
EVA: A Symbolic Approach to Accelerating Exploratory Video
Analytics with Materialized Views

Zhuangdi Xu
∗

Georgia Institute of Technology

xzdandy@gatech.edu

Gaurav Tarlok Kakkar
∗

Georgia Institute of Technology

gkakkar7@gatech.edu

Joy Arulraj

Georgia Institute of Technology

arulraj@gatech.edu

Kishore Ramachandran

Georgia Institute of Technology

rama@cc.gatech.edu

ABSTRACT

Advances in deep learning have led to a resurgence of interest

in video analytics. In an exploratory video analytics pipeline, a

data scientist often starts by searching for a global trend and then

iteratively refines the query until they identify the desired local

trend. These queries tend to have overlapping computation and

often differ in their predicates. However, these predicates are com-

putationally expensive to evaluate since they contain user-defined

functions (UDFs) that wrap around deep learning models.

In this paper, we present EVA, a video database management sys-

tem (VDBMS) that automatically materializes and reuses the results

of expensive UDFs to facilitate faster exploratory data analysis. It

differs from the state-of-the-art (SOTA) reuse algorithms in tradi-

tional DBMSs in three ways. First, it focuses on reusing the results of

UDFs as opposed to those of sub-plans. Second, it takes a symbolic

approach to analyze predicates and identify the degree of overlap

between queries. Third, it factors reuse into UDF evaluation cost

and uses the updated cost function in critical query optimization

decisions like predicate reordering and model selection. Our empir-

ical analysis of EVA demonstrates that it accelerates exploratory

video analytics workloads by 4× with a negligible storage over-

head (1.001×). We demonstrate that the reuse algorithm in EVA

complements the specialized filters adopted in SOTA VDBMSs.

ACM Reference Format:

Zhuangdi Xu, Gaurav Tarlok Kakkar, Joy Arulraj, and Kishore Ramachan-

dran. 2022. EVA: A Symbolic Approach to Accelerating Exploratory Video

Analytics with Materialized Views. In Proceedings of the 2022 International

Conference on Management of Data (SIGMOD ’22), June 12–17, 2022, Philadel-

phia, PA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/

3514221.3526142

1 INTRODUCTION

Researchers have presented novel techniques for efficiently ana-

lyzing visual data at scale in video database management systems

∗
Both authors contributed equally to the paper.

This work is licensed under a Creative Commons

Attribution International 4.0 License.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9249-5/22/06.

https://doi.org/10.1145/3514221.3526142

--- Q1: Suspicious Vehicle Tracking

SELECT timestamp , bbox, VEHICLE_COLOR(bbox, frame)

FROM VIDEO CROSS APPLY

OBJECT_DETECTOR(frame) ACCURACY 'HIGH'

WHERE timestamp > 6pm AND label = 'car'

AND AREA(bbox) > 0.3 AND

VEHICLE_MODEL(bbox, frame) = 'SUV';

--- Q2: Suspicious Vehicle Tracking

SELECT timestamp , bbox, LICENSE(bbox, frame)

FROM VIDEO CROSS APPLY

OBJECT_DETECTOR(frame) ACCURACY 'HIGH'

WHERE timestamp > 7pm AND timestamp < 8pm

AND label = 'car' AND AREA(bbox) > 0.3

AND VEHICLE_COLOR(bbox, frame) = 'red'

AND VEHICLE_MODEL(bbox, frame) = 'SUV';

-- Q3: Suspicious Vehicle Tracking

SELECT timestamp FROM VIDEO CROSS APPLY

OBJECT_DETECTOR(frame) ACCURACY 'HIGH'

WHERE timestamp > 4pm AND label= 'car' AND

AREA(bbox)>0.15 AND LICENSE(bbox, frame)= 'XYZ60';

--- Q4: Traffic Monitoring

SELECT timestamp , COUNT(*) FROM VIDEO CROSS APPLY

OBJECT_DETECTOR(frame) ACCURACY 'LOW' WHERE

label = 'car' AND AREA(bbox) > 0.15

GROUP BY timestamp;

Listing 1: Motivating Example — Illustration of overlapping

computation in exploratory video analytics queries from two applications

for: (1) suspicious vehicle tracking, and (2) traffic monitoring.

(VDBMSs), including sampling, filtering, and specialized neural net-

works [35, 36, 44]. However, in exploratory video analytics, queries

often exhibit a significant overlap of computation due to redundant

execution of user-defined functions (abbrev., UDFs) associated with

computer vision tasks (e.g., object detection). Prior efforts in video

analytics have not extensively studied the problem of materializing

and reusing the results of expensive UDFs. While there have been

efforts in traditional database management systems (DBMSs) to

handle expensive UDFs [13, 17, 19, 27, 45, 50], they do not leverage

all of the opportunities present in video analytics.

Motivation. Consider a law enforcement officer analyzing a

video data set for tracking a suspicious vehicle with the help of a

witness. They typically first search for a global trend and then iter-

atively refine the query until they find the desired local trend [17].

https://doi.org/10.1145/3514221.3526142
https://doi.org/10.1145/3514221.3526142
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3514221.3526142

During this query refinement process, queries tend to have overlap-

ping computation. Initially, the witness may only recall the vehicle

model (e.g., SUV) and the approximate time-frame in which they

saw the vehicle (e.g., night time). So, the officer starts with 𝑄1 in

Listing 1 that searches for all SUVs present during that time-frame

to identify the suspicious vehicle. While going over the frames with

SUVs returned by𝑄1, the witness might recall the color of the vehi-

cle (e.g., red). Then, the officer narrows down the search space and

looks for the license plate of all red-colored SUVs (𝑄2). Lastly, in

𝑄3, the officer searches the entire dataset for the suspicious vehicle

using the license plate information.

Multiple applications may query over the same video and their

queries may also contain overlapping computation. For instance, a

traffic planner may be interested in analyzing the traffic congestion

over the entire day using𝑄4. This task only requires a less-accurate

(and faster) object detection model. Across these queries, several

UDFs are redundantly evaluated (i.e., VehicleModel, ObjectDe-

tector, VehicleColor, Area, and License) on many frames. We

seek to accelerate these queries by materializing and reusing the re-

sults of expensive UDFs, since these functions dominate the overall

query processing time.

Manual Approach. The VDBMS could offload the burden of

materializing the results to the application developers. With this

approach, the developer manually decides to materialize the UDF re-

sults and then rewrites subsequent queries to reuse the materialized

results. However, this approach suffers from two limitations. First,

in exploratory video analytics, the data analyst often composes the

subsequent query after examining the results of the current query.

So they are not aware of reuse opportunities in advance. They will

also need to manually refactor the query to leverage materialized

views and determine whether the results of an UDF is worth mate-

rializing. This approach is error-prone and not suitable for complex

queries. Second, the developer may not be aware of all the other

applications running on the VDBMS. So, it is not possible to exploit

opportunities for reusing results (i.e., reuse opportunities) across

applications. For example, the low-accuracy ObjectDetector in

𝑄4 of Listing 1 may reuse the results of high-accuracy Object-

Detector from 𝑄1 to 𝑄3, even though they are from different

applications.

Challenges. We seek to automatically identify and leverage

reuse opportunities in a VDBMS. However, there are three chal-

lenges with accomplishing this task.

I - Identifying Reuse Opportunities. Consider queries 𝑄1

and𝑄2 in Listing 1. We notice that certain UDFs are present in both

queries (i.e., VehicleModel, VehicleColor, ObjectDetector,

and Area), indicating an opportunity for reusing results. But, it

is challenging to determine the degree of overlap between the

predicates in 𝑄1 and 𝑄2 for each UDF due to the complexity of

the expressions. Furthermore, the VDBMS must search for reuse

opportunities across all previously executed queries (i.e., not just

compare two queries). For example, 𝑄3 in Listing 1 may reuse the

results of License from 𝑄2 and ObjectDetector from both 𝑄1

and 𝑄2.

Reuse algorithms in traditional DBMSs [17, 19, 27, 33, 50, 55, 56, 64]

rely on exact matching of sub-plans between two queries. This rigid

approach does not handle the queries shown in Listing 1, as they

vary in their complex predicates. Researchers have recently pre-

sented novel systems, such as Recycler [45] and HashStash [13],

that extend query matching to compare different predicates. How-

ever, Recycler only supports a single range predicate, and Hash-

Stash only supports a few hard-coded rules for predicate analyses.

We need a technique for capturing the semantics of these predicates

and accurately determining the degree of overlap between them.

II - AutomaticallyRewritingtheQueries. Second, a query

may contain multiple UDFs, and each of them may differ in degree

of reuse. For example, ObjectDetector in𝑄3 may reuse the detec-

tion results for frames after 6 pm from𝑄1. In contrast, License in𝑄3

needs to be evaluated over a subset of vehicle bounding boxes from

those frames, where Area (bbox) is between 0.15 and 0.3 (i.e., rel-

ative to the frame size). In traditional DBMSs, rewriting queries

to facilitate reuse involves substituting the sub-tree identified via

query graph matching with a different sub-tree that reads from

the materialized view. In contrast, reusing UDF results in queries

shown in Listing 1 involves rewriting every UDF instance. The sub-

stitution technique used in traditional DBMSs works for sub-tree

with root operator nodes (e.g., projection and join operators). But

it does not support selection operator with multiple UDF instances

(e.g., 𝑄2).

III - Reuse Impacts Cost of UDF Evaluation. Third, When

the VDBMS replaces the UDF invocation with a view, it impacts

several query optimization decisions (e.g., predicate reordering

and model selection). For example, the optimal evaluation order

of VehicleModel and VehicleColor UDFs in 𝑄2 is to evaluate

VehicleModel before VehicleColor. This is because the VDBMS

can fully reuse their results from𝑄1. If the VDBMS were to evaluate

VehicleColor before VehicleModel, then it must unnecessarily

evaluate the color of vehicles that are not SUVs (as there results are

not computed in𝑄1). Similarly, when the VDBMS selects a concrete

model for the logical ObjectDetector in 𝑄4, even though a low-

accuracy model would suffice for the traffic analysis application, it

chooses to use the results of a high-accuracy model from the earlier

queries in the suspicious vehicle tracking application.

Our Approach. In this paper, we present EVA, a VDBMS that

automatically identifies opportunities for reusing UDF results to

accelerate exploratory video analytics. EVA uses a novel technique

for analysing UDF-based predicates using symbolic computing to

determine the degree of reuse across queries for a given UDF. It

employs a conditional apply operator to automatically transform

UDF invocations to reuse materialized results from previous queries.

Its ranking functions that guide predicate reordering and model

selection decisions take the availability of reuse opportunities into

consideration to determine the cost of UDF evaluation.

Contributions. We make the following contributions:

• We present a novel technique for determining how to reuse

UDF results across queries using symbolic computing at query

optimization time. The optimizer symbolically analyzes the

predicates associated with every UDF invocation to identify

opportunities for reusing results. We formulate transformation

rules in EVA’s Cascades-style optimizer to rewrite queries to

leverage views.

• We propose a materialization-aware ranking function for re-

ordering UDF-based predicates to accelerate queries, and pro-

vide the theoretical analysis. We reduce the model selection

task to the weighted set cover problem and present a greedy

algorithm that leverages symbolic computing to maximize

reuse.

• We introduce a benchmark called vbench for evaluating the

efficacy of reuse algorithms in exploratory video analytics. We

develop one baseline, HashStash [13], by tailoring the SOTA

techniques for reusing results in traditional DBMSs to video

analytics. We implement a second baseline around a tuple-

level (i.e., frame-level) function result caching scheme within

EVA’s execution engine. We show that EVA outperforms

these baselines on workloads with both low- and high-reuse

potential. We also illustrate that the reuse algorithm used in

EVA is complimentary to the widely-used filtering technique

for accelerating video analytics.

