , p, and

v ′
Mk
−−→ w ∈ E(Lx) form a new Dyck-path. Therefore, u

Lk
−−→ v

is a contributing edge. □

To obtain the main theorem, we revisit Figure 3. In gen-
eral, if an edge u → v is InterDyck-contributing in G, it
must be an InterDyck-contributing edge in relaxed graph
G ′ (Corollary 4.2). Any InterDyck-contributing edge in G ′
must be a Dyck-contributing edge in an Lx -graph derived
fromG ′ (Lemma 4.4). Finally, the problem of deciding Dyck-
contributing edges is equivalent to deciding the correspond-
ing anchor-k nodes in the Lx -graph (Lemma 4.7). Putting
everything together, we have

Theorem 4.8. Let Lx be a Dyck language in InterDyck and

Lk , Mk ∈ ΣLx . If either an edge u
Lk
−−→ v or an edge v

Mk
−−→ u is

contributing to InterDyck-reachability in G , the node v is an

anchor-k node in the Lx -graph.

Corollary 4.9. If a node v is not an anchor-k node in the Lx -

graph, both edges u
Lk
−−→ v and v

Mk
−−→ u are non-contributing

edges for InterDyck-reachability in G.

Thus, the graph-simplification algorithm can remove from
G all edges that meet the criterion given in Corollary 4.9.

5 Graph-Simplification Algorithm

This section discusses the graph-simplification algorithm.
Section 5.1 describes the key steps in the algorithms. Sec-
tion 5.2 presents themain algorithm. Section 5.3 discusses the
correctness and complexity of the simplification algorithm.
5.1 Key Steps

There are two key steps in the graph simplification: con-
structing the Lx -graphs and identifying anchor-k nodes.
5.1.1 Lx -Graph Construction Consider an interleaved
Dyck language InterDyck = L1 ⊙ . . . ⊙ Ln . Given a relaxed

PLDI ’20, June 15–20, 2020, London, UK Yuanbo Li, Qirun Zhang, and Thomas Reps

Procedure 1: GetLxGraph(G, Lx)
Input : Edge-labeled relaxed bidirected graph G = (V , E), a Dyck language

Lx
Output :An Lx -graph Gx

1 rep_node← a disjoint-set of size |V |.

2 foreach u
l
−→ v ∈ E do

3 if l < ΣLx then

4 E ← E \ {u
l
−→ v }

5 if rep_node[u] == rep_node[v] then continue;
6 rep_node.union(u , v)
7 if degree(rep_node[u]) > degree(rep_node[v]) then
8 wb ← rep_node[u],ws ← rep_node[v]
9 else

10 wb ← rep_node[v],ws ← rep_node[u]
11 V ← V \ {ws }.
12 Let internal_edges be the edges betweenws andwb
13 foreach e ∈ internal_edges do
14 E ← E \ {e }
15 l ← getlabel(e)
16 if l ∈ ΣLx then

17 E ← E ∪ {wb
l
−→ wb }

18 foreach x ∈ In[ws] with x , wb do

19 foreach edge e = x
l
−→ ws do

20 E ← E \ {e } ∪ {x
l
−→ wb }

21 foreach x ∈ Out [ws] with x , wb do

22 foreach edge e = ws
l
−→ x do

23 E ← E \ {e } ∪ {wb
l
−→ x }

24 return Gx = (V , E)

graphG ′, to identify the anchor-k nodes, our algorithm needs
to construct an Li -graph for each i ∈ {1, · · · ,n}. An Li -graph
is essentially a contracted graph ofG ′. In particular, let t ′ be
a letter in ΣInterDyck \ ΣLi . The Li -graph is constructed by

contracting all u
t ′
−→ v edges in G ′.

We describe the Lx -graph construction of the motivat-
ing example in Figure 4a. Recall that we have InterDyck =
Db ⊙ Dp . The procedure iterates through non-Lp edges. In

Figure 4a, the first non-Lp edge is vx
Jд
−−→ va because Jд∈

ΣInterDyck \ ΣLp . The edge vx
Jд
−−→ va is contracted by col-

lapsing nodes vx and va . Nodes vx and va form a represen-

tative node {vx ,va} and the edge vx
Jд
−−→ va is removed. We

continue contracting non-Lp edges until there are no more
non-Lp edges. Figure 4b depicts the final Lp -graph.

