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ABSTRACT 
As a field, artificial intelligence (AI) has been applied to 
games for more than 50 years, beginning with traditional 
two-player adversarial games like tic-tac-toe and chess and 
extending to modern strategy games, first-person shooters, 
and social simulations. AI practitioners have become adept 
at designing algorithms that enable computers to play 
games at or beyond human levels in many cases.  

In this paper, we argue that the traditional goal of AI in 
games—to win the game—is not the only, nor the most 
interesting goal. An alternative goal for game AI is to make 
the human player’s play experience “better.” AI systems in 
games should reason about how to deliver the best possible 
experience within the context of the game. The key insight 
of this paper is that approaching AI reasoning for games as 
storytelling reasoning makes this goal much more attain-
able.  

We present an overview of traditional game AI techniques 
as well as a few more recent AI storytelling techniques. We 
also provide a foundation for describing and reasoning 
about games as stories, citing a number of examples. We 
conclude by discussing the implications for future direc-
tions. 

Author Keywords 
Artificial intelligence, machine learning, story telling, nar-
rative, drama management 

INTRODUCTION 
There has been a significant increase over the past several 
years of interest in research focused on the applications of 
artificial intelligence to computer games. Dating back to the 
1950s with early efforts in computer chess, approaches to 
game artificial intelligence (AI) have been designed around 
adversarial, or zero-sum games. The goal of AI agents in 
these cases is to maximize their payoff. Simply put, they are 
designed to win the game. In recent years similar ap-
proaches have been applied to newer games of real-time 
strategy, first person shooters, and more. Despite the rela-
tive complexities of these environments compared to chess, 
the fundamental goals of the AI agents remain the same: to 
win the game. 

Central to the vast majority of techniques in AI and Ma-
chine Learning (ML) is the notion of optimality, implying 

that the best performing techniques seek to find the solution 
to a problem that will result in the highest (or lowest) pos-
sible evaluation of some mathematical function. In adver-
sarial games, this function typically evaluates to symmetric 
values such as +1 when the game is won and  
-1 when the game is lost.  

In this paper, we argue that the focus of game AI design 
should not be on developing new algorithms to win more 
often, but developing new algorithms that will make the 
human player enjoy the game more. Winning or losing the 
game is an outcome or an end. While there may be a long 
sequence of actions that actually determine who wins or 
loses the game, for all intents and purposes, it is a single 
event that is evaluated and “maximized.” While the out-
come is important, it isn’t the only aspect of a game that a 
player evaluates. How they reach the ending can often be 
just as, if not more, important than what the ending is. A 
hard fought battle that results in a loss can be more enjoy-
able than an easy win. We argue that for game AI tech-
niques to deliver more enjoyable experiences to players, 
these AI techniques should operate to maximize the inter-
estingness of sequences of states; that is, they should focus 
on telling the player a good story. 

In AI and ML, problems are modeled as state spaces, where 
every point in this abstract space is a particular configura-
tion of the game environment. A sequence of states forms a 
trajectory through the space. How do we evaluate the opti-
mality of a trajectory? One way is to identify certain pat-
terns of state transitions that, when considered together cor-
relate to increased player enjoyment. Because a narrative is 
the recounting of a non-random sequence of events [31], a 
trajectory through a state space is a narrative. Making the 
connection between a trajectory of states in a game and a 
narrative provides us with a set of tools for thinking about 
and evaluating sequences.  

There has been 30 years of research on AI and ML tech-
niques for story representation, generation, understanding, 
and interactive storytelling. Recent developments in com-
putational storytelling technologies provide a powerful 
framework for AI systems to represent and reason about 
computer games in general. We argue that formalizing 
computer games in a manner similar to a story provides the 
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groundwork for developing “better” game AI that moves 
beyond the traditional notions of optimal.  