2 BACKGROUND

In traditional DBMSs, the optimizer transforms the given SQL

query into a query plan tree whose internal nodes are relational

algebraic operators (e.g., projection and selection). So, these systems

reduce the problem of caching and reusing intermediate results

to a sub-tree (i.e., part of the plan tree) matching problem [50].

This approach suffers from two limitations in VDBMSs. First, UDFs

are extensively used for exploratory video analytics. So, it is not

sufficient to only identify reuse opportunities where sub-trees of

two query plan trees are identical. As illustrated in Listing 1, even

when the trees are distinct, the VDBMS should reuse results across

overlapping UDF computations. Second, this approach does not

capture reuse opportunities within an operator as it operates at the

level of operators (i.e., tree nodes). When the selection operator

contains multiple expensive UDF-based predicates (e.g., 𝑄2), all of

these intra-operator predicates are candidates for reuse.

To address these limitations, EVA leverages a novel technique for

better identifying reuse opportunities using symbolic computing

(elaborated in §3).

Symbolic Computing. Symbolic computing [60] focuses on al-

gorithmic manipulation of objects. Except for constants and vari-

ables, every arithmetic expression is considered as the symbol of

an operator followed by a sequence of operands. Researchers have

designed computer algebra systems that are capable of symbolic

computation (e.g., Sympy [43], Mathematica [29]).

EVA uses symbolic computing to analyze and simplify complex

predicates. For example, it reduces "timestamp > 6pmOR timestamp

> 9pm" to "timestamp > 6pm". We discuss how EVA uses symbolic

computing to analyze complex predicates in § 4.1.

Apply Operator. In relational algebra, the apply operator is

used to formulate correlated execution of sub-queries [15, 18]. It

takes a relational input 𝑅 and a parameterized expression 𝐸 (𝑟), and
evaluates the expression 𝐸 (𝑟) for each row 𝑟 ∈ 𝑅 and emits the

tuples obtained by joining 𝑟 and 𝐸 (𝑟). Formally, it is defined as [18]:

𝑅 𝒜⊗ 𝐸 =
⋃
𝑟 ∈𝑅
({𝑟 } ⊗ 𝐸 (𝑟)) (1)

PARSER

Result

Execution Engine

Query Tree

QUERY OPTIMIZER

Query

Execution Plan

Query Optimizer

Compute UDF Signatures

4

1

2

3

Identifying candidate UDFs

Rule based transformation

Materialization-aware
optimizations

Symbolic
Engine

UDF
Manager

Semantic Reuse §4

Figure 1: Overview of EVA– It takes in a client query, parses it and

generates an optimized plan which is executed to generate results. We

modify the optimizer to incorporate the reuse algorithm that accelerates

query processing by leveraging the results of earlier UDF invocations.

where ⊗ is the join type (e.g., inner join, cross join, e.t.c.). The con-

ditional apply operator (𝒜[𝑝∗])[15] is an extension of the apply

operator. It mimics an if else clause. It has a pass-through predicate

𝑝∗ that acts as a guard predicate and only evaluates the parame-

terized expression 𝐸 (𝑟) Eq. (1) if the guard is TRUE. EVA utilizes

the apply operator and the conditional apply operator to rewrite

queries to replace UDF invocations with materialized results.

Predicate Reordering. The predicate ordering problem has

been widely studied in traditional database systems [8, 26, 27].

The DBMS seeks to answer a query with an arbitrary number of

conjunctions of restrictive predicates. These predicates are boolean-

valued expressions that may invoke expensive UDFs. The DBMS

must find a suitable ordering of these predicates that minimizes

query processing cost.

Traditional DBMSs tackle this problem by computing a rank for each

of the predicates using a ranking function. Then, the predicates are

evaluated in ascending order based on the computed ranks. Eq. (2)

presents the ranking function [26], where 𝑠 is the selectivity and 𝑐

is the per-tuple evaluation cost of the predicate.

𝑟 =
𝑠 − 1
𝑐

(2)

Given that the selectivity 𝑠 ranges between [0, 1], the ranking func-
tion results in a negative value. Therefore, the smaller the rank, the

better it is to evaluate the predicate. Intuitively, it is prioritizing

the evaluation of inexpensive, highly selective predicates. However,

it does not consider scenarios wherein EVA may already contain

partial or fully materialized results for the predicates.

3 SYSTEM OVERVIEW

In this section, we first provide an overview of the semantic reuse al-

gorithm used by EVA in § 3.1. We then discuss how this enables EVA

to overcome the challenges in § 3.2. We conclude with a description

of how EVA allows users to define UDFs in § 3.3.

3.1 Semantic Reuse Algorithm

EVA leverages the materialized UDF results of previous queries

to accelerate subsequent queries. We design a semantic reuse opti-

mization algorithm that is triggered after the canonical optimiza-

tion algorithms have been applied. The key steps of this algorithm

are shown in Fig. 1. The lifecycle of a query is as follows: The

query is first processed by the parser that generates a parse tree.

The optimizer takes in the parse tree and applies rule- and cost-

based optimization techniques to generate a physical plan. The

optimizer is based on the Cascades extensible query optimization

framework [20, 63]. Finally, the execution engine executes the

given physical plan and returns the results to the client.

The semantic reuse algorithm leverages the SymbolicEngine to

detect the degree of reuse across queries. It uses the information

related to earlier UDF invocations within the UDFManager to fa-

cilitate reuse.

1 Identifying candidate UDFs. For all the UDFs found in the

query plan, the optimizer identifies the UDFs whose results are

worth materializing. It uses the profiled evaluation cost to filters

out inexpensive UDFs like Area.

2 ComputeUDF Signature.AUDF’s signature serves as a unique

fingerprint and helps identify occurrences of the same UDF across

queries. The signature 𝑆𝑢 of a UDF 𝑢 is defined as a tuple 𝑆𝑢 =

[𝑁𝑢 ; 𝐼𝑢] where:
• 𝑁𝑢 is the name of the UDF 𝑢

• 𝐼𝑢 is the set of source tables or views or UDFs that EVA must

access for evaluating UDF 𝑢.

When the optimizer applies the canonical transformation rules

for rewriting the query, it keeps track of the signature associated

with every UDF occurrence within the query and appends it to

the UDFManager. EVA reuses results across UDFs with identical

signatures. The UDFManager maintains a mapping from the UDF

signature to the corresponding materialized view.

3 Materialization-aware optimizations.Given a candidate UDF

and its historical invocations from the UDFManager, the opti-

mizer seeks to answer two questions. First, if multiple UDFs must

be evaluated on the same input table, what is the optimal ordering

in which these UDFs should be evaluated? Second, if a collection of

deep learning models are suitable for a given vision task, what are

the appropriate models (physical UDFs) to minimize the execution

cost? In § 4.2 and § 4.3, we discuss how the optimizer leverages

the SymbolicEngine to answer these questions.

4 Rule based transformation on the candidate UDFs. Lastly,

the optimizer performs a rule-based transformation on the candi-

date UDFs to leverage existing results in materialized views. We

present this transformation step in § 4.4.

3.2 Solution Overview

EVA addresses the challenges outlined in § 1 as follows:

I - Identifying Reuse Opportunities. To identify the over-

lapping computation between UDF invocations 𝑋 and 𝑌 with the

same signature, EVA utilizes symbolic computing to compute three

derived predicates: (1) intersection, (2) difference, and (3) union of

predicates in 𝑋 and 𝑌 . Intersection predicate denotes input tuples

(i.e., frames) where the latter UDF invocation (i.e., 𝑌) may reuse the

results from the former invocation (i.e., 𝑋). Difference predicate

represents input tuples where the reuse is not feasible and 𝑌 must

be evaluated. Union predicate denotes input tuples where the ma-

terialized results are available after both 𝑋 and 𝑌 are evaluated. It

uses these derived predicates to detect reuse opportunities.

II- Reuse Impacts Cost of UDF Evaluation. We formulate

the cost of an UDF invocation to consider the availability of material-

ized results by using the selectivity of the intersection predicate and

CREATE [OR REPLACE] UDF YOLO

INPUT = (frame NDARRAY UINT8(3, ANYDIM, ANYDIM))

OUTPUT = (labels NDARRAY STR(ANYDIM), bboxes

NDARRAY FLOAT32(ANYDIM, 4))

IMPL = 'udfs/yolo.py'

LOGICAL_TYPE = ObjectDetector

PROPERTIES=('ACCURACY'='HIGH')

Listing 2: Defining a UDF– This statement creates a YOLO object

detection UDF and specifies the accuracy property.

difference predicate obtained from the SymbolicEngine. The opti-

mizer uses this updated cost function in the predicate reordering

task to compose a materialization-aware ranking function. When

the UDF-based predicate transformation rule unpacks a selection

operator containing multiple UDF-based predicates, the order is

determined by this new ranking function. Similarly, in the model se-

lection task, the optimizermaps it to a weighted set cover problem.

The weights are defined by using the selectivity of the intersection

predicate.

III - Rewriting the Queries. We introduce two transforma-

tion rules in the optimizer for facilitating reuse: (1) an UDF-based

predicate transformation rule for unpacking a selection operator

that contains multiple UDF invocations, and (2) a materialization-

aware transformation rule that fully (or partially) replaces the ex-

pensive UDF invocation with the materialized results of previous

queries and injects a store operator for materializing the remaining

UDF results. Both rules are based on the conditional apply opera-

tor [15]. They enable effective reuse of UDF results regardless of

the location of UDF in the query (e.g., attribute list in projection

operator or predicate in selection operator).

3.3 Defining UDFs

EVA supports a declarative SQL-like query language called EVA-

QL. It allows users to invoke deep learning models in the form

of UDFs. Listing 2 presents an example where the user defines a

UDF wrapping around the yolo object detection model. The user

may utilize this UDF in subsequently queries to detect objects, as

illustrated in Listing 1.

In Listing 2, the user specifies the input(s) and output(s) of the

UDF. For instance, yolo consumes a video frame of arbitrary di-

mensions and produces labels and bounding boxes of detected

objects. IMPL specifies the path to the implementation class for the

UDF. LOGICAL_TYPE specifies the model type of the UDF (e.g., Ob-

jectDetector). The user also specifies the expected accuracy in

PROPERTIES. The optimizer uses these properties while picking

physical models for a logical vision task (elaborated in § 4.3).

Modular vs Monolithic UDFs. EVA allows users to create

arbitrary UDFs. For instance, in Listing 1, they may create a special-

ized UDF that only detects red SUVs and use it in 𝑄2. We refer to

such specialized UDFs as monolithic UDFs. EVA will reuse results

if the same monolithic UDF is invoked again during exploratory

analysis. However, using separate, modular UDFs (e.g., Vehicle-

Color for detecting the color of the vehicle and VehicleModel for

detecting the model of the vehicle) allow users to flexibly combine

them (e.g., the analyst may use these UDFs for detecting red sedans

or blue SUVs later). EVA supports reuse with both modular and

monolithic UDFs.

4 SEMANTIC-REUSE ALGORITHM

In this section, we describe the components of the semantic reuse

algorithm in more detail. We first discuss how EVA leverages sym-

bolic computing in § 4.1. We then present how EVA rewrites queries

in § 4.4. We next describe how EVA leverages materialized views

in § 4.2. We conclude with a description of the logical UDF reuse

optimization in § 4.3.

4.1 Symbolic Predicate Analysis

Symbolic computation focuses on algorithmic manipulation of

mathematical expressions. Except for numbers and variables, math-

ematical expression may be viewed as the symbol of an operator

followed by a sequence of operands [60]. Researchers have de-

signed symbolic computation algorithms to process and simplify

such mathematical expressions [29, 43]. EVA leverages symbolic

algorithms to analyze and simplify complex predicates in queries.

Overview. The VDBMS must evaluates the given UDF over the

subset of tuples that satisfy a predicate. For example, in Q1 (List-

ing 1), the predicate associatedwithObjectDetector is: timestamp >

6𝑝𝑚. The predicate associated withVehicleModel is: timestamp >

6𝑝𝑚 ∧ label = ‘𝑐𝑎𝑟 ’ ∧ Area(bbox, frame) > 0.3.