To facilitate node collapsing, we adopt the standard disjoint-
set data structure. Procedure 1 gives theLx -graph-construction
algorithm. Line 1 initializes the disjoint-set rep_node. Given
a node u, rep_node[u] returns the representative node of u
in the graph. The union method always joins the smaller-
degree vertex to the larger-degree vertex. Lines 2-3 show that
the procedure iterates over all non-Lx edges in the graph.
Lines 4-11 perform node collapsing. To collapse the edge
e = u

l
−→ v , we merge nodes u,v to a representative set. Line

5 shows that if u,v have been merged together, we skip the
rest of the loop body. Lines 6-11 merge the smaller-degree
node between rep_node[u] and rep_node[v] into the larger
one. Lines 12-17 collapse all the non-Lx edges between nodes

rep_node[u] and rep_node[v], preserving only the Lx -edges.
Lines 18-23move all its adjacent edges into the other node for
the smaller-degree node of rep_node[u] and rep_node[v].

5.1.2 Anchor-k Node Identification The second step in
graph simplification is anchor-k node identification.Wemod-
ify the Fast-Dyck() algorithm by Zhang et al. [25] to collect
the anchor-k node information. We denote the modified
version as Fast-Dyck-Modified(). Recall that Fast-Dyck()
tracks the number of incoming edges with the same edge
label for each node in the graph. If there are two incom-
ing edges u

k
−→ v and w

k
−→ v with the same edge label k ,

and k is an open-parenthesis, then the Fast-Dyck algorithm
performs a node-collapsing between node u andw .

Fast-Dyck-Modified() leverages the node-collapsing pro-
cess in Fast-Dyck() to mark anchor-k nodes. In particular,
when Fast-Dyck() detects two incoming edges u

k
−→ v and

w
k
−→ v with an open-parenthesis edge label k . Fast-Dyck-

Modified() marks v as an anchor-k node according to the
anchor-k node definition. Through the marking process, we
collect all information to recover anchor-k nodes for the
Lx -graph. For any node v ∈ V (Lx), it is an anchor-k node iff
rep_node(v) is marked as an anchor-k node by Fast-Dyck-
Modified(). Finally, Fast-Dyck-Modified() returns the set
of collected anchor-k nodes in the Lx graph.
Notice that the original Fast-Dyck algorithm runs in

O(m logm) time. After the modification, the extra running
time for each node-merging isO(1), and thus the complexity
of Fast-Dyck-Modified is still O(m logm)

Example 5.1. We continue our example using the graph
shown in Figure 4b. We apply Fast-Dyck-Modified() on
this Lp -graph. Figure 4c gives the resulting graph. There
exist two L12-edges pointing to node {vs , ret2} and two L8-
edges pointing to the node {vt , ret1}. Therefore, Fast-Dyck-
Modified() collects the information that nodes vt , ret1 are
anchor-8 nodes and vs , ret2 are anchor-12 nodes.

5.2 The Simplification Algorithm

Algorithm 2 gives the graph-simplification algorithm. In lines
1-2, contrib_edges is initialized to an empty set. It contains
the set of potential InterDyck-contributing edges in the orig-
inal graphG when the algorithm terminates. We then obtain
the relaxed graphG ′ defined in Section 4.1. The loop iterates
over each Dyck language Li in InterDyck = L1 ⊙ · · · ⊙ Ln
(lines 3-14). It first builds the Li -graph based on Procedure 1.
After we construct the Li -graph, the algorithm invokes Fast-
Dyck-Modified() described in Section 5.1.2 to collect anchor-
k nodes in the Li -graph. The variable anchor_nodes stores
a set of anchor nodes of the form v_l , where v is the node
in the Li -graph, l is the open-parenthesis edge label for the
corresponding anchor. In lines 6-14, for each anchor node,
we add its corresponding contributing edges to the set con-
trib_edges. After collecting the contributing edges for each

Fast Graph Simplification for Interleaved Dyck-Reachability PLDI ’20, June 15–20, 2020, London, UK

vw

vx vy vs ret2 vz

va vb vt ret1 vc

L12

Jд L11 Kд M12

Jд

Jf L8 Kf M8

Kh

(a) The graph to be simplified.

va,b ,x ,y

vt , ret1

vc ,z

vs , ret2

vw

L8

L11

L8

L12

L12

(b) Constructed Lp -graph.

va,b ,x ,y ,
vc ,z,vw

vt , ret1

vs , ret2

L8

L11

L12

(c) Identifying anchor-k nodes based on
Fast-Dyck-Modified.

Figure 4. Collection of anchor-k node information. Figure 4a repeats the graph of our motivating example from Figure 1b.
Graph simplification involves repeated application of Algorithm 2. Figure 4b illustrates the Lp -graph construction result
based on Section 5.1.1 during the first application of the algorithm. Figure 4c gives the corresponding graph after running
Fast-Dyck-Modified described in Section 5.1.2. In Figures 4b and 4c, each L, J edge has a corresponding reverse M, K edge. We
omit reverse edges for brevity.

anchor-12: vs , ret2
anchor-8: vt , ret1
anchor-f : vb , vt
anchor-д: vy , vs , vw

(a) Collected anchor-k
node information.

vw

vx vy vs ret2 vz

va vb vt ret1 vc

L12

Jд Kд M12

Jf L8 Kf M8

(b) Resulting graph after remov-
ing non-contributing edges.