In this paper, we first present an overview of traditional AI 
techniques applied to games as motivation for our later 
claims. Then, we address several issues. First, we describe 
how games—both classic board games and modern graphi-
cal computer games—can be represented as state spaces 
and trajectories. We further describe how previous and 
emerging work in game AI and drama management can be 
applied to our representation. Additionally, we present our 
case for conceptualizing state space trajectories as narra-
tives. We conclude with an enumeration of open research 
questions entailed by our approach that, if met, may dra-
matically improve the quality of game AI in the future. 

AI OVERVIEW 
Much of modern artificial intelligence is dominated by the 
notion of rationality. That is, an agent should always act in 
its best interest. The notion of bounded rationality that has 
dominated design prescribes that agents will act in their 
own best interest subject to the constraints imposed by their 
processing capabilities [41]. The simplest AI is the reflex 
agent, which makes decisions through the application of 
“perception-action” mappings. Perception-action mappings 
are hand-authored IF-THEN rules that dictate what the 
agent does in any given situation.  

More sophisticated AI techniques typically operate over 
state spaces. A state space is a (often concise) representa-
tion of the configuration of the environment. In cases where 
the perceptual capabilities of agents are limited, such as in 
robotics, it is difficult to represent and update state informa-
tion accurately. AI techniques used in these cases are typi-
cally of the reactive control variety where all state informa-
tion is encoded solely by the actual environment and not in 
a model maintained by the agent itself [8, 24]. In game set-
tings, however, the agents have the advantage of getting 
accurate and timely state information from the game envi-
ronment without sensor error. As a result, game AI tech-
niques can easily reason about and maintain state. 

In AI, a problem is a goal and a set of means for achieving 
that goal. Search is the process of exploring the possible 
ways in which these means can be applied to realize the 
goal [39]. Search was the first tool leveraged by AI re-
searchers to create computer agents that were more sophis-
ticated than simple IF-THEN rules. Despite its early incep-
tion, search through state space remains a powerful tool for 
game AI designers today.  

State, Trajectories, and Search  
Consider the simple grid-world environment in Figure 1. 
Each of the squares is a discrete location and solid lines 
represent walls that prevent movement. In this environment, 
we can use x and y coordinates to efficiently represent state. 
One state is designated as a start state S and one as a goal 
state G.  

Knowing something about the structure of this environ-
ment, it is relatively straightforward to write down a con-
cise set of rules for how the agent should act: move in the 
direction that makes the agent’s state (x, y) closer to G. In 
general, however, state spaces can be arbitrarily complex 
and therefore hand-specifying rules for agent behavior can 
be impossible for a programmer. When an agent is con-
fronted with a number of immediate options of unknown 
value, it can hypothesize about sequences of actions that 
will lead to states of known value and then pick the best 
one. That process is search [39].  

Actions transition the agent from one state to another. A 
sequence of states and transitions is known as a trajectory. 
In Figure 1, the red arrow leading from the start state to the 
goal state depicts one possible trajectory. In traditional AI 
techniques, trajectories are an artifact of the goal search 
process. Some trajectories are solutions in that they transi-
tion the agent from S to G. It is often the case that there are 
many trajectories that are solutions, in which case we might 
want to know whether one trajectory is better than another. 
A common generic metric is trajectory length, under the 
assumption that the shortest trajectory is always the best. A 
heuristic is a function that can evaluate the “goodness” of a 
state, often as an estimate of how far that state is away from 
the goal. 

In some cases it is helpful to develop heuristics that encode 
other criteria for comparing trajectories. In Figure 1, some 
states are labeled a, b, …, f. Suppose there is value associ-
ated with passing through these states. We might favor a 
trajectory that passes through as many of these states on the 
way from S to G while minimizing redundant navigation.  