EVA’s optimizer leverages symbolic computing to analyze the

predicates associated with the UDF invocations that share the same

signature. Consider two UDF invocations 𝑢1 and 𝑢2 with the same

signature. Let their predicates be 𝑝1 and 𝑝2, respectively. We de-

fine three fundamental derived predicates based on 𝑝1 and 𝑝2 to

determine the overlapping computation between 𝑢1 and 𝑢2:

• Intersection: INTER(𝑝1, 𝑝2) = 𝑝1 ∧ 𝑝2
• Difference: DIFF(𝑝1, 𝑝2) = (¬𝑝1) ∧ 𝑝2
• Union: UNION(𝑝1, 𝑝2) = 𝑝1 ∨ 𝑝2

Logically, the intersection predicate denotes the overlapping com-

putation between 𝑢1 and 𝑢2. The difference predicate denotes the

non-overlapping computation (i.e., 𝑢2 is computed but not 𝑢1). The

union predicate denotes the computations where either 𝑢1 or 𝑢2 is

evaluated.

Leveraging Results of Symbolic Analysis. The UDFMan-

ager keepsmaintaining the aggregated predicate 𝑝𝑢 for each unique

UDF signature 𝑢. Formally, it is the union of all the predicates as-

sociated with UDF 𝑢 across all the queries. It represents the tuples

where the materialized results are available for UDF with signature

𝑢. When EVA encounters an UDF with signature 𝑢 for the first time,

since it has never executed 𝑢, 𝑝𝑢 is instantiated as False. When

the optimizer receives a query containing UDF 𝑢 with 𝑞 as the

associated predicate, it updates 𝑝𝑢 = UNION(𝑝𝑢 , 𝑞).
For analyzing the reuse opportunity, it computes INTER(𝑝𝑢 , 𝑞) to
symbolically identify the tuples it has over which it has computed

𝑢 before and DIFF(𝑝𝑢 , 𝑞) for those over which it has not computed

𝑢. We abbreviate these three derived predicates: INTER(𝑝𝑢 , 𝑞) as
𝑝∩, DIFF(𝑝𝑢 , 𝑞) as 𝑝−, and UNION(𝑝𝑢 , 𝑞) as 𝑝∪ in the rest of the

paper.

Algorithm 1: Symbolic Predicate Analysis

Input :predicate: input predicate
Output : simplifiedPredicate: simplified predicate

1 Procedure ReducePredicate(predicate)
2 1 DNFPredicate← DNF (predicate)
3 foreach conjunctive in DNFPredicate do
4 2 ReduceConjunctive (conjunctive)

5 repeat

6 c1, c2← PopTwoConjunctives (DNFPredicate)
7 3 c1, c2← ReduceUnionConjunctives (c1, c2)
8 PushConjunctives (DNFPredicate, c1, c2)

9 until TimeOut or NoChange
10 return DNFPredicate

11 Procedure ReduceUnionConjunctives (c1, c2)
12 foreach dimension in c1 ∨ c2 do
13 fc1← FilterDimension (c1, dimension)
14 fc2← FilterDimension (c2, dimension)
15 if fc1 ⊃ fc2 or fc1 ⊂ fc2 then
16 return ReduceUnionSingleDimension (c1, c2, dimension)

17 return c1, c2

Predicate Syntax. EVA supports predicates with the following

syntax:

p ::= expr cp expr | p logic p | NOT p

cp ::= > | < | = | ≠ | ≤ | ≥
logic ::= AND | OR

Apredicatemay be: (1) a comparison of two expressions (e.g., columns,

UDFs, constant values), (2) a combination of two predicates using a

boolean operator, and (3) negation of another predicate. EVA seeks

to reduce the number of atomic predicates (i.e., a predicate that can-

not be reduced further into simpler predicates) in the three derived

predicates.

Challenge. The number of atomic predicates governs the com-

plexity of the intersection, union, and difference operations. So,

it is important to simplify the outcome of these operations. EVA

leverages a computer algebra system to reduce monadic predi-

cates (e.g., UNION(5 < 𝑥 ∧ 𝑥 < 15, 10 < 𝑥 ∧ 𝑥 < 20) → 5 <

𝑥∧𝑥 < 20). However, it is challenging to reduce polyadic predicates
1

(e.g., UNION(5 < 𝑥 ∧ 10 < 𝑦, 10 < 𝑥 ∧ 15 < 𝑦) → 5 < 𝑥 ∧ 10 < 𝑦).

Algorithm. EVA uses Algorithm 1 to simplify a polyadic predi-

cate. 1 It converts the input predicate to disjunctive normal form

(DNF). 2 It independently reduces every conjunctive within the

DNF. To reduce a multi-variable conjunctive predicate, EVA uses a

computer algebra system. Next, it focuses on reducing the predicate

across conjunctives. To do so, 3 it repeatedly pops two conjunctives

and checks whether it is possible to reduce their union predicate .

It repeats this procedure until there remain no additional reduction

opportunities between any pairs of conjunctives or the symbolic

analysis goes beyond the allocated time budget.

Figure 2 illustrates three cases stemming from reducing the union

of two conjunctive predicates involving two variables (i.e., two-

dimensional predicates).

• Case i — 𝑐2 is a subset of 𝑐1 in both 𝑥 and 𝑦 dimensions, so

their union is 𝑐1.

• Case ii — it is possible to concatenate the predicates along 𝑥

dimension, so the union is (𝑎 < 𝑥 ∧ 𝑥 < 𝑏) ∧ (𝑐 < 𝑦 ∧ 𝑦 < 𝑑).
1
Minimizing propositional logic (boolean formula) is a hard problem [7]. Predicate

logic is a superset of propositional logic.

x

y
c1 c2

x

c1 c2

x

c1

c2

(i) (ii) (iii)

a b

c

d

a b

c

e

f g

Figure 2: Reduction of Union of Conjunctives — Illustration of the

two-dimensional cases where 𝑐1 and 𝑐2 involve two variables (𝑥 and 𝑦). A

rectangle represents a predicate with four atomic terms. For example, 𝑐1 in

(i) is: 𝑎 < 𝑥 ∧ 𝑥 < 𝑏 ∧ 𝑐 < 𝑦 ∧ 𝑦 < 𝑑 .

• Case iii — it is possible to remove the overlapping region from

the 𝑐2 to make the conjunctives disjoint, so their union is

𝑐1 ∨ (𝑓 < 𝑥 ∧ 𝑥 < 𝑔 ∧ 𝑐 < 𝑦 ∧ 𝑦 < 𝑒).
In all three cases, 𝑐2 is a subset of (or equal to) 𝑐1 in one dimension,

2
and the optimizer uses the computer algebra system to reduce

the union of the other dimension. This technique generalizes to

predicates that do not map to a rectangle. ReduceUnionConjunctives

in Algorithm 1 extends the concept into 𝑁 -dimensional predicates.

Specifically, 𝑐1 needs to be the subset of 𝑐2 in at least 𝑁 − 1 dimen-

sions, or the other way around, where 𝑁 is the dimensionality of

𝑐1 ∨ 𝑐2. The optimizer then reduces the union of the remaining

dimension using the computer algebra system.

4.2 Materialization-Aware Optimization

Replacing expensive UDF invocations with the materialized results

of previous queries reduces the cost of UDF evaluation. So we

need to adjust the UDF cost based on the availability of views in

optimization tasks such as predicate reordering and model selection

(elaborated in § 4.3).

Redefining the cost of a UDF invocation. As shown in

Eq. (3), we compute the expected cost of evaluating a predicate

𝑜 containing a UDF as a function of the cardinality of the input

relation |𝑅 |. Let 𝐶𝑀 be the cost of reading the materialized view

associated with UDF in 𝑜 . Let 𝑐𝑟 be the per-tuple cost for reading

a tuple from the input relation 𝑅. Let 𝑐𝑒 be the per-tuple cost of

evaluating the UDF. Let 𝑠𝑝− be the selectivity of the difference

predicate 𝑝− calculated from symbolic predicate analysis.

𝑇 (𝑜, |𝑅 |) = (3𝐶𝑀 + |𝑅 |𝑐𝑟) + |𝑅 |𝑠𝑝−𝑐𝑒 = |𝑅 | (3𝐶𝑀

|𝑅 | + 𝑐𝑟 + 𝑠𝑝−𝑐𝑒) (3)

Here, the first part is the expected cost of a join operation between

𝑅 and𝑀 [38], and the second part is the expected cost of evaluating

the UDF on the fraction of input tuples missing in the view. The join

operator combines the input video and UDF’s materialized view.

For example, the object detector’s materialized results are joined

with the video table to read the overlapping outcomes of the object

detection from previous queries. We will discuss how EVA rewrites

the query plan to leverages the view in § 4.4.

When the materialized views and tables are on disk, we estimate

the join cost to 3𝐶𝑀 [38]. During the build phase, EVA reads the

table into memory, creates a hash table, and stores it back on disk

2
EVA uses a computer algebra system to check whether (¬𝑐1,𝑑) ∧ 𝑐2,𝑑 == False or

(¬𝑐2,𝑑) ∧ 𝑐1,𝑑 == False to determine the subset relationship for a given dimension.

Here, 𝑐𝑖,𝑑 is the conjunctive of atomic formulas involving dimension 𝑑 in predicate 𝑐𝑖 .

if it cannot keep it in memory. Then during the probe phase, it

reads the hash table from the disk. So, in the worst case, it leads to

3 IO operations. However, in practice, the join term is negligible

compared to the cost of evaluating the UDF on the fraction of input

tuples missing in the view (second term in Eq. (3)) and may be

ignored (§5.3).

What is the optimal ordering of evaluating the UDF-

based predicates?. In video analytics, an analyst may often

use a compound predicate with multiple UDFs. For example, in List-

ing 1, 𝑄2 needs to evaluate two UDF invocations in the predicates:

VehicleColor and VehicleModel. The order in which these UDFs

are evaluated lowers the overall execution time of the query by

3–6× (§ 5.4).

Using the UDF cost function in Eq. (3), EVA adopts a novel rank-

ing function, shown in Eq. (4), that takes materialized views into

consideration.

𝑟 =
𝑠 − 1

𝑠𝑝− × 𝑐𝑒 + 𝑐𝑟
(4)

Here, 𝑠 denotes the selectivity of the UDF-based predicate. EVA

leverages existing histogram-based methods in traditional database

systems to calculate the selectivity of predicates [30, 51]. Intuitively,

Eq. (4) prioritizes highly selective predicates with lower evaluation

costs. The key difference from the traditional ranking function

(Eq. (2)) is that in the new formulation, the evaluation cost is pro-

portional to the fraction of tuples not present in the materialized

view (𝑠𝑝−). The 𝑐𝑟 term comes from the join cost. However, in prac-

tice, it is negligible and can be ignored. For instance, when the

views are stored on hard disk, the profiled values for the Faster-

RCNNResnet50 are 𝑐𝑟 = 1.8ms and 𝑐𝑒 = 99ms (§ 5). If the views

are stored on another storage medium (e.g., in memory), we need

to update 𝑐𝑟 accordingly. We next formally prove the correctness

of the proposed ranking function.

Theorem 4.1. Let 𝑂 be a conjunctive ordering of 𝑛 boolean valued,

independent
3
predicates, 𝑜1, 𝑜2, ..., 𝑜𝑛 . The expected evaluation cost

of𝑂 is minimal when the predicates are evaluated in ascending order

of rank computed using the ranking function in Eq. (4).