Figure 5. Elimination of non-contributing edges. Figure 5a
lists all anchor-k nodes identified in the first application of
Algorithm 2. Figure 5b gives the simplified graph after the
first application. It is the same as Figure 2a.

Algorithm 2: The graph simplification iteration.
Input : Edge-labeled directed graph G = (V , E), an InterDyck language

L = L1 ⊙ · · · ⊙ Ln ;
Output :A new edge-labeled directed graph Gf

1 contrib_edges← �
2 G′ ← RelaxedGraph(G)

3 for i ← 1 to n do

4 G′′i ← GetLxGraph(G′, Li)
5 anchor_nodes← Fast-Dyck-Modified(G′′i)
6 foreach v_l ∈ anchor_nodes do
7 foreach x ∈ In[v] do

8 foreach edge e = x
t
−→ v do

9 if t == l then
10 contrib_edges← contrib_edges ∪{e }

11 foreach x ∈ Out[v] do

12 foreach edge e = v
t
−→ x do

13 if t == l then
14 contrib_edges← contrib_edges ∪{e }

15 Gf ← (V ,contrib_edges)
16 return Gf

Li -graph, contrib_edges, the union is returned as the new
edge set of the graph. It serves as the input for the next
iteration (lines 15-16). The graph-simplification algorithm
terminates if there are no edges removed in one iteration.

Example 5.2. We illustrate how Algorithm 2 eliminates
non-contributing edges in the original graph of our moti-
vating example, i.e., Figure 1b and Figure 4a. After running
the Lx -graph construction (Procedure 1) and Fast-Dyck-
Modified for both the parenthesis language Lp and the
bracket language Lb , Figure 5a gives the anchor-k nodes
identified by the first application of Algorithm 2. It identifies
the non-contributing edges based on Lemma 4.7. For instance,
provided that vs is an anchor-12 nodes, all the incoming L12
edges to vs and outgoing M12 from vs edges are contributing
edges. By removing the non-contributing ones, we get the
resulting graph Figure 5b. By applying Algorithm 2 twomore
times, we obtain the final graph, shown in Figure 2c.

5.3 Correctness and Complexity

We establish the correctness of Algorithm 2 and analyze its
complexity. In lines 6-10, the algorithm collects all the in-
coming open-parenthesis anchor-labeled edges and outgoing
close-parenthesis anchor-labeled edges. Due to Theorem 4.8,
all contributing edges are in contrib_edges. Then it suffices
to show that the derived Lx -graph in line 4 is correct and
the Fast-Dyck-Modified() collects all anchor-k nodes.

Lemma5.3. Fast-Dyck-Modified() collects all anchor-k nodes
for each Li -graph.

Proof. Fast-Dyck-Modified() identifies two incoming edges
incident on the same node with the same open-parenthesis
label, performs a node collapsing, and generates an anchor-k
node. For each anchor-k node generated, it only removes one
edge in the graph. Thus, the previous two incoming edges
incident to the same node become one. Suppose an anchor-k
node has not been collected by Fast-Dyck-Modified(), there
will be two incoming edges to the anchor-k node with the
same open-parenthesis label. It contradicts the fact that Fast-
Dyck-Modified() guarantees to find any pair of incoming
edges with same open-parenthesis label [25]. □

Procedure 1 also correctly derives the Lx -graph. Specifi-
cally, lines 2 and 3 guarantee that we iterate over all edges
with non-Lx labels. For each u

l
−→ v , line 4 contracts this

PLDI ’20, June 15–20, 2020, London, UK Yuanbo Li, Qirun Zhang, and Thomas Reps

non-Lx edge based on Definition 4.3. Lines 6-11 merge the
smaller-degree node to the larger-degree one. Lines 13-23
move edges incident to smaller-degree node to the other.
Based on Section 5.1.1 the disjoint-set rep_node also joins
the smaller-degree node to the larger-degree one. All infor-
mation is updated correctly.

Theorem 5.4. For an InterDyck language InterDyck =

L1 ⊙ · · · ⊙ Ln and a graph G, Algorithm 2 computes an over-

approximation ϕ ′ of all InterDyck-contributing edges in G,
i.e., ϕ ′ ⊇ ϕ where ϕ denotes the exact solution.