Figure 1: A simple 
grid-world with barriers, 
intermediate goals 
(lower case letters), a 
start state S, and a goal 
state G.  
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Adversarial Search 
Adversarial search is a specialized search technique de-
signed for two-player turn-based games such as chess and 
checkers. Basic adversarial search is applicable to games 
where there is no element of chance and the game state is 
completely observable to the AI system. The most prevalent 
adversarial search algorithm is minimax [39]. The idea be-
hind minimax is that an AI player looks ahead to predict the 
outcome of the different possible moves available to them. 
The player’s goal is to maximize payoff, while the oppo-
nent’s goal is to maximize their own payoff which amounts 
to minimizing the player’s payoff (hence, the zero-sum na-
ture of the game). For any given turn, the player looks at all 
possible moves and the successor states that result from 
their application. Each successive state similarly has suc-
cessors based on possible moves by the opponent (unless 
the end of the game is reached). Search continues until 
there are no more possible moves or a pre-defined search 
limit is reached. The agent then picks the move that maxi-
mizes payoff according to a heuristic function given the 
opponent is trying to minimize that same function. The op-
ponent moves, and the search process repeats from scratch. 

Figure 2 shows a simplified hypothetical search tree for the 
game of chess. Each state is represented in the figure by a 
small board and arrows represent moves by the player or 
the opponent. In this example, the “branching factor” is 
two, indicating both players have two legal moves. In actu-
ality, the branching factor in chess is an order of magnitude 
larger. Each level, or “ply,” of the tree represents one move 
by one of the players. The “root”, or top node of the tree, is 
a maximizing node and every subsequent ply of the tree 
alternates between minimizing and maximizing represent-
ing alternating turns by the two players.  

Extensions to minimax allow for games of chance.  Another 
approach is to model uncertainty as transition dynamics. 
Designers can use Markov Decision Processes (MDPs) as 
another means for reasoning under uncertainty [17]. In 
MDPs, an agent pre-computes a policy—a function that 

maps states to actions. Partially Observable MDPs 
(POMDPs) are used when the game state is not fully ob-
servable [16], that is, when the agent cannot know with 
certainty what state it is in. Although the algorithmic tech-
niques behind MDPs and POMDPs are different than 
minimax, the goals are similar: choose an action that will 
result in the highest expected payoff of the AI system.  

AI STORYTELLING 
Artificial intelligence is not only used for rational decision 
making; artificial intelligence has been applied to problems 
of aesthetics as well. In particular, there are a variety of 
automated techniques for generating and manipulating sto-
ries. There have been a number of systems developed for 
story generation. Space precludes an in-depth discussion of 
these techniques, but we can make certain general observa-
tions. Narrative generation systems can often be classified 
as using one of two approaches: simulation or deliberation. 
Simulation-based narrative generation systems (also re-
ferred to as emergent systems [4]) are those that generate 
narrative by simulating a story world full of autonomous 
character agents. Simulation-based systems include [4, 5, 9, 
25]. Deliberative narrative generation systems search for a 
sequence of character actions from the perspective of an 
author. The narrative is the output of this procedure. Delib-
erative systems include [12, 20, 30, 32]. One advantage of 
deliberative approaches over simulation-based approaches, 
for the thesis of this paper, is that a deliberative system can 
reason about the global structure of a narrative. That is, a 
deliberative system can in theory ask “if I were to have 
character c perform action a at time t, will this increase or 
decrease the dramatic structure of the narrative?” 
AI AND INTERACTIVE NARRATIVE 
Recently, there has been growing interest in stories as arti-
facts that can augment interactive entertainment products 
such as video games. This interest in storytelling for inter-
active entertainment has lead to the development of the 
notion of an interactive narrative. An interactive narrative is 
an approach to interactive entertainment in which a system 
attempts to tell a story to an interactive participant. In order 
to distinguish interactive narrative systems from other types 
of interactive entertainment, an interactive narrative allows 
the user to make decisions that directly affect the direction 
and/or outcome of the story being told by the system. They 
are the modern-day equivalent of the Bantam Books 
Choose-Your-Own-Adventure novels that balanced narra-
tive coherence and user self-agency by separating the read-
ing experience into non-interactive narrative interspersed 
with decision-points. Mateas surveys early work in the field 
[23] while Roberts & Isbell [38] and Riedl et al. [34] pro-
vide more recent surveys. 