Proof. Wemay construct any ordering of the predicates by a series

of swaps between adjacent predicates 𝑜𝑖𝑜 𝑗 such that 𝑖 < 𝑗 [24]. To

prove that an ordering𝑂 is optimal, it is sufficient to show that any

such arbitrary swap does not decrease the expected evaluation cost

of 𝑂 . Consider an arbitrary ordering 𝑂 :

𝑂 : 𝑜1, ..., 𝑜𝑘 , 𝑜𝑘+1, ..., 𝑜𝑛

We define the expected evaluation cost 𝑇 (𝑂, |𝑅 |):
𝑇 (𝑂, |𝑅 |) = 𝑇 (𝑜1, |𝑅 |) +𝑇 (𝑜2, 𝑠1 |𝑅 |) + ... +𝑇 (𝑜𝑘 , 𝑠1 ...𝑠𝑘−1 |𝑅 |)
+𝑇 (𝑜𝑘+1, 𝑠1 ...𝑠𝑘−1𝑠𝑘 |𝑅 |) + ... +𝑇 (𝑜𝑛, 𝑠1 ...𝑠𝑛−1 |𝑅 |)

We derive 𝑇 (𝑜𝑘) by substituting |𝑅 | with 𝑠1𝑠2 ...𝑠𝑘−1 |𝑅 |, where 𝑠𝑖
denotes the selectivity of predicate 𝑜𝑖 [24, 27]. This is because the

size of input relation reduces to the application of earlier predicates

in 𝑂 . Consider another ordering 𝑂
′
by interchanging 𝑜𝑘 and 𝑜𝑘+1:

𝑂
′
: 𝑜1, ..., 𝑜𝑘+1, 𝑜𝑘 , ..., 𝑜𝑛

3
The theorem holds under the assumption that the predicates are independent. While

this assumption may not always hold in practice, theoretical analysis in predicate

re-ordering literature [8, 26] and video analytics systems [37, 40] also make this

assumption to simplify the analysis.

𝑇 (𝑂 ′) will be similar to 𝑇 (𝑂) expect for 𝑇 (𝑜𝑘) and 𝑇 (𝑜𝑘+1). For
ease of presentation, let 𝑘 = 1. A similar argument holds for any

arbitrary value of 𝑘 .

𝑇 (𝑂
′
, |𝑅 |) −𝑇 (𝑂, |𝑅 |)

= |𝑅 | (3𝐶2𝑀

|𝑅 | + 𝑐𝑟 + 𝑠2𝑝−𝑐2𝑒) + 𝑠2 |𝑅 | (
3𝐶1𝑀

𝑠2 |𝑅 |
+ 𝑐𝑟 + 𝑠1𝑝−𝑐1𝑒)

− |𝑅 | (3𝐶1𝑀

|𝑅 | + 𝑐𝑟 + 𝑠1𝑝−𝑐1𝑒) − 𝑠1 |𝑅 | (
3𝐶2𝑀

𝑠1 |𝑅 |
+ 𝑐𝑟 + 𝑠2𝑝−𝑐2𝑒)

= |𝑅 | ((𝑠2 − 1) × 𝑠1𝑝−𝑐1𝑒 − (𝑠1 − 1) × 𝑠2𝑝−𝑐2𝑒 + (𝑠2 − 𝑠1) × 𝑐𝑟)

= |𝑅 | (𝑠2𝑝−𝑐2𝑒 + 𝑐𝑟) (𝑠1𝑝−𝑐1𝑒 + 𝑐𝑟) (
𝑠2 − 1

𝑠2𝑝−𝑐2𝑒 + 𝑐𝑟
− 𝑠1 − 1
𝑠1𝑝−𝑐1𝑒 + 𝑐𝑟

)

≥ 0

The last expression in the closed parenthesis is positive since we

order the predicates using the ranking function Eq. (4). □

4.3 Logical UDF Reuse

Wenext present a technique of reusing UDF results in the optimizer

based on their logical semantics. Consider Q1 searching for a suspi-

cious vehicle in Listing 1. The officer may tolerate different physical

implementations of the logical UDF, ObjectDetector provided they

meet the accuracy requirements (similar to logical and physical

operators in query optimization [20]). The physical UDF may be

(1) yolo-tiny [2], (2) FasterRCNNResnet50, or (3) FasterRCN-

NResnet101 [54]. This scenario also arises across applications. For

example, the traffic monitoring application might also be running

an object detection model, which presents the opportunity to reuse

results. These physical UDFs may vary in their accuracy, inference

time, and availability of materialized results. EVA considers the

materialized views of all the models and automatically substitutes

the logical vision task with one or more physical models. We reduce

the problem of selecting the optimal physical UDFs that minimize

the execution cost to the weighted set cover problem.

Weighted Set Cover Problem. The weighted set cover prob-

lem is defined as follows. Given a universe 𝑈 (|𝑈 | = 𝑛) and a

collection of sets 𝑆 = {𝑆1, 𝑆2, ..., 𝑆𝑚}, 𝑆𝑖 ⊆ 𝑈 ∀𝑖 . Each set 𝑆𝑖 has

a weight 𝑤𝑖 ≥ 0. The set cover is a subset 𝐼 = {1, 2, 3, ..., 𝑟 } such
that ∪𝑖∈𝐼𝑆𝑖 = 𝑈 . The weighted set cover problem finds a set cover

with the minimum overall weight

∑
𝑖∈𝐼 𝑤𝑖 . The weighted set cover

problem is NP-Complete [10].

We use a polynomial-time greedy algorithm to solve this problem.

Suppose 𝑈𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 ⊆ 𝑈 is set of uncovered elements of the uni-

verse 𝑈 . At each iteration 𝑖 , the algorithm picks the set 𝑆𝑖 that

minimizes
𝑤𝑖

|𝑆𝑖∩𝑈𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 | . The idea is to minimize the cost per un-

covered element at each iteration. It achieves a ln𝑛−𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛

[10] and is the best possible approximation for any polynomial al-

gorithm [16, 41].

Optimal set of physical UDFs. We prove that selection of

the optimal set of physical UDFs reduces to a weighted set cover

problem in Theorem 4.2. Consider the tuples in materialized view

𝑚𝑖 of the physical UDFs 𝑥𝑖 as a set 𝑆𝑖 in collection 𝑆 . The cost of

reading the materialized view 𝐶 (𝑚𝑖) is mapped to weight𝑤𝑖 . Dur-

ing each iteration, the greedy algorithm picks the physical UDF that

minimizes
𝐶 (𝑚𝑖)

|𝑚𝑖∩𝑈𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 | . To compute the denominator (i.e., the

Algorithm 2: Logical UDF Reuse – The algorithm to rewrite

the logical UDF with the corresponding physical UDFs that mini-

mizes the execution cost.

Input : sig: UDF signature, 𝒞: set of UDF constraints, q: assocaited predicate for UDF

Output :𝒟: optimal set of equivalent physical UDFs

1 Procedure OptimalPhysicalUDFs(sig, 𝒞, q)
2 𝑋 ← PhysicalUDFs(sig, 𝒞) ⊲ Phy UDFs that satisfy constraints

3 𝑦 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝑋 𝑐𝑥 ⊲ Min cost UDF

4 repeat

5 for 𝑥 ∈ 𝑋 do

6 Compute𝑊 (𝑥,𝑞) = 𝐶 (𝑚𝑥)
𝑠𝑝∩𝑥 |𝑚𝑥 | ⊲ Cost per uncovered tuple

7 𝑥∗ ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝑋𝑊 (𝑥,𝑞) ⊲ UDF with min W(x, q)

8 if𝑊 (𝑥∗, 𝑞) < 𝑐𝑦 then

9 𝒟 ← 𝒟 ∪ {(𝑥∗, 𝑝∩𝑥∗) } ⊲ Select mat view of 𝑥∗

10 𝑞 ← DIFF(�̃�𝑥∗ , 𝑞)
11 else

12 𝒟 ← 𝒟 ∪ {(𝑦,𝑞) } ⊲ Select cheapest UDF

13 𝑞 ← ∅
14 until 𝑞 ≠ ∅
15 return𝒟

cardinality of the uncovered elements), we leverage the symbolic

engine. Specifically, we use the selectivity of the intersection predi-

cate. We provide more details below.

Algorithm. The optimizer uses Algorithm 2 to find the optimal

set of physical UDFs. It first retrieves the set of physical UDFs

𝑋 , satisfying the required constraints (Line 2). Next, it finds the

cheapest UDF 𝑦 with cost 𝑐𝑦 in Line 3, which will be used when

no materialized view is picked. Then, it computes the cost per

uncovered tuple (Line 6). The intersection predicate (§ 4.1) selects a

subset of tuples in the materialized view that satisfies the predicate

𝑞. So, the selectivity of the intersection predicate is used to calculate

the cardinality of uncovered tuples 𝑠𝑝∩𝑥 |𝑚𝑥 |. In Line 8, it checks if it
is beneficial to pick a materialized view or instead run the cheapest

UDF. Specifically, if the cost per tuple of the materialized view is

lower than running the cheapest UDF, it selects the materialized

view (Lines 9 to 10). It updates the query predicate by computing

the difference between the UDF’s predicate (𝑝𝑢∗) and the query

predicate. Otherwise, it decides to run the cheapest UDF for the

remaining range (Lines 11 to 13). In § 5.4, we show that the logical

UDF reuse optimization delivers a 2.2× workload speedup.

Theoretical Analysis. We next provide an analysis of the

problem reduction.

Theorem 4.2. Given the set of physical UDFs 𝑋 = {𝑥1, 𝑥2 ..., 𝑥𝑘 }, the
corresponding materialized views 𝑀 = {𝑚1, ...,𝑚𝑘 } and the associ-
ated predicate 𝑞, the problem of selecting the optimal set of physical

UDFs 𝑌 ⊆ 𝑋 reduces to a weighted set cover problem.

Proof sketch. Suppose𝑊 be the set of all possible tuples, 𝐶 (𝑚𝑖)
the cost of reading the materialized view𝑚𝑖 , and 𝑐𝑖 the execution

cost of UDF 𝑥𝑖 . The universe 𝑈 (|𝑈 | = 𝑛) is the set of tuples over
which the UDF needs to be evaluated. They satisfy the associated

predicate 𝑞.

𝑈 = 𝜎𝑞 (𝑊)

Given the cost of the cheapest UDF 𝑐 𝑗 (𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑐 𝑗), 𝑝∩𝑥𝑖 =

INTER(𝑝𝑥𝑖 , 𝑞) (§ 4.1), and 𝑃 (𝑞), 𝑞 ∈ [1, 2𝑛] is the 𝑞𝑡ℎ element in the

power set of 𝑈 (ordered arbitrarily). The collection of set 𝑆 and the

UDF(r)

A

Figure 3: UDF-Based Predicate Transformation Rule

corresponding weights are defined as follows.

𝑆 = {𝑆1, ..., 𝑆𝑘 , 𝑆𝑘+1, ..., 𝑆𝑘+2|𝑈 | } such that

𝑆𝑖 =

{
𝜎𝑝∩𝑥𝑖

(𝑈), 1 ≤ 𝑖 ≤ 𝑘

𝑃 (𝑖 − 𝑘), 𝑘 + 1 ≤ 𝑖 ≤ 𝑘 + 2 |𝑈 |
(5)

𝑤𝑖 =

{
𝐶 (𝑚𝑖), 1 ≤ 𝑖 ≤ 𝑘

𝑐 𝑗 |𝑃 (𝑖 − 𝑘) |, 𝑘 + 1 ≤ 𝑖 ≤ 𝑘 + 2 |𝑈 |
(6)

𝑆𝑖 , 𝑖 ∈ [1, 𝑘] represents the subset of tuples in the materialized view

𝑚𝑖 that satisfy the intersection predicates 𝑞. 𝑆𝑖 , 𝑖 ∈ [𝑘 + 1, 𝑘 + 2 |𝑈 |]
represents all the subsets of the tuples on which the UDF needs to be

executed (all subset of 𝑈). We append the power set to handle two

scenarios: (1) the tuples for which we do not have the materialized

results, and (2) the scenario where using the cheapest UDF is better

than reading results from the view. The weight𝑤𝑖 , 𝑖 ∈ [1, 𝑘] is the
cost of reading the materialized view. For elements in the power

set, weight 𝑤𝑖 , 𝑖 ∈ [𝑘 + 1, 𝑘 + 2 |𝑈 |] is the cost of executing the

cheapest UDF on the tuples in the set. As the assigned weights𝑤𝑖s

are proportional to the execution cost, the optimal weighted set

cover for the above problem gives the optimal set of physical UDFs

that minimizes the execution cost.