Next, we analyze the complexity of each iteration of the
simplification. In Algorithm 2, the loop body in line 3-14
contains two procedure calls: GetLxGraph and Fast-Dyck-
Modified(). Given a graph withm edges, the time complex-
ity of Fast-Dyck-Modified() is O(m logm) [25]. When the
GetLxGraph procedure contracts an edge, it alwaysmoves all
smaller-degree node’s incident edges to the other. Therefore,
for any single edge u → v during the edge moving, either
the degree ofu is doubled or the degree ofv is doubled. Thus
the total number of edge moving is at most 2 logm. The time
complexity for GetLxGraph is O(m logm). The complexity
of the loop body in lines 3-14 in Algorithm 2 is O(m logm).
The overall algorithm iterates over all k Dyck languages in
InterDyck. k is usually considered as a constant. Therefore,
the time complexity of Algorithm 2 is O(m logm).

6 Evaluation

We implemented the graph-simplification algorithm, and—
using three different InterDyck-reachability solvers—applied
it to the problem of a context- and field-sensitive taint anal-
ysis for Android applications [9]. The experiments were
performed on a 16GB memory machine with an Intel Xeon
2.10GHz CPU, running Ubuntu 18.04.
We compared three InterDyck-reachability algorithms

on both the original and simplified graphs. Our evaluation
focused on addressing the following two research questions:

• RQ1: How does graph size influence the size reduction
and the efficiency of the simplification algorithm?
• RQ2: How much can graph simplification improve
the performance and precision of various InterDyck-
reachability algorithms?

6.1 Experimental Setup

The Client Analysis. The experiment was conducted
with a context- and field-sensitive taint analysis for Android
applications [9], applied to 95 Google App-store applica-
tions. Context-sensitivity is captured by a Dyck language
Dp , where each open parenthesis Li represents a method call,
and a matching close parenthesis Mi represents a correspond-
ing return. The analysis uses another Dyck language Db to
encode field sensitivity, where an open bracket Jf represents
an assignment to field f and a close bracket Kf represents

an access on field f . Therefore, the analysis is based on In-
terDyck-reachability where InterDyck = Db ⊙ Dp .

We performed taint analysis on both the original and sim-
plified graphs. The set of subject Android applications in-
cludes the top 30 free apps, as well as some popular apps
in the Editor’s Choice list as of January 2015. We extracted
the taint-analysis graphs using the tools from the work of
Huang et al. [9]. Note that the original taint analysis [9] is
demand-driven, while ours is exhaustive. The tool success-
fully generates graphs from 95 out of the 150 Google store
apps provided in the implementation.2

The 95 obtained taint-analysis graphs have various sizes,
ranging from a few hundred nodes to more than 100,000
nodes. On average, each graph consists of 40,129 nodes and
147,009 edges. These taint-analysis graphs also contain more
call/return edges than field read/write edges. On average,
each taint-analysis graph has 21,559 different calls/returns
and 2,250 different field accesses.

InterDyck-Reachability Algorithms. We used the fol-
lowing three InterDyck-reachability algorithms as the graph-
reachability engine for variants of the taint analysis:

• CFL-reachability algorithm [14]. This method is the tra-
ditional over-approximation for InterDyck-reachability.
To approximate Db ⊙ Dp , we used a regular language
Rp to over-approximate Dp . The language Db ⊙ Rp is
still context-free, so one can apply the CFL-reachability
algorithm to solve the (Db ⊙ Rp)-reachability problem.
• SPDS-reachability algorithm [19]. In our client analysis,
the synchronized pushdown system (SPDS) separates
the analysis into a context-insensitive, field-sensitive
analysis and a context-sensitive, field-insensitive anal-
ysis. Each problem can be effectively formulated as a
CFL-reachability problem. The SPDS algorithm solves
them independently and intersects the results.
• LCL-reachability algorithm [26]. The linear-conjunctive-
languages (LCLs) properly contain the InterDyck
languages. Unlike CFL- and SPDS-reachability, LCL-
reachability precisely models InterDyck-reachability.
The LCL-reachability algorithm, in contrast, is an over-

approximating algorithm, which means that it may
return a superset of the exact result, i.e., there may be
pairs of nodes that are connected by an accepting-state
summary edge that are not InterDyck-reachable.

We implemented all algorithms in C++.3 All experiments
were repeated three times, and we report the average of the
three trials to improve the reliability of the collected results.

Fast Graph Simplification for Interleaved Dyck-Reachability PLDI ’20, June 15–20, 2020, London, UK

0 1 2 3 4
·1050

0.2

0.4

0.6

0.8

1

Number of edges in the graph

E
d
g
e
re
d
u
ct
io
n
ra
ti
o
|E

(G
f
)|
/
|E

(G
)|

(a) Plot of the graph-reduction ratio. In general, the reduction
ratio is lower than 0.8. A lower ratio indicates there are fewer
edges remaining in the simplified graph.

0 1 2 3 4
·1050

10

20

30

40

50

Number of edges in the graph

S
im

p
li

fi
ca

ti
on

ti
m

e
(s

)

(b) The relation between graph size and graph-simplification
time. The data shows that, in practice, the running time of the
graph-simplification algorithm is linear in the size of the graph.

