Deep Convolutional Player Modeling on Log and Level Data

Nicholas Liao Matthew Guzdial Mark Riedl
Georgia Institute of Technology Georgia Institute of Technology Georgia Institute of Technology
nliao7@gatech.edu mzguzdial@gatech.edu riedl@cc.gatech.edu
ABSTRACT

We present a novel approach to player modeling based on a convolu-
tional neural net trained on game event logs. We test our approach
and a hybrid extension over two distinct games, a clone of Super
Mario Bros. and Gwario, a human computation version of Super
Mario Bros.: The Lost Levels. We demonstrate high accuracy in pre-
dicting a variety of measures of player experience across these two
games. Further we present evidence that our technique derives
quality design knowledge and demonstrate the ability to build a
more general model.

CCS CONCEPTS

Human-centered computing — HCI theory, concepts and mod-
els; «Applied computing — Computer Games;

KEYWORDS

player modeling, deep neural nets, convolutional neural nets, super
mario bros.

ACM Reference format:

Nicholas Liao, Matthew Guzdial, and Mark Riedl. 2017. Deep Convolutional
Player Modeling on Log and Level Data. In Proceedings of Foundations
of Digital Games Conference, Cape Cod, Massachusetts USA, August 2017
(FDG’17), 4 pages.

DOI: 10.475/123 4

1 INTRODUCTION

Player modeling is the field associated with the problem of learn-
ing to predict player experience. A common machine learning
approach involves a designer picking out a set of super-features
to summarize the player’s performance (e.g. total enemies killed,
total number of deaths, etc), writing code to pull these values from
game logs (timestamped records of button presses and in-game
events occurrences. from a particular playthrough), and mapping
these features to player experience measures (e.g. fun, challenge,
etc). This mapping is then used to predict novel player experiences.
Despite successful experimental applications, player modeling goes
unused in most modern games, with game companies preferring to
model players in aggregate with player analytics [2, 3]. One reason
that designers choose not to pursue player modeling might be the
difficulty in designing appropriate super-features to summarize
player experience. In addition, with the recent diversification of the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

FDG’17, Cape Cod, Massachusetts USA

© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06...$15.00

DOI: 10.475/123_4

Figure 1: A visualization of our presented convolutional neu-
ral network architecture. A single CNN layer empowers
this model that scans 3-step sequences of events from each
pair of game logs and makes predictions on which presented
game log would be ranked higher according to self reports.

Input: ExTx2 Ex4x8 E/2x2x8 8x1 Output: 2x1
Drop-out o
9 <
80% o ‘
[o=
o~

Fully Connected
Layer

Convolution
8 kernels (E x 4)

Max-Pooling
2x2 kernels

video game industry, techniques must account for larger variability
in a player preferences[9].

In this paper we present techniques to automatically rank player
experiences from game event logs and level structure information
based on self-reported rankings. We examine the applications of
a convolutional neural net (CNN), for its ability to learn a “set of
features” to track automatically, cutting back on designer authoring
burden. We evaluate this technique in two games, a Super Mario
Bros. clone and a related platformer. We demonstrate that this
technique, along with a complementary prior technique [8], can
accurately predict player experience. The primary contribution pre-
sented in this paper is an approach to model players automatically
from game event logs based on pairwise rankings.

2 RELATED WORK

Yannakakis et al. [16] describe player modeling as “the study of
computational means for the modeling of player cognitive, behav-
ioral, and affective states which are based on data (or theories)”.
Most commonly player modeling is applied to the problem of player
customization, adjusting elements such as difficulty to tailor an in-
dividual user experience [4][3][13][1]. We identify a set of prior
player modeling work relevant to this paper.