The goal of an interactive narrative system is to balance the 
competing requirements for narrative coherence and per-
ceived user self-agency [33]. A drama manager (first pro-
posed by Laurel [19] and more generally known as an expe-

Figure 2: A simplified 
representation of the 
search tree for chess. 
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rience manager [34]) is an AI system that attempts to co-
erce the state of the world such that a coherent narrative 
unfolds over time without reducing the agency of the inter-
active participant.  

Interactive narratives typically occur in virtual worlds, de-
fined by a model of world dynamics (e.g., what is possible 
and when it is possible). Like chess and checkers, the vir-
tual world has state. Not all states are of equal value in 
terms of the player’s needs/desires or in terms of narrative 
quality. Consequently, a drama manager is often explicitly 
or implicitly provided with a set of author goals; therefore, 
the AI system is a surrogate for a designer who sets the 
parameters for defining a good narrative experience. Author 
goals—usually aesthetic in nature, but can also be peda-
gogical (c.f., [22, 26, 34])—define a set of qualities or fea-
tures of the narrative that are preferred or necessary. That 
is, author goals provide guidance for an AI system to dis-
tinguish a good narrative from a bad narrative or at least 
prefer one possible narrative to another. 

A successful drama manager will steer the player away 
from parts of the state space that, in conjunction with the 
sequence of past states result in narratives that violate the 
author’s goals. To accomplish this, drama managers must 
reason about narrative structures based on state and history 
information.  

BEYOND AVERSARIAL SEARCH 
Industrial game developers cite “fun” as the primary design 
consideration. An AI opponent that acts rationally always 
has the goal of beating the player. This is true for AI oppo-
nents in real-time strategy games, individual non-player 
characters (NPCs) in first-person shooters, and so on. Real-
izing that an AI that beats the player is not always fun to 
play against, designers often take steps to “dumb down” the 
AI systems by limiting their computational resources or 
perceptual abilities [21]. West proposes that the use of “in-
telligent mistakes” is a better approach [43].  

From an AI perspective, a “mistake” is a sub-optimal deci-
sion. We interpret West’s intelligent mistakes to be the in-
tentional selection of sub-optimal moves. We extend West’s 
argument by proposing formal AI approaches to make cal-
culated “sub-optimal” decisions in the service of improving 
the player’s experience. But how does the system know 
when and which sub-optimal decisions to make? We pro-
pose that many of the computational techniques that have 
been applied to storytelling can provide the framework for 
reasoning about when to act sub-optimally (e.g, to make 
“intelligent mistakes”) in the context of a game. We argue 
that under this approach the AI system is actually acting 
rationally if the goal is to deliver an enjoyable and engaging 
global experience. But this can manifest itself as apparently 
sub-optimal local moves, assuming the human player be-
lieves the AI opponent to be rational.  

A narrative is an ordered sequence of events that change the 
story world in meaningful ways.  Indeed, the simplest nar-
rative is two states and a transition—or move—between 
them [18].  Therefore, any sequence of state transitions—
trajectories—can be conceived of as a narrative.  The ques-
tion is whether that narrative is “good” from the perspective 
of the user’s experience. Trajectories provide us with a set 
of tools for reasoning about games and how they relate to 
enjoyable experiences for players. We hypothesize that an 
AI opponent that reasons about trajectories as narrative is in 
fact reasoning about how to make “intelligent mistakes” 
because it is making choices based not on whether a move 
increases payoff, but on whether the narrative experience is 
improved. There are two questions that must be addressed: 
First, how do we algorithmically search for moves that 
maximize the utility of trajectories? Second, how do we 
determine the utility of a trajectory? 