Figure 6. Amount of graph reduction, and running time of the graph-simplification algorithm as a function of graph size.

6.2 RQ1: Graph-Simplification Efficiency

Our graph-simplification algorithm reduces an original graph
G toGf . We define the graph-reduction ratio as r = |E(Gf) |

|E(G) | .
Figure 6a presents the simplification results w.r.t. ratio r . On
average, r = 0.743, indicating that the other 25.7% edges have
been removed from the original graph G by simplification.
As graph size increases, Figure 6a indicates that there

is a very slight trend for ratio r to increase. However, for
most graphs, the reduction ratio is below 0.8, even for large
graphs with around 400K edges. Thus, simplification can
consistently remove a significant number of edges.
In terms of the running time, the graph simplification is

much faster than the InterDyck-reachability algorithms
in most cases. The only exception is when the graph size
is very small (i.e., when the number of edges is less than
200), the simplification procedure can take time comparable
to the InterDyck-reachability algorithms. Figure 6b gives
the relationship between graph size and running time of
the graph-simplification algorithm. It demostrates that the
asymptotic running time of the algorithm is close to linear
in the size of the (original) graph.

Summary. On average, after the graph-simplification al-
gorithm there are 74.3% of the edges remains in the simplified
graphs. The algorithm can consistently remove more than
20% of the edges in large graphs. The running time of the sim-
plification algorithm is almost linear in practice. The linear-
time performance allows it to serve as a pre-processing step
for an InterDyck-reachability algorithm.
2Both the implementation and the subject apps are publicly available at
https://github.com/proganalysis/type-inference.
3The implementation is available at https://www.cc.gatech.edu/~qrzhang/
projects/interdyck/interdyck.html.

Table 2. Timeout statistics in the experiments.

Finished Finished Timed out
on G,G ′ only on G ′ on G,G ′

LCL 41 13 41
SPDS 9 5 81
CFL 5 2 88

6.3 RQ2: Performance and Precision Improvement

of InterDyck-Reachability Algorithms

Performance. We set a time budget of 300 seconds for
all InterDyck-reachability algorithms. Table 2 presents the
timeout information of different algorithms. Typically, the
CFL-reachability algorithm runs out of time for graphs with
more than 1K edges. The SPDS-reachability algorithm runs
out of time for graphs with more than 5K edges. The LCL-
reachability algorithm usually finishes processing graphs
with fewer than 70K edges within the time budget.

We use the following metric to the measure performance
improvement: given the running timeT on original graphG ,
and the running time Ts on the simplified graph, the perfor-
mance ratio is defined as Ts

T . If an InterDyck-reachability
algorithm finishes on both the original and the simplified
graphs, we collect the performance ratio; the data is plot-
ted in Figure 7a. The plot shows that for the majority of
graphs, graph simplification reduces the running time of
InterDyck-reachability algorithms to less than 40% of the
original running time. On all graphs the running time is
reduced by more than 20%.

In practice, it is also necessary to take graph-simplification
time into account. We define T ′ as the time needed for both
graph simplification and running the InterDyck-reachability
algorithm on the simplified graphs. Figure 8a presents the

https://github.com/proganalysis/type-inference
https://www.cc.gatech.edu/~qrzhang/projects/interdyck/interdyck.html
https://www.cc.gatech.edu/~qrzhang/projects/interdyck/interdyck.html

PLDI ’20, June 15–20, 2020, London, UK Yuanbo Li, Qirun Zhang, and Thomas Reps

101 102 103 104 105

0

0.2

0.4

0.6

0.8

Number of edges in the original graph

P
er
fo
rm

a
n
ce

ra
ti
o
T
s
/
T

LCL
SPDS
CFL

(a) Performance improvements. The running
time of all benchmark programs is reduced to
less than 80% after the graph simplification.

101 102 103 104 105
0

0.2

0.4

0.6

0.8

1

Number of edges in the original graph

P
re
ci
si
on

ra
ti
o
P
s
/P

LCL
SPDS
CFL

(b) Precision improvements. For about two-
thirds of the benchmark programs, the In-
terDyck algorithms find less than 80% of
the reachable pairs in simplified graphs: the
discarded pairs are false positives.

101 102 103 104 105

0.2

0.4

0.6

0.8

1

Number of edges in the original graph

M
em

or
y
co
n
su
m
p
ti
on

ra
ti
o
M

s
/M

LCL
SPDS
CFL

(c)Memory-usage improvements. For most
of the graphs, the simplification process re-
duces the memory consumption of the In-
terDyck-reachability algorithms by half.

Figure 7. The effect of the graph simplification on InterDyck-reachability algorithms. Running on a simplified graph helps
improve the performance, precision, and memory usage of the algorithm. The x-axis represents the number of edges in the
original graphs, and the y-axis indicates the improvement ratio. Each plot shows the improvement on one benchmark program.
A lower y-axis value indicates a better degree of improvement from graph simplification.