Drachen et al. [5] created a player modeling system in the game
Tomb Raider: Underworld trained on a set of hand-defined vari-
ables (times help command used, level completion time, and num-
ber/cause of death) extracted from game event logs, which are files
that represent the sequence of actions taken and events that oc-
curred during play. They make use of self organizing maps [14], a
type of artificial neural network as the basis of their model. Shaker
et al. [11] present a general player modeling system applied to Su-
per Mario Bros. and a first person shooter game called Sauerbraten.
They hand define a wide set of features summarizing game log
events (e.g. total enemies killed), but make use of an unsupervised
approach to pick from this set. They make use of a model based
on an neural network architecture constructed via an evolutionary
process, and predict player experience based on self reports.

FDG’17, August 2017, Cape Cod, Massachusetts USA

Figure 2: Example of the game log matrix and their cor-
responding ticks. The third row records when the player
stomps on a Goomba.

oooloo@or
cooooeor
coocoo@rr
oo oloo@rk
coooo@rkr
oo olooeco

There are prior uses of CNNs to games outside of player modeling.
Guzdial et al. [8] proposes a technique for level modeling using a
computer agent that plays through the levels. They have shown that
CNNs can independently determine what parts of a level indicate
player enjoyment, effectively selecting its own features. We utilize
the Guzdial et al. system in a “hybrid” approach in conjunction
with our novel log-based method. Mnih et al. [10] have further
shown that CNNs can capture player strategies and behaviors.

3 SYSTEM OVERVIEW
3.1 Log Network

We describe our “log” network, the convolutional neural net (CNN)
approach based entirely on game logs as input. Given that we make
use of a neural network architecture all game logs must be of the
same shape. We choose to format all information as a matrix.

We present an illustration of our game log matrix in Figure 2.
The rows of the matrix correspond to different events in the logs,
and columns correspond to the number of time steps (called “ticks”
in games) needed to complete the level. Since CNNs require a fixed
input dimension and completion time varies among players, we
normalize the total ticks to fit within the predefined size. We then
train our CNN architecture by passing in two game logs (repre-
senting two different levels a single player played) and set as it’s
target the ranking the player reported across a particular feature
(e.g. “level 1 was more fun than level 2”). In this fashion we train a
unique CNN for each feature present in the self-reported rankings.

After transforming each player’s game logs into a matrix we
have 2-dimensional matrices with a consistent E value (given that
the same events occur across all levels), but differing values of T (as
players take varying amounts of time to finish the level). A deep
neural network requires that all input be of same size. We found the
most success with normalizing all matrices to the same T value of
1000 time steps (a value slightly lower than the lowest actual com-
pletion time in the dataset). We anticipate that this was successful
as most events occurred across several frames, and therefore this
allowed the CNN to capture more interactions between ticks.

We visualize our CNN architecture in Figure 1. The core com-
ponent of the CNN, the convolution layer, scans subregions of the

Anonymous et al.

input to find patterns. A filter is a fix-sized “picture frame”, that
moves across the input, creating subregions. These techniques were
originally used to analyze images. We find CNNs to be appropriate
for the task of learning a model of player experience from events
due to their relational awareness in other contexts. Since the CNN
can capture relational information, we make use of a filter that
captures four columns at a time, representing a sequence of four
actions. In a level, we would expect blocks close to each other in
space to be represent a structure. In a player log, a sequence of logs
may represent some high level action like stomping on an enemy.

Our first technique takes only log matrices as its input, feeds
it through the CNN architecture as discussed above, and predicts
solely on the events that occur to the player. Two players may play
through the same levels and rank them opposite of one another.
While the level technique would feed the same information in and
have contradicting datapoints, the log matrix would have unique
inputs, specific to each player’s playthrough.

3.2 Hybrid Network

Our second technique is a hybrid of our system and the Guzdial
et al. system, with both neural network architectures combining
into a final fully connected layer. This “hybrid” therefore represents
a combination of log and level information, with the ability to
make decisions based on both individual systems. We see this as an
extension of previous techniques by integrating our log information.
For more detail about the log system, see [8].