Trajectory Space Search 
On the surface, searching for a move that maximizes the 
utility of a trajectory appears complicated. A move transi-
tions the agent from one state to another state. How does 
the agent know what the trajectory will look like? Part of 
the trajectory is the history of all moves that preceded the 
current move and another part of the trajectory is a projec-
tion of possible future states. This is further complicated by 
the presence of the human player, who is not guaranteed to 
act rationally or predictably. Thus any projection into the 
future that we perform may not come to pass. One way to 
deal with these questions is to recast the agent as a system 
that searches through trajectory space. Trajectory space is 
like state space, except every point in the space is a partial 
or complete trace of the game.  

Trajectory space search is not a novel idea. One form of 
search, partial-order planning (POP), is search through plan 
space, where a plan is a sequence of operators selected to 
achieve a given goal. That is, a plan is a complete or partial 
trajectory. Another technique is Targeted Trajectory Distri-
bution Markov Decision Processes (TTD-MDPs), an exten-
sion of Markov Decision Processes that reasons about tra-
jectories instead of single states [37]. 

Narrative Planning 
A discussion of how POP algorithms work is beyond the 
scope of this paper; however many story generation systems 
utilize some version of planning and thus utilize some form 
of trajectory space search (c.f., [20, 30, 32]).  Others have 
noted the similarities between plans and narratives [47].  
Riedl and colleagues [32, 35] present a specialized delibera-
tive generation system, Fabulist, which reasons about 
whether a sequence of events will be comprehended as be-
lievable.  Fabulist has an implicit user model that analyzes 
proposed solutions based on cognitive psychological prin-
ciples.  This is the first narrative generation system that 
reasons about narrative from the perspective of the user. 
However, at the time of writing Fabulist does not have a 
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model of “goodness” that extends beyond the notion of 
comprehensibility.   

Because Fabulist is a narrative generator, it is not designed 
to handle an interactive user who is making moves in the 
virtual world. To make planning capable of responding to 
interactivity, Mimesis [48] and the Automated Story Direc-
tor [34] utilize a technique called narrative mediation [33]. 
A narrative mediation system determines possible moves 
that the user can make in the virtual world. For each user 
move that is projected to interfere with the progression of a 
narrative plan, a contingency narrative plan is generated 
and stored in case real-time execution is required. The re-
sult of this process is a tree of contingency plans, where 
each child is a revision of the parent narrative plan to ac-
commodate a user action that disrupts the parent narrative 
plan.  This narrative mediation tree can be computed prior 
to execution time and is analogous to a policy.  

Targeted Trajectory Distribution MDPs 
Originally developed for drama management, Targeted 
Trajectory Distribution Markov Decision Processes (TTD-
MDPs) are specifically designed to provide a framework for 
reasoning about trajectories [6, 36, 37]. Based on the De-
clarative Optimization-based Drama Management (DODM) 
formalism [27, 28, 44], the TTD-MDP formalism reasons 
about sequences of underlying world states. The solution to 
a TTD-MDP is a probabilistic policy providing a distribu-
tion over action choices in any given world state. TTD-
MDPs break from the traditional MDP formalism by rede-
fining the notion of an optimal policy. Rather than solve for 
a policy that provides an action at every point that will 
maximize long-term expected discounted reward, the agent 
solves for a probabilistic policy that matches a target distri-
bution over complete trajectories. 

To solve for a TTD-MDP policy, a series of local decisions 
that involve comparing the current partial trajectory to the 
desired distribution over complete trajectories is made. In 
making this comparison the system is able to make globally 
desirable decisions with only local computation. It may be 
the case that a local decision appears to be highly sub-
optimal, but results in access to a part of the trajectory 
space that has many desirable qualities. In one authorial 
idiom for TTD-MDPs, examples of desirable trajectories 
are used to define the goals for the system [36]. If a careful 
selection of these example trajectories includes those that 
illustrate the intelligent mistakes an author wants the system 
to make, then the system can efficiently target those quali-
ties requiring only local computation of decisions. Thus, the 
TTD-MDP formalism provides a computational framework 
for easily targeting desirable qualities in trajectories for 
games. 