4.4 Rule-Based Query Rewrite

We design two transformation rules to rewrite UDF invocations in

the query plan:

I - UDF-Based Predicate Transformation Rule. The op-

timizer leverages the apply (𝒜) operator to transform UDF invo-

cations into relational operators. Fig. 3 illustrates this rule-based

transformation. Suppose the selection operator contains multiple

UDF-based predicates. In that case, the optimizer first reorders the

predicates based on the materialization-aware ranking (elaborated

in § 4.2), then chains their transformation using the apply operator

(i.e., the output of the preceding UDF-based predicate is the input

of the succeeding one).

II - Materialization-Aware Transformation Rule. A

straightforward transformation to reuse the materialized results

consists of: (1) using the intersection predicate (𝑝∩) to filter out the
materialized results, (2) using the difference predicate (𝑝−) to filter

out the input relation and evaluate the UDF on the remaining tuples,

and (3) using the union operator to aggregate the results. However,

this solution has two drawbacks. First, 𝑝∩ and 𝑝− may be complex,

and evaluating them over every tuple will be expensive. Second, 𝑝∩
and 𝑝− may contain other UDFs, and the optimizer needs to con-

sider reusing their materialized results. So, this approach requires

recursion.

To circumvent this problem, EVA’s materialization-aware transfor-

mation rule entails three modifications, as shown in Fig. 4:

(MUDF)

1

UDF(r)

A inner

UDF(r)

A
⟕

UDF

inner
2

3

Figure 4: Materialization-Aware Transformation Rule

1 If the optimizer finds out that there exists a materialized view

(𝑀) for the UDF signature𝑢, it introduces a LEFT OUTER JOIN
operator that operates on the input relation 𝑅 and𝑀 .

2 It replaces the apply operator with a conditional apply operator.

Notice that for tuples that are missing in view 𝑀 , the output

columns are populated with NULLs. So the pass-through pred-

icate 𝑝∗ of the conditional apply operator guarantees that the

VDBMS only evaluates the UDF for tuples with missing values.

3 It introduces a new STORE operator on top of the UDF, which

ensures that the VDBMS appends the UDF evaluation results

to the materialized view𝑀𝑢 , that may be reused for processing

future queries.

If the intersection predicate (𝑝∩) or the different predicate (𝑝−) is
FALSE (after symbolic reduction), we may simplify this transfor-

mation accordingly. For example, if 𝑝∩ is FALSE, this implies that

𝑀𝑢 does not contain any results of the required UDF invocation,

so the optimizer skips the LEFT OUTER JOIN operator (1) in the

transformation. If 𝑝− is FALSE, then all the results are available in

view𝑀𝑢 . In this case, in Fig. 4, the optimizer removes the apply

operator (2) and its right subtree because the join operator (1)

provides all the required results.

5 EVALUATION

In our evaluation, we seek to answer the following questions:

• How does the UDF-centric reuse algorithm in EVA compare

against reuse algorithms in traditional DBMSs and canonical

function caching technique (§ 5.2)?

• What is the overhead of reuse operations (§ 5.3)?

• How effective is EVA’s semantic reuse algorithm, including

symbolic predicate reduction, materialization-aware predicate

reordering, and logical UDF reuse (§ 5.4)?

• What is the impact of video length and content on EVA’s reuse

algorithm (§ 5.5)?

• How does EVA’s reuse algorithm complement the specialized

filters used in SOTA VDBMSs (§ 5.6)?

5.1 Experimental Setup

Implementation. We implement EVA in Python.We useAntlr [48]

to parse the input query and generate the parse tree. We manage

the catalog in a traditional DBMS using SQLAlchemy [6]. We im-

plement the storage engine using the Petastorm library [21]. It

stores the videos on disk using the Apache Parquet format. The

execution engine consumes this data after converting it to a Pan-

das Dataframe [42], and relies on the Pytorch framework [49] to

evaluate deep learning-based UDFs in the queries. EVA currently

Table 1: Illustrative queries in vbench-high

SELECT <> FROM VIDEO CROSS APPLY FastRCNNObjectDetector(frame)

Q1 id < 10000 ∧ label = ’car’ ∧ area > 0.3 ∧ CarType(frame, bbox) = ’Nissan’; Q2 - Zoomout: id < 10000∧ label = ’car’∧ CarType(frame, bbox) = ’Nissan’;

Q3 - Zoom in: id < 10000 ∧ area > 0.25 ∧ label = ’car’ ∧ CarType(frame,

bbox) = ’Nissan’ ∧ ColorDet(frame, bbox) = ’Gray’;

Q6 - Shifting: id > 7500 ∧ label = ’car’ ∧ ColorDet(frame, bbox) = ’Gray’;

contains 28 K lines of code. The SymbolicEngine uses the SymPy

library [43] for the symbolic analysis of predicates to guide reuse

decisions. The developer may extend the Cascades-style optimizer

by adding additional rewrite rules over time. The system is available

at: https://github.com/georgia-tech-db/eva.

Workload Generation. There are no standard benchmarks

for exploratory video analytics. To test EVA, we develop the vbench

benchmark that captures a wide range of queries and stress tests

EVA’s capability to reuse results.

Video Datasets. We evaluate EVA on two datasets.

• ua-detrac [59]. To study the impact of video length, we con-

struct three video sets based on ua-detrac: short-ua-detrac

(5 clips with 7.5k frames in total), medium-ua-detrac (10 clips

with 14k frames in total), and long-ua-detrac (20 clips with

28k frames in total).

• jackson (night-street from [35]) with 14k frames. jackson

has a lower resolution (600 × 400) compared to ua-detrac

(960 × 540). Furthermore, on average, jackson has fewer ve-

hicle appearances (0.1 vehicle per frame) than ua-detrac (8.3

vehicles per frame). We adjust the number of frames to be

consistent with that of medium-ua-detrac.

Query Sets andWorkload Generation. We construct two

query sets with (1) low-, and (2) high-reuse potential denoted by

vbench-low, and vbench-high, respectively. Here are the key

properties of these query sets:

• vbench-low: The average overlap of frames read from the

video dataset by two subsequent queries is 4.5%. This repre-

sents a scenario where the analyst skims through different

parts of the video.

• vbench-high: The average overlap is 50%. This represents a

scenario where the analyst iteratively refines the query over a

particular part of the video.

Every query set contains 8 queries focusing on vehicles in the videos

(similar to the motivating example in §1). Every query contains an

apply operator to connect the video with the object detection UDF.

The queries have up-to five predicate clauses, where three of them

are direct-column predicates (i.e., id, label, and scores), and two of

them are UDF-based predicates (i.e., vehicle color, and type).

Table 1 lists the illustrative queries. FasterRCNNResnet50 [54],

CarType, and ColorDet are UDFs for object detection, vehicle

type recognition, and color classification, respectively. Since they

are expensive, EVA identifies them as candidate UDFs for reuse. The

queries emulate an exploratory analysis for a suspicious vehicle.

Typically, such analysis is a combination of zooming in/out and

range shifting operations [13, 58]. The user begins by looking for

a car, likely a Nissan (Q1). Based on the result of Q1, they relax

the constraint on the area of the bounding box (Q2: Zooming out).

Table 2: Hit Percentage

Hit Percentage (%) HashStash FunCache EVA

vbench-low 2.02 24.68 24.68

vbench-high 5.62 66.01 66.01

Next, they add the color constraint to refine the search further (Q3:

Zooming in). In subsequent queries, they shift the frame range of

the query (Q6: Shifting range). We evaluate every workload from a

clean state (i.e., no available materialized results). Unless otherwise

specified, the experiments are based on the medium-ua-detrac

video dataset and vbench-high query set.

Baselines. We reimplement the key ideas of HashStash and

function caching technique within EVA for a fair comparison. We

refer to these baselines as HashStash and FunCache.

• HashStash: It utilizes a recycler graph to keep track of the

plans associated with previously executed queries. Every node

in the recycler graph represents an operator in the plan (e.g., hash-

join and hash-aggregate). It materializes the results of the op-

erator. To exploit reuse opportunities, it first does a sub-tree

matching between the query and the recycler graph without

requiring predicates to be identical. It then deduplicates the

union of materialized results of all matched operators and

applies the query’s predicates to answer the query.

• FunCache: A canonical approach for accelerating the eval-

uation of predicates with UDFs is to directly cache the UDF

results at tuple-level (i.e., frame-level) granularity [27, 32]. We

implement such a function caching technique in EVA’s ex-

ecution engine. Specifically, for each UDF, the execution

engine maintains an in-memory hash table that maps the

input arguments to the outcomes. It uses xxHash [11] to effi-

ciently compute 128-bit hash values of the input arguments of

the UDF.

Hardware setup. We perform experiments on a server with

these specifications: 28 Intel(R) Xeon(R) CPU E5-2690 v4@ 2.60GHz,

1 NVIDIA Quadro P6000 GPU, and 256 GB RAM.

5.2 End-to-End Comparison

Hit Percentage. Measures the fraction of UDF invocations

satisfied using previously materialized results.

Hit Percentage =
number of reused UDF invocations

total number of UDF invocations

∗ 100

Table 2 presents the hit percentage with different reuse algorithms

under different reuse-potential query sets. A higher hit percent-

age implies that the algorithm can exploit more reuse opportuni-

ties based on the results of previous queries within the workload,

https://github.com/georgia-tech-db/eva

VBENCH-LOW
0

2

4

W
or

kl
oa

d
Sp

ee
du

p

VBENCH-HIGH

No reuse Hashstash FunCache EVA

VBENCH-LOW
0

2

4

W
or

kl
oa

d
Sp

ee
du

p

VBENCH-HIGH

Figure 5: Workload speedup – Impact of reuse algorithms on vbench-

low and vbench-high workloads over the medium-ua-detrac video set.

Table 3:UDFStatistics –𝐶𝑢 is the cost of eachUDF invocation in vbench-

high measured in milliseconds per tuple (medium-ua-detrac dataset). For

deep learning models (e.g., FasterRCNNResnet50),𝐶𝑢 includes the pre-

and post-processing time, besides the inference time. We configure the GPU

batch size to 20. #DI and #TI represent the number of distinct invocations

and the total number of invocations, respectively.

UDF 𝐶𝑢 #DI #TI GPU/CPU

FasterRCNNResnet50 99 13,820 72,457 GPU

CarType 6 114,431 414,119 GPU

ColorDet 5 111,631 219,264 CPU

thereby leading to a lower query execution time (shown in Fig. 5).

The most notable observation is that EVA has at least an 11.7×
higher hit percentage than HashStash because the sub-tree match-

ing problem in traditional database systems is not geared towards

reusing results associated with UDF invocations while evaluating

the predicates in the queries. For example, HashStash can only

reuse the FasterRCNNResnet50 between queries in Table 1, while

EVA can further reuse the outcomes of CarType and ColorDet.

EVA achieves the same hit percentage as FunCache, which is opti-

mal under both workloads.

Workload speedup. Figure 5 presents the workload speed

up across different reuse-potential query sets. With No-Reuse,

vbench-low and vbench-high take 0.96 hours and 3.1 hours, re-

spectively. Consistent with the hit percentage, EVA’s reuse algo-

rithm lowers execution time by 1.2× over HashStash on vbench-

low and by 2× on vbench-high. Though FunCache has the same

hit percentage as EVA, EVA outperforms FunCache by 1.7× on

vbench-high, and FunCache achieves a negative speedup (i.e., 0.95×)
on vbench-low. This is due to the cumulative overhead of hashing

the input arguments during every UDF invocation (even with the

fast xxHash function). Another limitation of the FunCache is that

it is applied during execution time (i.e., when evaluating an UDF).