0 20 40 60 80
0

1

2

3

4

5

LCL running time in original graph (s)

T
im

e
R
at
io

T
/T

′

(a) Improvement on LCL-reachability.

10−2 10−1 100 101 102
0

1

2

3

4

5

SPDS running time in original graph (s)

T
im

e
R
at
io

T
/T
′

(b) Improvement on SPDS-reachability.

10−1 100 101 102
0

1

2

3

4

5

CFL running time in original graph (s)

T
im

e
R
at
io

T
/T
′

(c) Improvement on CFL-reachability.

Figure 8. Performance comparison. In these comparisons, we compare two approaches to solve the InterDyck-reachability
problem: directly running an InterDyck algorithm on the original graph (with timeT), versus performing graph simplification
and then running the same InterDyck algorithm on the simplified graph (with time T ′). The value on the y-axis indicates the
speedup due to graph simplification. y = 1 means that the time needed to run InterDyck algorithm on the original graph is
the same as first performing graph simplification and then running the algorithm on the simplified graph.

LCL-reachability result. From the plot, we see that, as the
running time of the LCL-reachability algorithm increases,
the cost of graph simplification becomes less and less sig-
nificant. If the LCL-reachability algorithm completes on the
original graph within 7 seconds, it is not worth performing
graph simplification. However, for larger graphs, the time
graph simplification is recouped. The observation is consis-
tent for both SPDS- and CFL-reachability algorithm w.r.t.

Figure 8b and Figure 8c. Overall, running graph simplifica-
tion and performing an InterDyck-reachability algorithm
on the simplified graph is 2.18× faster than running the same
algorithm on the original graph.

Precision. We define the precision ratio as y
x where x

and y denote the number of InterDyck-reachable pairs ob-
tained from running the InterDyck-reachability algorithm
on the original and simplified graphs, respectively. Figure 7b
gives information about the precision improvements. It is
interesting to note that the precision improvement is quite
significant. On average, graph simplification helps Inter-
Dyck-reachability to generate a solution with only 64.92%
pairs of the solution for the original graph (discarded ones
are false positives). For the LCL-reachability algorithm, there
are three graphs where graph simplification helps to detect
more than 80% of pairs as false positives in the original solu-
tion. Moreover, there is a trend that with increasing number

Fast Graph Simplification for Interleaved Dyck-Reachability PLDI ’20, June 15–20, 2020, London, UK

of edges in the graph, the precision improvement from graph
simplification is likely to be more significant.

Memory Consumption. Asmentioned in Section 6.2, the
average amount of edges in the simplified graph is 74.3%
of the original graphs. However, Figure 7c shows that, in
most cases, the InterDyck-reachability algorithms consume
around half the memory when running on the simplified
graph. On average, running InterDyck-reachability algo-
rithms on simplified graphs uses only 57.37% memory.

6.4 Discussion

Our graph-simplification algorithm is based on the bidirected
Fast-Dyck algorithm onG ′. A natural extension is to utilize
a general Dyck-reachability algorithm on G to identify the
InterDyck-contributing edges in G. However, the Dyck-
relation on general digraphs is not an equivalence relation.
We have to resort to a more expensive (sub)cubic-time Dyck-
reachability algorithm to identify Dyck-contributing edges
in G. In Table 2, we have seen that the SPDS-reachability
algorithm based-on Dyck-reachability does not scale well in
practice. Moreover, a recent result by Chatterjee et al. [1] has
improved Fast-Dyck from O(m logm) time to O(m) time. It
is interesting to apply their algorithm to further improve the
running time of graph simplification. On the other hand, our
evaluation (Figure 6b) shows that the Fast-Dyck adopted
in our current algorithm, though being in O(m logm) time,
scales almost linearly in practice.
In the work of Späth et al. [19], it has been observed

that over-approximation for InterDyck reachability almost
never happens in practice. Their conclusion is supported
by the empirical study of a typestate analysis for relatively
small graphs. In our experiments, we observed significant
over-approximation of taint analysis. In general, the degree
of over-approximation depends on what kind of information
the client analysis is computing.

We implemented the LCL- andCFL-reachability algorithms
given in the original references. The original SPDS paper
presents a demand-driven reachability algorithm which also
accepts the prefix of the InterDyck languages, i.e., the algo-
rithm acceptswordswith unmatched open parentheses/brack-
ets, such as “L1J1M1”. Our SPDS implementation is restricted
to only the InterDyck language and always computes the
all-pairs InterDyck-reachability results.