Evaluating Trajectories 
To implement trajectory-space search a system must have 
the ability to distinguish between trajectories and provide a 
deterministic (partial) ordering. That is, the system must be 

able to determine that one trajectory is categorically better 
than or equal to another trajectory. How do we mathemati-
cally determine whether one trajectory is better than an-
other? Another way to ask this question is, what is the heu-
ristic that defines the relative “goodness” of a trajectory? 
Weyhrauch and others [27, 44] have identified a number of 
metrics that are believed to correspond to aesthetics of the 
dramatic arc. A few examples: Thought flow measures the 
coherence of thoughts associated with plot events in a nar-
rative; if a narrative has a bunch of tightly grouped sub-
sequences that evoke similar underlying concepts it is be-
lieved to make a better narrative. Location flow is similar 
and is based on physical location. Plot mixing is the degree 
to which multiple sub-plots are explored at the onset of the 
narrative experience and plot homing is the degree to which 
one coherent sub-plot forms the latter portion of the narra-
tive experience.  

We can derive other, theoretical heuristics from narrative 
and dramatic practices. Dramatic arc is one common model 
of story structure that correlates plot structure to the tension 
that an audience feels over time [2]. As obstacles between a 
protagonist and her goals mount, the tension of the audience 
increases. The climax is the point in which it is clear that 
the protagonist will overcome adversity and tension de-
creases. Dramatic arcs can only be identified by looking at 
the relative tension between successive events (e.g., by 
looking at sequences); however, it is not computationally 
straightforward to correlate state transitions to rising or 
falling tension because tension is an affective state phe-
nomenon felt by an observer and in a game, the protagonist 
is only the digital representation of the human player. Still, 
there are models of emotion that lend themselves to compu-
tation. In particular, appraisal theory [42] asserts that emo-
tion is a specific response to a cognitive assessment of an 
event. The exact manifestation and intensity of the affect is 
a result of factors including perceived value of the event 
and locus of control (e.g., who is responsible). To date, ap-
praisal theory has been used in some research systems (c.f., 
[1, 3, 13]).  

Another concept that comes from the dramatic arts is sus-
pense, the feeling of anxiety that occurs when one believes 
that the likelihood of avoiding a negative outcome is per-
ceived to be small or nonexistent [11]. Suspense is a term 
used to describe close sporting events; it is a reasonable 
heuristic for computer games. (See [10] for a system that 
generates suspense by choosing which events of a narrative 
to tell). In general, the AI opponent must be able to assess 
what the player believes will happen and choose the move 
that increases the likelihood that the game will enter a state 
of maximal suspense for the player. Given a move that 
eliminates all possibility of the human player winning, or a 
move that leaves an opening, the computer player should 
choose the one that leaves the opening, especially if it is 
made clear to the player. 
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Implications 
The notion of plot is included in many modern computer 
games. Generally speaking, however, games that include 
notions of plot completely decouple the plotline from what 
non-player characters (NPCs) do. In that sense, the plot is a 
device to motivate the player. Even if decoupled, the NPC 
control system can still use trajectory-based reasoning to 
make each encounter more interesting for the player. Many 
games with plotlines use various techniques to keep the 
plotline “on rails” such as limiting the exploration of the 
player and using triggers to control encounters. These tech-
niques are very effective; it is interesting to note that these 
techniques can be thought of as creating a hard-coded tra-
jectory with narrative properties.  

Our proposal generalizes and formalizes this approach, 
which we hypothesize will lead to engaging gameplay 
without hard-coded rails. Reasoning and acting to encour-
age certain trajectories with narrative properties means the 
AI system is at times is adversarial—the computer controls 
an opponent to the player, so there must be an attempt to 
create the sense of adversity. At other times the AI system 
will be non-adversarial—the system makes “intelligent mis-
takes” that are in favor of the human player.  