So it does not support optimizations like materialization-aware

predicate reordering.

For a given workload, the upper bound on the maximum speedup

possible with respect to No-Reuse is as follows:

Workload Speedup =

∑
𝑢∈all UDF invocations𝐶𝑢∑

𝑢∈all distinct UDF invocations𝐶𝑢 + reuse cost
(7)

<

∑
𝑢∈all UDF invocations𝐶𝑢∑

𝑢∈all distinct UDF invocations𝐶𝑢

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
(a) Time breakdown of VBENCH-HIGH under EVA

10

100

1000

Ti
m

e
(s

)

No Reuse UDF Reuse

Materialization Optimization Apply Read
(b) Sources of overhead

0
10
20
30

Ti
m

e
(s

)

Figure 6: Time Breakdown and Overhead Analysis – (a) showcases

the time breakdown (log-scale) of eight queries in vbench-high under EVA.

(b) shows the box plot of the time spent on materialization, optimization,

apply operator, and reading (i.e., video frames and materialized UDF results)

for each query. Outliers are marked as green diamonds.

Table 4: Time Breakdown of𝑄6 in vbench-high under No-Reuse

and EVA— This table breaks down query processing time into: (1) latency

of UDF evaluation, (2) reading the video from the disk, (3) reading the

materialized results, (4) materializing the new UDF evaluation results, and

(5) other operations (e.g., optimizer, join, crop, e.t.c.)

Latency (s) UDF Read Video Read View Mat Other

No-Reuse 997 22 0 0 2

EVA 5 19 10 2 5

Here, 𝐶𝑢 is the cost of invoking 𝑢. We compute this upper bound

by examining the UDF invocations across all the queries in the

workload. Table 3 lists the statistics of UDF invocations under

vbench-high andmedium-ua-detrac. For vbench-high, thework-

load speedup is bounded by 4.11× over the No-Reuse setting. For

vbench-low, the upper bound is 1.42×. In both cases, EVA delivers

a near-optimal speedup (0.97× of the upper bound on vbench-high
and 0.92× on vbench-low).

Storage footprint. The storage footprint associatedwithmate-

rializing the results of UDF invocations for vbench-low is 12.5MiB

and 14.3MiB for vbench-high. The size of the medium-ua-detrac

video dataset is 16GiB. EVA’s reuse algorithm takes up to 0.09 %

extra storage space. This is because the UDFs used in the bench-

mark extract lightweight structuredmeta-data (e.g., bounding boxes,

color, and vehicle type) from the video. So the storage footprint is

significantly lower than that of the video itself. This might not be

the case for certain UDFs (e.g., video colorization).

5.3 Time Breakdown

To better understand the benefits and overhead of EVA’s reuse

algorithm, we show the time breakdown for individual queries in

Fig. 6. EVA starts from a state with no materialized views, so the

first three queries in vbench-high incur high UDF execution costs,

as shown in Fig. 6 (a), while later queries are much faster. After

FasterRCNN

5

10

15

At

om
ic

Fo
rm

ul
as

simplify
EVA

CarType ColorDet

Figure 7: Effectiveness of EVA’s Symbolic Predicate Reduction –

The x-axis represents the intersection, difference, and union predicates

calculated in the optimizer when executing the vbench-high. The y-axis

contains the number of atomic formulae in those predicates.

executing these queries, EVA additionally pays the compute cost of

materializing the UDF invocations. Among them, only 𝑄1 incurs a

0.95× slowdown with respect to No-Reuse (a tolerable overhead

for accelerating subsequent queries). Fig. 6 (a) also demonstrates

that the EVA’s reuse cost is much lower than the UDF execution

cost.

Table 4 presents a fine-grained time breakdown of an exemplar

query𝑄6. Compared to the No-Reuse setting, EVA replaces the 997

seconds of UDF evaluation with 10 seconds of reading the materi-

alized results and 5 seconds of UDF evaluation on the remaining

input rows. Meanwhile, time spent on materializing new results,

query optimization, and join operations is much lower compared

to the benefits of EVA’s reuse.

Overhead Analysis. Fig. 6 (b) lists the key sources of overhead:

(1) materializing the outcomes of UDF invocations; (2) optimizer

analyzing and rewriting the query; (3) adding the apply operator

for reusing the results of a materialized view; (4) loading frames and

materialized results from the storage engine; We do not present cer-

tain system components with negligible overhead (e.g., parser). The

most notable observation is that the optimizer has low overhead.

This shows that the semantic reuse algorithm and symbolic analysis

are efficient. Materializing the outcomes of UDF invocations has a

low overhead due to batch-level processing in EVA (batch size =

200MiB)
4
. In contrast, the time spent on reading tables and views

is significant because the conditional apply operator needs to read

the complete table to find out missing entries.

5.4 Semantic Reuse Algorithms

Symbolic Predicate Reduction. In this experiment, we com-

pare EVA’s predicate reduction algorithm (§ 4.1) with Sympy’s

off-the-shelf simplify function. The simplify function is based

on the pattern matching and Quine-McCluskey algorithm [52].

Fig. 7 shows that EVA’s algorithm outperforms the simplify for
all three UDFs’ predicate analyses. This is because the pattern

matching logic in SymPy’s simplify cannot extensively support

the interactions between inequalities and logic operations. In con-

trast, EVA leverages Sympy’s inequality solver in the predicate

reduction procedure.

In Fig. 7, the gap between the simplify and EVA’s algorithm is

smaller for FasterRCNNResnet50 than CarType or ColorDet.

This is because in vbench-high, the associated predicates for

4
CPU batch size is different from the GPU batch size in Table 3.

1 2 3 4
Workload

40

60

80

100

Ti
m

e
(m

iu
nt

es
)

Hashstash
EVA

(a) Execution Time

1 2 3 4 5 6 7 8
VBENCH-HIGH-4

0.0

0.5

1.0

CD
F

ColorDetector
CarRecognition
FasterRCNN

(b) Materialized UDF Results

Figure 8: Impact of Order of Queries – (a) presents the execution time

of four random permutations of vbench-high with HashStash and EVA’s

reuse algorithms. (b) presents how the materialized UDF results in EVA

converge over queries in the fourth permutation.

Q6 Q7 Q11 Q12 Q20 Q21 Q29 Q31
0

2

4

6

Qu
er

y
Sp

ee
du

p

Canonical Materialization-aware

Figure 9: Impact of Materialization-Aware Predicate Reordering –

Query speedupwith canonical andmaterialization-aware ranking functions.

FasterRCNNResnet50 only involve the id column. In contrast,

the associated predicates for CarType or ColorDet contain up to

four variables (i.e., id, label, area, and the other UDF). simplify’s
reduction does not work well with polyadic predicates. Further,

when the simplify function fails to reduce a predicate, it cannot

recover in subsequent queries, and the predicate becomes more

complicated over time. This explains why in Fig. 7, simplify leads
to an extraordinarily high number of atomic formulae for Vehi-

cleModel and VehicleColor.

Materialization-AwarePredicateReordering. To show

the effectiveness of materialization-aware predicate reordering, we

construct four workloads (vbench-high- 1, 2, 3 and 4) that are

random permutations of queries in vbench-high. The rationale is

that the amount of materialized results that individual UDF invo-

cation can reuse differs in every permutation. So, the cost of UDF

should not be static. Fig. 8 (a) shows that EVA’s reuse algorithms

lowers execution time by at least 1.8× over HashStash (stronger

baseline). In workloads 1, 3, and 4, where the predicate reordering

is beneficial, EVA outperforms HashStash by 2×. To discuss why

predicate reordering is not useful in the second workload, we com-

pare the execution time of the queries with two predicate reordering

algorithms: (1) using a canonical ranking function (Eq. (2)), and

(2) using a materialization-aware ranking function (Eq. (4)). The

results are shown in Fig. 9. We only list the queries with multiple

predicates across all permutations. Table 1 shows an example query

(𝑄6) with two UDF predicates, namely ColorDet and CarType.

Materialization-aware predicate reordering accelerates queries by

3–6 × on most queries. This is because the canonical ranking func-

tion only considers the execution cost of the UDFs, whereas the

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

100

1000

Ti
m

e
(s

)

Min-cost-noreuse Min-cost EVA

Figure 10: Impact of Logical UDF Reuse – Comparison of execution

time (log scale) against baselines that directly substitute the logical UDF

with the least expensive physical UDF that satisfies the accuracy constraints.

materialization-aware ranking function also factors in the available

materialized results. With queries 𝑄11, 𝑄12, and 𝑄31, both ranking

functions return the same predicate ordering. We attribute this to

the fact that the UDFs that result in lower ranks using the canonical

ranking function also have a higher fraction of required results

materialized.

Impact of LogicalUDFReuse. In this experiment, we evaluate

the benefits of logical UDF reuse optimization. In earlier experi-

ments, for a fair comparison with other baselines, all the queries in

the vbench referred to an actual physical model (faster-rcnn). In

this experiment, we replace all the occurrences of faster-rcnn in

the workload with a logical UDF (i.e., ObjectDetector). We consider

three physical UDFs, namely, (1) yolo-tiny [2], (2) FasterRCN-

NResnet50, and (3) FasterRCNNResnet101 [54]. Table 5 lists these

model’s accuracy and inference cost on the COCO [39] dataset. We

pick these models as they are readily available in popular object

detection libraries [34, 61]. The workload emulates multiple inter-

active video analytics applications with different accuracy require-

ments.

We compare Algorithm 2) against two baselines:min-cost-noreuse

(reuse disabled) and min-cost (reuse enabled). In both baselines,

we substitute the logical UDF with the least expensive physical UDF

that satisfies the accuracy constraint. For example, if the required

accuracy is low, we substitute it with yolo-tiny. Fig. 10 shows the

results. With 𝑄2 (low accuracy requirement), EVA is 6.6× faster

than both baselines because EVA reuses results of FasterRCN-

NResnet50 from 𝑄1, whereas min-cost substitutes with the least

expensive model (yolo-tiny) and thus has no reuse opportunity.

With queries 𝑄6 − 𝑄8, EVA achieves a speed up in the range of

1.2–3.2× compared to min-cost. This is because EVA reuses results

from multiple views, whereas min-cost only reuses results from

the minimum cost UDF. For example, yolo-tiny may reuse results

from FasterRCNNResnet50 and FasterRCNNResnet101. EVA

considers all such reuse opportunities. With 𝑄4, EVA is 2× slower

than both baselines. This is because EVA reuses results from a high

accuracy model, which results in more objects being detected. Thus,

subsequent dependent UDF (e.g., VehicleModel) must be evalu-

ated for more objects, thus increasing the overall query time. We

discuss this limitation in § 6.

5.5 Impact of Video Content and Length

We next examine how the content of the video affects the perfor-

mance gains of EVA. Fig. 11 presents the workload speedup of

Table 5: Statistics of the UDF used in logical reuse experiment. We use

a batch size of 20. 𝐶𝑢 is the cost of each UDF in milliseconds per tuple.

Accuracy values are boxAP on COCO.

𝐶𝑢 (ms) Accuracy

yolo-tiny 9 17.6 (LOW)

FasterRCNNResnet50 99 37.9 (MEDIUM)

FasterRCNNResnet101 120 42.0 (HIGH)

VBENCH-LOW
0

1

2

3

4

W
or

kl
oa

d
Sp

ee
du

p

VBENCH-HIGH

No reuse Hashstash FunCache EVA

VBENCH-LOW
0

1

2

3

4

W
or

kl
oa

d
Sp

ee
du

p

VBENCH-HIGH

Figure 11: Impact of Video Content – It shows the workload speedup

on the jackson video dataset.

SHORT MEDIUM LONG
2

3

4

5

W
or

kl
oa

d
Sp

ee
du

p

EVA
vehicles/frame

6

7

8

9

Ve
hi

cle
s

Figure 12: Impact of Video Length –The left y-axis shows theworkload

speedup and the right y-axis shows the average number of vehicles per

frame across differently-sized ua-detrac videos.