For levels, we make use of a similar matrix representation. Each
level can be broken up into its underlying grid system, where a grid
space can only be occupied by one object at a time. Each unique
foreground object, whether it be blocks, collectibles, or enemies, is
mapped to a unique identifying number. The location in the matrix
corresponds to its position in the level.

The log and level matrices go through their own convolution,
max-pooling, and dropout layers. They are then connected together
by a fully-connected layer to be used for prediction.

4 EVALUATION OVERVIEW

We ran a total of three evaluations of our system. We applied our
system on two games, a Super Mario Bros. clone called Infinite
Mario [15] and a Mario-derivative focused on performing human
computation Gwario [12]. We note that in Gwario, the player must
collect specific sets of items as opposed to only finding the end of
the level (i.e. the player’s objectives are different). We make use
of two separate games in our evaluation in order to demonstrate
the generalizability of our model, and focus on Mario-like games
due to the popularity of Mario as a baseline. We ran a final third
evaluation to further address the question of generalizability.

We include results from a baseline. Guzdial et al. [8] made use
of a CNN-based approach to predict an aggregate player score of
a Mario level based on the level architecture, and a small set of
hand-defined variables (e.g. number of deaths to enemies, number
of deaths to gaps, number of enemies killed, and time to complete
a level divided by its width). We include it as our baseline as it
is a component part of our “hybrid” approach, if it beats out that
extension of our system that would demonstrate a failure of our
log-based CNN approach for player modeling.

Deep Convolutional Player Modeling on Log and Level Data

FDG’17, August 2017, Cape Cod, Massachusetts USA

Table 1: Mean and median accuracies across 10 folds. Mario

Challenge Creativity Design Frustration Fun
mean median | mean median | mean median | mean median | mean median
Level 74.44% | 74.44% | 53.33% | 54.44% | 77.56% | 76.67% | 76.22% | 77.78% | 63.33% | 62.22%
Log 65.78% | 64.44% 64.67% | 64.44% 75.11% | 73.33% 69.33% | 68.89% | 64.89% | 65.56%
Hybrid 83.11% | 82.22% | 71.33% | 70.00% | 81.11% | 80.00% | 81.55% | 83.33% | 81.56% | 81.11%

5 SUPER MARIO BROS. EVALUATION

For our first evaluation we applied our system to a clone of Super
Mario Bros. called “Infinite Mario”. We drew on a dataset from a
study previously conducted in the game engine, which we describe
briefly below but for more detail see [6]. Ultimately we ran a ten
cross-fold analysis on the engine between the three experimental
systems. In the following subsections we discuss the evaluation
setup (including a description of the game), discuss the results
of our ten cross-fold analysis, and give examples of the learned
features of our CNN.

We adapted the dataset used by Guzdial et al. in [7]. Seventy-
five players were asked to play Level 1-1 from the original Super
Mario Bros, and then two other levels from a pool of 15 artificially
generated levels. After, players were asked to rank the three levels
based on fun, frustration, challenge, level design, and creativity of
the levels. For each player, we took permutations of two level logs,
and labeled the pair with a classification of "Level 1 was more X”
or "Level 2 was more X” where X was fun, frustrating, challenging,
well designed, or creative. This resulted in 6 data points per person,
or 450 data points. By adding the reverse of the reported ranking
into the dataset, we have guaranteed that half the dataset is of class
1, and the other half class 2. Therefore, we would anticipate a pure
random system to perform at around 50% accuracy.

5.1 SMB Results

We report results over the five categories in tables 1. We use “Log”
to indicate our system, “Level” to indicate the prior system largely
reliant on level structure [8], and “Hybrid” to indicate the combined
architecture of the two prior systems. We use the Wilcox test to
evaluate statistical significance in output between pairs of systems.