CASE STUDIES 
In this section, we will discuss two games not traditionally 
thought of in terms of narrative: chess and poker. We will 
highlight how such games can be modeled as narratives and 
how storytelling and drama management techniques can be 
applied to create better experiences for players. While our 
discussion will be limited to more traditional types of 
games, our approach is not. All genres of games lend them-
selves to a state-based representation including MMORPGs 
and FPSes. Such games do present different types of chal-
lenges for AI systems including having multiple players 
acting concurrently; however, there are techniques available 
to mitigate these complexities to allow for the application 
of our approach.  

Chess 
Chess has long been studied by AI researchers for a number 
of reasons including its rigid and well-defined rules and the 
enormous space of possible board configurations. In creat-
ing a narrative AI for chess, we must design systems that 
incorporate aesthetic characteristics in its decision making 
process. Similar to narratives, there are features of a chess 
game that can make it more or less enjoyable to experience. 
In the case of narrative, these features correspond to aes-
thetics of the dramatic arc. Analogues can be applied to 
chess. Three examples are forks, discovered attacks, and 
pins. A fork occurs when one player is simultaneously at-
tacking two of their opponent’s pieces with only one of 
their own. A discovered attack is an attack that occurs when 
one piece moves out of the way of another allowing the 
second piece to attack the opponent. A piece is pinned 
when the player cannot move it without enabling an attack 
on another—typically more important—piece. While the 

features of chess bear little resemblance to narrative fea-
tures, they can form the basis upon which narrative reason-
ing for chess can occur by correlating them to known narra-
tive heuristics such as location flow and plot hom-
ing/mixing or determining how they relate to evaluations of 
suspense and dramatic arc.  

Figures 3 and 4 depict an example taken from a well-
studied opening sequence in chess known as the Falkbeer 
Counter-Gambit [29]. We have elected to use this example 
as it highlights a subtle concession the computer may make 
and in doing so make an intelligent mistake. In Figure 5, 
white has just moved its knight into the center of the board, 
giving it a reasonably strong position. There is exactly one 
move that black can make to turn the position into one of 
immediate weakness for white (shown in Figure 6). By 
moving its pawn, black has forced white to lose its knight. 
If the computer were playing white, moving its knight to 
the center would be an excellent “intelligent mistake” as it 

Figure 3: A board posi-
tion from the Falkbeer 
Counter-Gambit where 
black can force white to 
lose a knight. 

Figure 4: A board posi-
tion from the Falkbeer 
Counter-Gambit where 
black has forced white 
to drop a knight. 
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is a seemingly strong position for white but provides an 
opportunity for black to gain an advantage three moves 
later. On the other hand, if the computer were playing as 
black, it may choose not to attack with the pawn as it would 
mercilessly take advantage of white’s positional blunder. 

Figure 5 is a simplified search tree for chess. A trajectory in 
this diagram is a path from the root to one of the leaves of 
the tree. We have highlighted regions of the graph suggest-
ing portions of complete trajectories that have narrative-
relevant features. For example the green region on the right 
might represent a situation similar to that of Figures 3 and 
4.  

Designing and implementing a narrative AI for chess 
amounts to finding trajectories in which certain features 
desirable from the perspective of the user’s experience are 
present. These features (forks, discovered attacks, and pins) 
can be used in conjunction with some of the more tradi-
tional narrative features like thought flow. Setting up and 
executing the fork may require an extended sequence of 
moves all related to the same thought process. Thus, 
thought flow (as well as other features of narratives) can be 
made meaningful in the chess setting.  

Poker: A Game of Imperfect Information 
Despite the relative simplicity of the game rules, poker is 
still a very difficult game for AI systems due to the hidden 
state information. In poker, a player knows only what cards 
it has been dealt and what cards are available to everyone 
but does not know what cards its opponents have or are left 
in the deck. Additionally, these systems do not know how 
their opponents’ actions correspond to what cards they may 
have.  

The most obvious use of AI systems for poker is as a 
player. There has been a range of extremely sophisticated 
statistical and game theoretic techniques developed for use 
in a poker-playing computer [7, 14, 15, 49]. These ap-

proaches are designed to win as much money from an op-
ponent as possible and state-of-the-art systems can play 
effectively against highly skilled human players in one-on-
one matches.  