EVA and other baselines on the jackson video dataset. With No-

Reuse, vbench-low and vbench-high take 0.53 and 1.7 hours,

respectively. While EVA still outperforms both baselines, the gap is

smaller because this dataset has significantly fewer vehicle objects

(0.1 vehicles per frame), leading to fewer ColorDet and CarType

invocations (reused by EVA). Thus, the benefits of EVA are more

prominent on workloads that contain more frequent UDF invoca-

tions in the predicates.

Video Length. To study how the benefits of EVA vary with the

length of the video, we measure the workload speedup of vbench-

high query set on SHORT- and LONG-ua-detrac. We alter the

query set to scale the 𝑖𝑑 predicate range to the length of these

videos. For instance, 𝑖𝑑 < 10000 on medium-ua-detrac translates

to 𝑖𝑑 < 5000 for short-ua-detrac and 𝑖𝑑 < 20000 for long-ua-

detrac, respectively. Fig. 12 shows that the workload speedup does

not drop with longer videos, demonstrating the scalability of EVA.

This is because the vehicle objects are nearly uniformly distributed

across frames in the ua-detrac videos. So, the video length does

not significantly impact the speedup (Eq. (7)). The slight increase in

workload speedup in Fig. 12 stems from higher number of average

vehicles per frame in long-ua-detrac.

5.6 Impact of Specialized Filters

We next examine how the reuse algorithm works in conjunction

with specialized filters [35, 40]. These specialized filters return a

boolean decision that decides whether the frame needs to be sub-

sequently processed by an expensive UDF. In this experiment, we

use a lightweight DNN model with two convolutional layers as a

specialized filter. Since these filters are lightweight UDFs, we also

materialize their results whenever possible.

We consider two configurations: (1) EVA: reuse enabled but no spe-

cialized filters, and (2) EVA+Filter: reuse enabled with specialized

filter. The experiment is performed on jackson video because the

filtering works best on videos with a low percentage of average

vehicles per frame [35]. Execution time with EVA and EVA+Filter

configurations are 1393 s and 1075 s, respectively (1.3× speedup).
This reduction in execution time is in addition to the 4× speedup
EVA delivers without using filters (Fig. 11). We attribute this addi-

tional gain to reducing the invocation of expensive UDF by filtering

out irrelevant frames using the lightweight UDF. This experiment

illustrates that reuse is orthogonal to the filtering optimization used

in other recently proposed VDBMSs [35, 40].

6 LIMITATIONS

We now discuss the limitations of EVA and present our ideas that

may address the problems in the future work.

Symbolic analysis of join predicates. Join predicates in-

crease the complexity of identifying UDF-centric reuse opportuni-

ties. Consider the following query plans:

• 𝑄1 : Π𝑈𝐷𝐹 (𝐴.𝑐𝑜𝑙,𝐵.𝑐𝑜𝑙) (𝐴 ⊲⊳𝐴.𝑖𝑑=𝐵.𝑖𝑑 𝐵)
• 𝑄2 : Π𝑈𝐷𝐹 (𝐴.𝑐𝑜𝑙,𝐵.𝑐𝑜𝑙) (𝐴 ⊲⊳𝐴.𝑖𝑑=𝐵.𝑖𝑑+1 𝐵)
• 𝑄3 : Π𝑈𝐷𝐹 (𝐴.𝑐𝑜𝑙,𝐵.𝑐𝑜𝑙) (𝐴 ⊲⊳𝐴.𝑖𝑑≡𝐵.𝑖𝑑 mod 2

𝐵)
where table 𝐴 and 𝐵 are heterogeneous except for the 𝑖𝑑 column.

Here, no reuse opportunities exist between 𝑄1 and 𝑄2, while 𝑄1

subsumes 𝑄3. While it is possible to do symbolic analysis of join

predicates, EVA currently does not support it.

Chained function calls and Fuzzy matching. In case of

logical UDF reuse, the selection of a physical UDF may affect the

execution cost of a subsequent UDF. For example, as faster-rcnn

detects more objects than yolo-tiny, substituting the object detec-

tor with faster-rcnn produces more objects, thereby increasing

the number of evaluations of dependent UDFs (e.g., VehicleColor,

VehicleModel). Taking this into consideration in the cost model

will further improve performance. Another observation is that the

bounding boxes detected by different object detection models for

the same object are likely to be spatially close to each other. We

plan to extend EVA to fuzzily reuse the results of VehicleModel

UDF on similar bounding boxes in the future.

7 RELATEDWORK

Visual DBMSs. Researchers have presented techniques for effi-

ciently analyzing visual data for several decades. These include a

rank-join operator for multi-feature image similarity matching [5,

28], support of streaming media [4, 23]. More recently, BlazeIt [35]

utilizes specialized neural networks to accelerate aggregation and

limit queries. It supports a declarative query language for analyz-

ing spatio-temporal features of the video. NoScope [36] reduces

execution cost by leveraging cheap filters. [40] uses probabilistic

predicates to accelerate machine learning inference. Tahoma [3]

relies on classifier cascades to speed up visual analytics queries.

Weld [47] introduces a common runtime that optimizes data op-

erations among existing analytics libraries. All these systems are

orthogonal to EVA and can be coupled to accelerate video analytical

queries further.

Reuse Algorithms in Traditional DBMSs. Researchers

have extensively studied algorithms for reusing results in tradi-

tional DBMSs [13, 17, 19, 27, 31, 33, 45, 50, 55, 56, 64]. Similar tech-

niques have been proposed in non-relational data processing sys-

tems [1, 14, 22, 53]. The key limitation of most of these algorithms is

that they take a syntax-based approach to select sub-expressions to

materialize and map it to a cost-based optimization problem. Since

EVA takes a semantics-based approach to reusing results, it is more

effective in leveraging opportunities for reusing results(e.g., non-

exact reuse in simple predicates that do not contain UDFs, and

compound predicates with logic and arithmetic expressions).

Traditional DBMSs [46] use a set of complex query rewrite rules

for leveraging materialized views. These rewrite rules are comple-

mentary to the ones tailored for UDFs in EVA.

SymbolicComputation inDBMSs. Researchers have proposed

several applications of symbolic computation in DBMSs. These in-

clude: (1) systems for verifying or disproving the equivalence of

SQL queries [9, 65], (2) systems to automatically generate input

tables and parameter values for database applications [57]. EVA

leverages symbolic computation to analyze UDF-based predicates.

Storage Systems forVideoAnalytics. VSS [25], VStore [62],

and TASM [12] are novel storage engines tailored for video ana-

lytics. Since EVA supports a pluggable storage engine architecture,

leveraging these specialized storage engines can further reduce

query execution time.

8 CONCLUSION

We presented EVA, a VDBMS for accelerating exploratory video

analytics using materialized views. EVA adopts a novel symbolic

approach to analyze the degree of reuse across queries and applies

a series of rule-based transformations geared towards reusing UDF

results. It leverages a materialization-aware ranking function for

reordering predicates and employs a logical UDF reuse optimization

tailored for video analytics. Our empirical analysis of EVA shows

that it outperforms the SOTA reuse algorithms on exploratory video

analytics workloads by 4× with a negligible storage overhead.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National Science Foun-

dation (IIS-1850342, IIS-1908984, CNS-1909346, CNS-2008368), Al-

ibaba Innovative Research (AIR) Program, Cisco, Adobe, Intel, and

a gift from Microsoft Corp. We thank colleagues in Georgia Tech

Database Group and Embedded Pervasive Lab for their constructive

feedback in improving the system.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1850342
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1908984
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1909346
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2008368

REFERENCES

[1] D. Abadi, Yanif Ahmad, M. Balazinska, U. Çetintemel, Mitch Cherniack, J. Hwang,

W. Lindner, Anurag Maskey, A. Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing,

and S. Zdonik. 2005. The Design of the Borealis Stream Processing Engine. In

CIDR.

[2] P. Adarsh, Pratibha Rathi, and M. Kumar. 2020. YOLO v3-Tiny: Object Detection

and Recognition using one stage improved model. 2020 6th International Con-

ference on Advanced Computing and Communication Systems (ICACCS) (2020),

687–694.

[3] Michael R. Anderson, Michael J. Cafarella, G. Ros, and T. Wenisch. 2019. Physical

Representation-Based Predicate Optimization for a Visual Analytics Database.

2019 IEEE 35th International Conference on Data Engineering (ICDE) (2019), 1466–

1477.

[4] W. Aref, A. Catlin, A. Elmagarmid, Jianping Fan, J. Guo, M. Hammad, I. Ilyas,

M. Marzouk, S. Prabhakar, A. Rezgui, S. Teoh, E. Terzi, Yi-Cheng Tu, A. Vakali,

and Xingquan Zhu. 2002. A distributed database server for continuous media.

Proceedings 18th International Conference on Data Engineering (2002), 490–491.

[5] W. Aref, A. Catlin, Jianping Fan, A. Elmagarmid, M. Hammad, I. Ilyas, M. Marzouk,

and Xingquan Zhu. 2002. A Video Database Management System for Advancing

Video Database Research. In Multimedia Information Systems.

[6] Michael Bayer. 2012. SQLAlchemy. In The Architecture of Open Source Applications

Volume II: Structure, Scale, and a Few More Fearless Hacks, Amy Brown and Greg

Wilson (Eds.). aosabook.org. http://aosabook.org/en/sqlalchemy.html

[7] David Buchfuhrer and Christopher Umans. 2008. The complexity of boolean

formula minimization. In International Colloquium on Automata, Languages, and

Programming. Springer, 24–35.

[8] S. Chaudhuri and Kyuseok Shim. 1999. Optimization of queries with user-defined

predicates. In TODS.

[9] Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung. 2017.

Cosette: An Automated Prover for SQL.. In CIDR.

[10] V. Chvatal. 1979. A Greedy Heuristic for the Set-Covering Problem. Math. Oper.

Res. 4, 3 (Aug. 1979), 233–235. https://doi.org/10.1287/moor.4.3.233

[11] Yann Collet. 2021. xxHash - Extremely fast hash algorithm. Retrieved Apr 17,

2021 from https://github.com/Cyan4973/xxHash

[12] Maureen Daum, Brandon Haynes, Dong He, Amrita Mazumdar, M. Balazinska,

and Alvin Cheung. 2020. TASM: A Tile-Based Storage Manager for Video Ana-

lytics. ArXiv abs/2006.02958 (2020).

[13] K. Dursun, Carsten Binnig, U. Çetintemel, and Tim Kraska. 2017. Revisiting Reuse

in Main Memory Database Systems. Proceedings of the 2017 ACM International

Conference on Management of Data (2017).

[14] Iman Elghandour and Ashraf Aboulnaga. 2012. ReStore: Reusing Results of

MapReduce Jobs. Proc. VLDB Endow. 5 (2012), 586–597.

[15] Mostafa Elhemali, C. Galindo-Legaria, T. Grabs, and Milind Joshi. 2007. Execution

strategies for SQL subqueries. In SIGMOD ’07.

[16] Uriel Feige. 1998. A Threshold of Ln <i>n</i> for Approximating Set Cover. J.

ACM 45, 4 (July 1998), 634–652. https://doi.org/10.1145/285055.285059

[17] Alex Galakatos, Andrew Crotty, Emanuel Zgraggen, Carsten Binnig, and Tim

Kraska. 2017. Revisiting Reuse for Approximate Query Processing. Proc. VLDB

Endow. 10 (2017), 1142–1153.

[18] C. Galindo-Legaria andMilind Joshi. 2001. Orthogonal optimization of subqueries

and aggregation. In SIGMOD ’01.

[19] G. Giannikis, Darko Makreshanski, G. Alonso, and D. Kossmann. 2014. Shared

Workload Optimization. Proc. VLDB Endow. 7 (2014), 429–440.

[20] G. Graefe. 1995. The Cascades Framework for Query Optimization. IEEE Data

Eng. Bull. 18 (1995), 19–29.