In all cases but design, the hybrid system performs significantly
better than either of its two constituent systems. This suggests
that the two constituent systems (log and level) offer complimen-
tary information towards making predictions of player experience,
rather than one being strictly better than the other. In addition,
these results demonstrate that some types of information are more
predictive to certain measures of player experience. For example,
the creativity labels were predicted more accurately given access
to logs of events, suggesting players reflected on the comparative
experiences when deciding on this ranking.

5.2 SMB Learned Actions

One of the strengths of CNNs is their ability to learn useful features
from training data. To evaluate the CNN’s ability to extract useful
super-features from raw game logs, we visualize the pairs of com-
parative event sequences that maximally activate the learned filters

Figure 3: Maximally activated visualizations of four of the
eight filters for challenge.

ﬁﬁﬁﬁéas

€1 &1 & | g1 &
A

°

F“

e
o

L €I 8| 8| K| &€ 18| &

C D

our “log” CNN trained to predict. We visualize four of the eight
trained filters for our CNN trained to predict challenge (Figure 3).

Figure 3 presents visualizations of four of the eight trained filters
for the challenge labels. Figure 3(a) demonstrates two sequence
pairs where one game log includes the player restarting the level
where the other game log section has the same player standing
still as “large mario”. The other visualized filters largely involve
comparisons of progress. For example, Figure 3(d) compares a
sequence where the player jumps forwards versus a sequence where
the player is standing still.

6 GWARIO EVALUATION

For our second evaluation we applied out system to Gwario, a game
with a purpose (or GWAP), adaption of the Japanese sequel to Super
Mario Bros., Super Mario Bros.: The Lost Levels. GWAPs are games
that outsource work in the form of a game. In this instance, the
player may take the same actions, but in addition to finding the
end of a level, the player attempts to collect items that answer a
human computation question.

We draw on the dataset from the study conducted in Siu et al
in [12]. Players were asked to play two levels from a pool of four
adapted from Super Mario Bros.: The Lost Levels, and rank them based
on challenge, fun, and frustration. We note that 58 players took
part in the study, resulting in 116 data points. As in the previous
evaluation we split the dataset into 10 cross-folds.

6.1 Gwario Results

We report results over the three categories in tables 2. We use the
same notation as our SMB Results.

We find that these results suggest the player logs were much
more predictive than the level information for the professionally
designed Gwario levels, perhaps due to greater variation and size.

FDG’17, August 2017, Cape Cod, Massachusetts USA

Table 2: Mean and median accuracy across 10 folds for the
Gwario dataset.

Challenge Frustration Fun
mean | mdn mean | mdn mean | mdn
Level 52.7% | 59.1% | 43.6% | 45.5% | 49.1% | 50.0%
Log 75.5% | 77.3% | 78.2% | 77.3% | 66.4% | 68.2%

Hybrid | 78.2% | 81.8% | 80.9% | 81.8% | 76.4% | 77.3%

Figure 4: Maximally activated visualizations of four of the
eight filters for challenge.

& a3

2
g g &
£ %
€2 glslsls

C D

Iy | U
b Jis]

a | B3PS
vi% | 298
el bi,2 gt

o=

@

&

Table 3: Mean and median accuracies across 10 folds with a
dataset made of equal halves of the two datasets.

Challenge Frustration Fun
mean | mdn mean | mdn mean | mdn
Level 63.6% | 63.6% | 61.4% | 59.1% | 55.0% | 54.6%
Log 62.3% | 59.1% | 63.6% | 65.9% | 61.8% | 59.1%

Hybrid | 71.4% | 70.5% | 71.8% | 72.7% | 58.6% | 56.8%

Given the success of the hybrid approach, this indicates that both
the log and level systems contributed to the predictive power, sug-
gesting they again represented complementary approaches.

6.2 Gwario Learned Actions

In this section, we visualize the patches of comparative event se-
quences that maximally activate the learned filters our “log” CNN
trained to predict. We visualize four of the eight trained filters for
our CNN trained to predict challenge (Figure 4).

