CS 3600: Markov Decision Process problem

Given the following Markov Decision Problem, use Value Iteration to find the policy after two iterations.

There are four states, s_1, s_2, s_3, and s_4, arranged in a grid. State s_4 is a sink (absorbing) state. The immediate rewards are given above. The agent can move UP, DOWN, LEFT, RIGHT and the transition model is such that there is an 80% chance of a correct move, and a 10% chance of moving to either side in error (e.g., if performing UP, there is a 10% chance of performing LEFT instead and a 10% chance of performing RIGHT instead).

Let the initial utility values for states are shown below.

- $U_0(s_1) = 0.1$
- $U_0(s_2) = 0.1$
- $U_0(s_3) = 0.1$
- $U_0(s_4) = 1.0$
- $\gamma = 0.5$
\[U_1(s_1) = R(s_1) + \gamma \max_a \{ \]

\[\begin{align*}
 \text{up: } & (0.8)(0.1) + (0.1)(0.1) + (0.1)(1) \quad \Leftarrow 0.19 \\
 \text{down: } & (0.8)(0.1) + (0.1)(0.1) + (0.1)(1) \quad \Leftarrow 0.19 \\
 \text{left: } & (0.8)(0.1) + (0.1)(0.1) + (0.1)(0.1) \quad \Leftarrow 0.1 \\
 \text{right: } & (0.8)(1) + (0.1)(0.1) + (0.1)(0.1) \quad \Leftarrow 0.82
\end{align*} \]

\[U_1(s_1) = -0.04 + (0.5)(0.82) \]

\[U_1(s_1) = 0.37 \]

\[\pi_1(s_1) = \text{Right} \]
\[U_1(s_2) = R(s_2) + \gamma \max_a \{ \]

\[
\begin{align*}
\text{up: } & (0.8)(0.1) + (0.1)(0.1) + (0.1)(0.1) \quad \leftarrow 0.1 \\
\text{down: } & (0.8)(0.1) + (0.1)(0.1) + (0.1)(0.1) \quad \leftarrow 0.1 \\
\text{left: } & (0.8)(0.1) + (0.1)(0.1) + (0.1)(0.1) \quad \leftarrow 0.1 \\
\text{right: } & (0.8)(0.1) + (0.1)(0.1) + (0.1)(0.1) \quad \leftarrow 0.1 \\
\end{align*}
\]

\[U_1(s_2) = -0.04 + (0.5)(0.1) \]

\[U_1(s_2) = 0.01 \]

\[\pi_1(s_2) = \text{any} \]
$U_1(s_3) = R(s_3) + \gamma \max_a \{ \\
\text{up: (0.8)(1) + (0.1)(0.1) + (0.1)(0.1)} \rightarrow 0.82 \\
\text{down: (0.8)(0.1) + (0.1)(0.1) + (0.1)(0.1)} \rightarrow 0.1 \\
\text{left: (0.8)(0.1) + (0.1)(1) + (0.1)(0.1)} \rightarrow 0.19 \\
\text{right: (0.8)(0.1) + (0.1)(1) + (0.1)(0.1)} \rightarrow 0.19 \\
\}$

$U_1(s_3) = -0.04 + (0.5)(0.82)$

$U_1(s_3) = 0.37$

$\pi_1(s_3) = \text{Up}$
\[U_2(s_2) = R(s_2) + \gamma \max_a \{ \]

- up: \((0.8)(0.37) + (0.1)(0.01) + (0.1)(0.37) \leftarrow 0.334\]

- down: \((0.8)(0.01) + (0.1)(0.37) + (0.1)(0.01) \leftarrow 0.046\]

- left: \((0.8)(0.01) + (0.1)(0.37) + (0.1)(0.01) \leftarrow 0.046\]

- right: \((0.8)(0.37) + (0.1)(0.01) + (0.1)(0.37) \leftarrow 0.334\]

\[U_2(s_2) = -0.04 + (0.5)(0.334) \]

\[U_2(s_2) = 0.127 \]

\[\pi_2(s_2) = \text{up or right} \]
MDP

- $U_1(s_1) = 0.37$
- $\pi_1(s_1) = \text{right}$
- $U_1(s_2) = 0.01$
- $\pi_1(s_2) = \text{any}$
- $U_1(s_3) = 0.37$
- $\pi_1(s_3) = \text{up}$

- $U_2(s_1) = 0.379$
- $\pi_2(s_1) = \text{right}$
- $U_2(s_2) = 0.127$
- $\pi_2(s_2) = \text{up or right}$
- $U_2(s_3) = 0.379$
- $\pi_2(s_3) = \text{up}$