[21] R. Gruener, O. Cheng, and Y. Litvin. 2018. Introducing Petastorm: Uber ATG’s

Data Access Library for Deep Learning. Retrieved May 7, 2021 from https:

//eng.uber.com/petastorm/

[22] P. Gunda, L. Ravindranath, C. Thekkath, Y. Yu, and Li Zhuang. 2010. Nectar:

Automatic Management of Data and Computation in Datacenters. In OSDI.

[23] M. Hammad,W. Aref, and A. Elmagarmid. 2002. Search-based buffer management

policies for streaming in continuousmedia servers. Proceedings. IEEE International

Conference on Multimedia and Expo 1 (2002), 253–256 vol.1.

[24] Michael Z. Hanani. 1977. An optimal evaluation of Boolean expressions in an

online query system. Commun. ACM 20 (1977), 344–347.

[25] Brandon Haynes. 2021. VSS: A Storage System for Video Analytics.

[26] J. Hellerstein. 1994. Practical predicate placement. In SIGMOD ’94.

[27] J. Hellerstein and M. Stonebraker. 1993. Predicate migration: optimizing queries

with expensive predicates. In SIGMOD ’93.

[28] I. Ilyas, W. Aref, and A. Elmagarmid. 2002. Joining Ranked Inputs in Practice. In

VLDB.

[29] Wolfram Research, Inc. [n.d.]. Mathematica, Version 12.3.1. https://www.

wolfram.com/mathematica Champaign, IL, 2021.

[30] Y. Ioannidis. 2003. The History of Histograms (abridged). In VLDB.

[31] M. Ivanova, M. Kersten, N. Nes, and R. Goncalves. 2009. An architecture for

recycling intermediates in a column-store. Proceedings of the 2009 ACM SIGMOD

International Conference on Management of data (2009).

[32] A. Jhingran. 1988. A Performance Study of Query Optimization Algorithms on a

Database System Supporting Procedures. In VLDB.

[33] Alekh Jindal, Konstantinos Karanasos, S. Rao, and Hiren Patel. 2018. Selecting

Subexpressions to Materialize at Datacenter Scale. Proc. VLDB Endow. 11 (2018),

800–812.

[34] Glenn Jocher, Yonghye Kwon, Guigarfr, Perry0418, Josh Veitch-Michaelis, Ttayu,

Daniel Suess, Fatih Baltacı, Gabriel Bianconi, IlyaOvodov, , Marc, E96031413,

Chang Lee, Dustin Kendall, , Falak, Francisco Reveriano, , FuLin, GoogleWiki,

Jason Nataprawira, Jeremy Hu, LinCoce, LukeAI, NanoCode012, NirZarrabi,

Oulbacha Reda, Piotr Skalski, SergioSanchezMontesUAM, Shiwei Song, Thomas

Havlik, and Timothy M. Shead. 2021. ultralytics/yolov3: v9.5.0 - YOLOv5 v5.0

release compatibility update for YOLOv3. https://doi.org/10.5281/ZENODO.

4681234

[35] Daniel Kang, Peter Bailis, and M. Zaharia. 2019. BlazeIt: Optimizing Declarative

Aggregation and Limit Queries for Neural Network-Based Video Analytics. Proc.

VLDB Endow. 13 (2019), 533–546.

[36] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and M. Zaharia. 2017. No-

Scope: Optimizing Neural Network Queries over Video at Scale. arXiv: Databases

(2017).

[37] Daniel Kang, John Guibas, Peter Bailis, Tatsunori Hashimoto, Yi Sun, and Matei

Zaharia. 2021. Accelerating Approximate Aggregation Queries with Expensive

Predicates. Proc. VLDB Endow. 14, 11 (jul 2021), 2341–2354. https://doi.org/10.

14778/3476249.3476285

[38] M. Kitsuregawa, H. Tanaka, and T.Moto-Oka. 1989. Architecture and performance

of relational algebra machine GRACE.

[39] Tsung-Yi Lin, M. Maire, Serge J. Belongie, James Hays, P. Perona, D. Ramanan,

Piotr Dollár, and C. L. Zitnick. 2014. Microsoft COCO: Common Objects in

Context. In ECCV.

[40] Y. Lu, Aakanksha Chowdhery, Srikanth Kandula, and S. Chaudhuri. 2018. Accel-

erating Machine Learning Inference with Probabilistic Predicates. Proceedings of

the 2018 International Conference on Management of Data (2018).

[41] Carsten Lund and Mihalis Yannakakis. 1994. On the Hardness of Approximating

Minimization Problems. J. ACM 41, 5 (Sept. 1994), 960–981. https://doi.org/10.

1145/185675.306789

[42] Wes McKinney. 2010. Data Structures for Statistical Computing in Python.

[43] Aaron Meurer, C. Smith, Mateusz Paprocki, O. Certík, S. B. Kirpichev, M. Rocklin,

A. Kumar, Sergiu Ivanov, J. K. Moore, Sartaj Singh, T. Rathnayake, Sean Vig, B.

Granger, R. Muller, F. Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson,

Fabian Pedregosa, M. Curry, A. Terrel, S. Roucka, A. Saboo, Isuru Fernando,

Sumith Kulal, R. Cimrman, and A. Scopatz. 2017. SymPy: symbolic computing in

Python. PeerJ Comput. Sci. 3 (2017), e103.

[44] Oscar Moll, F. Bastani, Sam Madden, M. Stonebraker, V. Gadepally, and Tim

Kraska. 2020. ExSample: Efficient Searches on Video Repositories through Adap-

tive Sampling. ArXiv abs/2005.09141 (2020).

[45] F. Nagel, P. Boncz, and Stratis Viglas. 2013. Recycling in pipelined query evalua-

tion. 2013 IEEE 29th International Conference on Data Engineering (ICDE) (2013),

338–349.

[46] Oracle. 2017. Advanced Query Rewrite for Materialized Views. Retrieved

Dec 11, 2020 from https://docs.oracle.com/database/121/DWHSG/qradv.htm#

DWHSG08026

[47] Shoumik Palkar, J. Thomas, D. Narayanan, Pratiksha Thaker, R. Palamuttam, Pari-

marjan Negi, A. Shanbhag, Malte Schwarzkopf, H. Pirk, Saman P. Amarasinghe,

S. Madden, and M. Zaharia. 2018. Evaluating End-to-End Optimization for Data

Analytics Applications in Weld. Proc. VLDB Endow. 11 (2018), 1002–1015.

[48] T. Parr, Sam Harwell, and Kathleen Fisher. 2014. Adaptive LL(*) parsing: the

power of dynamic analysis. In OOPSLA.

[49] Adam Paszke, S. Gross, Francisco Massa, A. Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Z. Lin, N. Gimelshein, L. Antiga, Alban Desmaison,

Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank

Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019.

PyTorch: An Imperative Style, High-Performance Deep Learning Library. In

NeurIPS.

[50] L. Perez and C. Jermaine. 2014. History-aware query optimization with mate-

rialized intermediate views. 2014 IEEE 30th International Conference on Data

Engineering (2014), 520–531.

[51] Viswanath Poosala, Yannis E. Ioannidis, Peter J. Haas, and Eugene J. Shekita. 1996.

Improved histograms for selectivity estimation of range predicates. In SIGMOD

’96.

[52] Willard V Quine. 1952. The problem of simplifying truth functions. The American

mathematical monthly 59, 8 (1952), 521–531.

[53] Lana Ramjit, Matteo Interlandi, Eugene Wu, and Ravi Netravali. 2019. Acorn: Ag-

gressive Result Caching in Distributed Data Processing Frameworks. Proceedings

of the ACM Symposium on Cloud Computing (2019).

[54] Shaoqing Ren, Kaiming He, Ross B. Girshick, and J. Sun. 2015. Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal Networks. IEEE

Transactions on Pattern Analysis and Machine Intelligence 39 (2015), 1137–1149.

[55] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. 2000. Efficient and extensible

algorithms for multi query optimization. ArXiv cs.DB/9910021 (2000).

http://aosabook.org/en/sqlalchemy.html
https://doi.org/10.1287/moor.4.3.233
https://github.com/Cyan4973/xxHash
https://doi.org/10.1145/285055.285059
https://eng.uber.com/petastorm/
https://eng.uber.com/petastorm/
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://doi.org/10.5281/ZENODO.4681234
https://doi.org/10.5281/ZENODO.4681234
https://doi.org/10.14778/3476249.3476285
https://doi.org/10.14778/3476249.3476285
https://doi.org/10.1145/185675.306789
https://doi.org/10.1145/185675.306789
https://docs.oracle.com/database/121/DWHSG/qradv.htm#DWHSG08026
https://docs.oracle.com/database/121/DWHSG/qradv.htm#DWHSG08026

[56] K. Tan, S. Goh, and B. Ooi. 2001. Cache-on-demand: recycling with certainty.

Proceedings 17th International Conference on Data Engineering (2001), 633–640.

[57] Margus Veanes, Nikolai Tillmann, and Jonathan De Halleux. 2010. Qex: Sym-

bolic SQL query explorer. In International Conference on Logic for Programming

Artificial Intelligence and Reasoning. Springer, 425–446.

[58] Abdul Wasay, Xinding Wei, Niv Dayan, and Stratos Idreos. 2017. Data Canopy:

Accelerating Exploratory Statistical Analysis. In Proceedings of the 2017 ACM

International Conference onManagement of Data (Chicago, Illinois, USA) (SIGMOD

’17). Association for Computing Machinery, New York, NY, USA, 557–572. https:

//doi.org/10.1145/3035918.3064051

[59] LongyinWen, Dawei Du, Zhaowei Cai, Z. Lei, Ming-Ching Chang, H. Qi, Jongwoo

Lim, Ming-Hsuan Yang, and Siwei Lyu. 2020. UA-DETRAC: A new benchmark

and protocol for multi-object detection and tracking. Comput. Vis. Image Underst.

193 (2020), 102907.

[60] Wikipedia contributors. 2021. Computer algebra — Wikipedia, The Free Ency-

clopedia. https://en.wikipedia.org/w/index.php?title=Computer_algebra&oldid=

1000609796. [Online; accessed 23-August-2021].

[61] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick.

2019. Detectron2. https://github.com/facebookresearch/detectron2.

[62] Tiantu Xu, Luis Materon Botelho, and F. Lin. 2019. VStore: A Data Store for

Analytics on Large Videos. Proceedings of the Fourteenth EuroSys Conference 2019

(2019).

[63] Y. Xu. 1998. Efficiency In The Columbia Database Query Optimizer.

[64] Jingren Zhou, P. Larson, J. Freytag, and Wolfgang Lehner. 2007. Efficient exploita-

tion of similar subexpressions for query processing. In SIGMOD ’07.

[65] Qi Zhou, Joy Arulraj, Shamkant Navathe, William Harris, and Dong Xu. 2019.

Automated verification of query equivalence using satisfiability modulo theories.

Proceedings of the VLDB Endowment 12, 11 (2019), 1276–1288.

https://doi.org/10.1145/3035918.3064051
https://doi.org/10.1145/3035918.3064051
https://en.wikipedia.org/w/index.php?title=Computer_algebra&oldid=1000609796
https://en.wikipedia.org/w/index.php?title=Computer_algebra&oldid=1000609796
https://github.com/facebookresearch/detectron2

	Abstract
	1 Introduction
	2 Background
	3 System Overview
	3.1 Semantic Reuse Algorithm
	3.2 Solution Overview
	3.3 Defining UDFs

	4 Semantic-Reuse Algorithm
	4.1 Symbolic Predicate Analysis
	4.2 Materialization-Aware Optimization
	4.3 Logical UDF Reuse
	4.4 Rule-Based Query Rewrite

	5 Evaluation
	5.1 Experimental Setup
	5.2 End-to-End Comparison
	5.3 Time Breakdown
	5.4 Semantic Reuse Algorithms
	5.5 Impact of Video Content and Length
	5.6 Impact of Specialized Filters

	6 Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