7 Related Work

Many program-analysis problems can be formulated as an
InterDyck-reachability problem [3, 18, 20–22, 24]. However,
solving InterDyck-reachability is undecidable [15]. Existing
approaches use different techniques to over-approximate the
exact solution for InterDyck-reachability problems. Tradi-
tional approaches include over-approximating some Dyck
languages in InterDyck using regular languages [7, 8]. Access-
path-based analysis approximates field-sensitivity by restrict-
ing the access-paths with a bounded length, and thus also

over-approximates InterDyck-reachability [4, 12]. The re-
cent work by Späth et al. [19] over-approximates InterDyck-
reachability using synchronized pushdown systems. Zhang
and Su [26] propose linear-conjunctive-language reacha-
bility to precisely formulate InterDyck-reachability, and
provide an over-approximating algorithm for solving the
LCL-reachability problem.

The proposed graph-simplification algorithm is based on
the Fast-Dyck algorithm proposed by Zhang et al. [25]. Chat-
terjee et al. [1] give an O(m)-time algorithm for solving bidi-
rected Dyck-reachability, which improves the O(m logm)
bound by Zhang et al. [25]. In practice, many techniques
have been proposed to improve CFL-reachability-based anal-
yses [2, 23, 27]. Our work focuses on simplifying the in-
put graphs for InterDyck-reachability, and is applicable to
any existing sound InterDyck-reachability-based analysis.
Graph simplification techniques are also studied in other
program-analysis applications. In pointer analysis, various
techniques [5, 6, 17] are applied to reduce the size of the
constraint graphs for inclusion-based analysis. For example,
the work by Hardekopf and Calvin [6] focuses on deriving
pointer-equivalence and location-equivalence relationships
between variables. They simplify the graphs by collapsing
the equivalent nodes. Our graph simplification focuses on
eliminating irrelevant edges.

8 Conclusion

This paper has proposed a new graph-simplification algo-
rithm for InterDyck-reachability. Our key insight is to re-
duce the graph by eliminating graph edges that do not con-
tribute to any InterDyck-paths. We have applied the sim-
plification algorithm to context- and field-sensitive taint
analysis for Android. The experimental results demonstrate
that graph simplification can significantly speed up existing
InterDyck-reachability algorithms. Moreover, graph simpli-
fication improves both the precision and the memory-usage
of the client analysis.

Acknowledgments

We would like to thank our shepherd and the anonymous
PLDI reviewers for valuable feedback on earlier drafts of
this paper, which helped improve its presentation. We thank
Gabriel Eiseman for helpful comments. This work was sup-
ported in part by the United States National Science Foun-
dation (NSF) under Grant No. 1917924; by a gift from Ra-
jiv and Ritu Batra; by ONR under grants N00014-17-1-2889
and N00014-19-1-2318. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. Opinions,
findings, conclusions, or recommendations expressed in this
publication are those of the authors, and do not necessarily
reflect the views of the sponsoring agencies.

PLDI ’20, June 15–20, 2020, London, UK Yuanbo Li, Qirun Zhang, and Thomas Reps

References

[1] Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogian-
nis. 2018. Optimal Dyck reachability for data-dependence and alias
analysis. Proc. ACM Program. Lang. 2, POPL (2018), 30:1–30:30.

[2] Swarat Chaudhuri. 2008. Subcubic algorithms for recursive state
machines. In ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages. 159–169.
[3] Ben-Chung Cheng and Wen-mei W. Hwu. 2000. Modular interproce-

dural pointer analysis using access paths: design, implementation, and
evaluation. In ACM SIGPLAN Conference on Programming Language

Design and Implementation. 57–69.
[4] Arnab De and Deepak D’Souza. 2012. Scalable Flow-Sensitive Pointer

Analysis for Java with Strong Updates. In European Conference on

Object-Oriented Programming. 665–687.
[5] Manuel Fähndrich, Jeffrey S. Foster, Zhendong Su, and Alexander

Aiken. 1998. Partial Online Cycle Elimination in Inclusion Constraint
Graphs. InACMSIGPLANConference on Programming Language Design

and Implementation. 85–96.
[6] Ben Hardekopf and Calvin Lin. 2007. Exploiting Pointer and Location

Equivalence to Optimize Pointer Analysis. In Static Analysis. 265–280.
[7] M. A. Harrison. 1978. Introduction to Formal Language Theory. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA.
[8] John E. Hopcroft and Jeffrey D. Ullman. 1979. Introduction to Automata

Theory, Languages and Computation. Addison-Wesley.
[9] Wei Huang, Yao Dong, Ana Milanova, and Julian Dolby. 2015. Scalable

and precise taint analysis for Android. In ACM SIGSOFT International

Symposium on Software Testing and Analysis. 106–117.
[10] Vineet Kahlon. 2009. Boundedness vs. Unboundedness of Lock Chains:

Characterizing Decidability of Pairwise CFL-Reachability for Threads
Communicating via Locks. In ACM/IEEE Symposium on Logic in Com-

puter Science. 27–36.
[11] John Kodumal and Alexander Aiken. 2004. The set constraint/CFL

reachability connection in practice. In ACM SIGPLAN Conference on

Programming Language Design and Implementation. 207–218.
[12] Johannes Lerch, Johannes Späth, Eric Bodden, and Mira Mezini. 2015.