However, the hidden information in poker provides an af-
fordance for a different type of game AI system—a system 
that controls the flow of the game by dealing the cards ac-
cording to an algorithm rather than (pseudo)-randomly as 
the rules of poker require. In short, everything that is not 
observable by the human player can be manipulated by the 
AI system. Both a poker playing and a poker dealing AI 
system are ripe to benefit from narrative design ideas.  

As in chess, there are certain features of a poker game that 
can contribute to the quality of the experience: bluffing, 
“slow betting”, “bad beats”, “catching a card”, “flopping 
the nuts”, etc. All of these concepts can be leveraged to 
build a “fun” poker-playing opponent for the player. Unfor-
tunately, the computer player alone can’t control all of the 
strategies we would like if the card deal is truly random. 
For example, in order to “flop the nuts” the right card(s) 
must be revealed to the player at exactly the correct time. 
The only way to ensure this happens is to maintain control 
over the deal and to observe the player’s hand. The purpose 
of this is not for the AI system to “cheat” in the classic 
sense of getting the upper hand over its opponent. Rather, 
the goal is to be able to make decisions that lead to the 
emergence of interesting narrative features. The additional 
necessary caveat is that the AI system must not get caught 
cheating which can happen in the case of too many coinci-
dences, leading to the player’s loss of suspension of disbe-
lief. In that sense, the computer program that deals the cards 
and manages the money in the pot is a co-creator of the 
narrative experience for the human player along with the AI 
and human players.  

CONCLUSIONS 
All of the algorithmic techniques described in this paper 
already exist; however, we should note that certain chal-
lenges remain. First, the techniques we suggest in this paper 
will benefit from more accurate estimates of player re-
sponses to system actions. For example, work on evaluating 
player satisfaction [40, 45, 46] may lead to more general 
models of game content and its effect on player’s physio-
logical and cognitive responses. These types of models, 
once implemented may contribute further to the narrative 
approach to game AI.  

Second, search through trajectory space is computationally 
more expensive than search through state space. For exam-
ple, a finite state space can have an infinite trajectory space 
if the player is allowed to loop through the same states. 
Under certain circumstances there are average-case effi-
ciency gains when searching trajectory space instead of 
state space (e.g., partial order planning). We hypothesize 
that reasoning about the features of trajectories is an advan-
tage when reasoning about player experience; however, 

Figure 5: A simplifica-
tion of the search tree 
for chess where board 
positions with desirable 
aesthetic features have 
been highlighted. 
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without the existence of robust heuristic evaluation func-
tions that can discriminate the utility of narratives, trajec-
tory space search may not scale. Certain authoring para-
digms exist that can additionally help to circumvent this 
problem [36]. 

In conclusion, we have argued for an approach to develop-
ing game AI systems that target “intelligent mistakes” as a 
means of increasing the enjoyment of the player. This ap-
proach is believed to be more general than approaches that 
attempt to maximize payoff (e.g., play to win) but with 
“handicapped” AI or random errors. This approach can be 
thought of as a process akin to generating a story or creat-
ing a “good” story in an interactive narrative setting.  

We have described a number of examples of games where 
narrative AI could be used to create a better game experi-
ence. The case studies are not meant to be exhaustive, but 
suggestive. Modern computer games are often fast-paced 
and allow concurrent action by all users. However, the key 
insight is that when a game is represented as a state space 
(as is commonly done) the paths, or trajectories, through 
that space can be analyzed in narrative terms. The moves 
that dictate the path through state space are the building 
blocks of the narrative and the subset as well as the order in 
which they occur affects the quality of the narrative (or 
game experience). This insight allows a game designer to 
bring the full power of AI storytelling and interactive narra-
tive technologies to bear on creating new and engaging 
game experiences for players in genres not traditionally 
thought of as narrative. 
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