Access-Path Abstraction: Scaling Field-Sensitive Data-Flow Analysis
with Unbounded Access Paths. In International Conference on Auto-

mated Software Engineering. 619–629.
[13] G. Ramalingam. 2000. Context-sensitive synchronization-sensitive

analysis is undecidable. ACM Trans. Program. Lang. Syst. 22, 2 (2000),
416–430.

[14] Thomas W. Reps. 1998. Program analysis via graph reachability. Infor-
mation & Software Technology 40, 11-12 (1998), 701–726.

[15] Thomas W. Reps. 2000. Undecidability of context-sensitive data-
dependence analysis. ACM Trans. Program. Lang. Syst. 22, 1 (2000),
162–186.

[16] Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. 1995. Precise
Interprocedural Dataflow Analysis via Graph Reachability. In ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
49–61.

[17] Atanas Rountev and Satish Chandra. 2000. Off-line variable substi-
tution for scaling points-to analysis. In ACM SIGPLAN Conference on

Programming Language Design and Implementation. ACM, 47–56.
[18] Micha Sharir and Amir Pnueli. 1981. Two approaches to interpro-

cedural data flow analysis. In Program Flow Analysis: Theory and

Applications, Steven S. Muchnick and Neil D. Jones (Eds.). Prentice-
Hall, 189–234.

[19] Johannes Späth, Karim Ali, and Eric Bodden. 2019. Context-, flow-,
and field-sensitive data-flow analysis using synchronized Pushdown
systems. Proc. ACM Program. Lang. 3, POPL (2019), 48:1–48:29.

[20] Manu Sridharan and Rastislav Bodík. 2006. Refinement-based context-
sensitive points-to analysis for Java. In ACM SIGPLAN Conference on

Programming Language Design and Implementation. 387–400.
[21] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. 2005.

Demand-driven points-to analysis for Java. In ACM SIGPLAN Interna-

tional Conference on Object-Oriented Programming, Systems, Languages,

and Applications. 59–76.
[22] Hao Tang, Xiaoyin Wang, Lingming Zhang, Bing Xie, Lu Zhang, and

Hong Mei. 2015. Summary-Based Context-Sensitive Data-Dependence
Analysis in Presence of Callbacks. In ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages. 83–95.
[23] Guoqing Xu, Atanas Rountev, and Manu Sridharan. 2009. Scaling

CFL-Reachability-Based Points-To Analysis Using Context-Sensitive
Must-Not-Alias Analysis. In European Conference on Object-Oriented

Programming. 98–122.
[24] Dacong Yan, Guoqing (Harry) Xu, and Atanas Rountev. 2011. Demand-

driven context-sensitive alias analysis for Java. In ACM SIGSOFT Inter-

national Symposium on Software Testing and Analysis. 155–165.
[25] Qirun Zhang, Michael R. Lyu, Hao Yuan, and Zhendong Su. 2013. Fast

algorithms for Dyck-CFL-reachability with applications to alias anal-
ysis. In ACM SIGPLAN Conference on Programming Language Design

and Implementation. 435–446.
[26] Qirun Zhang and Zhendong Su. 2017. Context-sensitive data-

dependence analysis via linear conjunctive language reachability. In
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages. 344–358.
[27] Qirun Zhang, Xiao Xiao, Charles Zhang, Hao Yuan, and Zhendong

Su. 2014. Efficient subcubic alias analysis for C. In ACM SIGPLAN

International Conference on Object-Oriented Programming, Systems,

Languages, and Applications. 829–845.
[28] Xin Zheng and Radu Rugina. 2008. Demand-driven alias analysis for

C. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages. 197–208.

	Abstract
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	3.1 Dyck Language and L-Reachability
	3.2 InterDyck-Reachability
	3.3 Problem Formulation

	4 Identifying Contributing Edges
	4.1 Graph Relaxation: From G to G
	4.2 Formulation Relaxation: From InterDyck-Reachability to Dyck-Reachability
	4.3 Identifying Dyck-Contributing Edges

	5 Graph-Simplification Algorithm
	5.1 Key Steps
	5.2 The Simplification Algorithm
	5.3 Correctness and Complexity

	6 Evaluation
	6.1 Experimental Setup
	6.2 RQ1: Graph-Simplification Efficiency
	6.3 RQ2: Performance and Precision Improvement of InterDyck-Reachability Algorithms
	6.4 Discussion

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