Figure 4 represents the four sequence pairs that maximally ac-
tivated four of the eight trained filters of our CNN. Overall the
sequence pairs match our intuition, with two focusing on defeating
enemies as opposed to making progress (Figures 4a and 4c), and
one focused on making progress versus not (Figure 4b). We note in
particular Figure 4d, which highlights the player collecting a coin
versus making forward progress. This is important for the system
to learn given the added role coins play in Gwario.

7 GENERALIZATION EVALUATION

We have thus far demonstrated that our systems can perform rea-
sonably accurately across two distinct, but similar games. However,

Anonymous et al.

each of these games required completely retraining our system. Ide-
ally we would create a more general game player modeling system,
at least across games of the same genre, in order to cut back on
training time and present player experience predictions for games
without training data. We present the results of an evaluation to
address the issue of generalizability. We note that the only major
alteration of our system to this evaluation was the inclusion of the
full set of events from both games for our game matrix.

For our generalizability evaluation we composed a dataset made
of half Gwario and half Super Mario Bros. data, selected randomly
from each dataset. We then split this new “mixed” dataset into
ten folds, with each fold containing data half from each game. We
then ran a similar evaluation as above, and report the average and
median accuracies in Table 3. We note that while there is a drop of
about 10% from the average accuracies we saw when each system
was trained on each individual game, the accuracies are above the
random baseline of 50%. This suggests that it is possible to apply
these techniques more generally across different, if similar, games.
If we could determine a universal set of event log types, it may be
result in higher accuracies.

REFERENCES

[1] Mohamed Abou-Zleikha and Noor Shaker. 2015. Evolving random forest for
preference learning. In European Conference on the Applications of Evolutionary
Computation. Springer, 318-330.

[2] Mike Ambinder. 2011. Biofeedback in gameplay: How valve measures physiology
to enhance gaming experience. In game developers conference, Vol. 2011.

[3] Sander Bakkes, Shimon Whiteson, Guangliang Li, George Viorel Vigniuc, Ef-
stathios Charitos, Norbert Heijne, and Arjen Swellengrebel. 2014. Challenge
balancing for personalised game spaces. In Games Media Entertainment (GEM),
2014 IEEE. IEEE, 1-8.

[4] Glen Berseth, M Brandon Haworth, Mubbasir Kapadia, and Petros Faloutsos.
2014. Characterizing and optimizing game level difficulty. In Proceedings of the
Seventh International Conference on Motion in Games. ACM, 153-160.

[5] Anders Drachen, Alessandro Canossa, and Georgios N Yannakakis. 2009. Player
modeling using self-organization in Tomb Raider: Underworld. In Computational
Intelligence and Games, 2009. CIG 2009. IEEE Symposium on. IEEE, 1-8.

[6] Matthew Guzdial and Mark Riedl. 2016. Game Level Generation from Gameplay
Videos. In Twelfth Artificial Intelligence and Interactive Digital Entertainment
Conference.

[7] Matthew Guzdial and Mark Riedl. 2016. Learning to Blend Computer Game
Levels. In Seventh International Conference on Computational Creativity.

[8] Matthew Guzdial, Nathan Sturtevant, and Boyang Li. 2016. Deep static and
dynamic level analysis: A study on Infinite Mario. In Experimental Al in Games
Workshop, Vol. 3.

[9] Jesper Juul. 2010. A casual revolution: Reinventing video games and their players.
MIT press.

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, and others. 2015. Human-level control through deep reinforcement
learning. Nature 518, 7540 (2015), 529-533.

[11] Noor Shaker, Mohammad Shaker, and Mohamed Abou-Zleikha. 2015. Towards

generic models of player experience. In Proceedings, the Eleventh Aaai Conference

on Artificial Intelligence and Interactive Digital Entertainment (aiide-15). AAAI

Press.

Kristin Siu, Matthew Guzdial, and Mark Riedl. 2017. Procedural Content Genera-

tion via Machine Learning (PCGML). arXiv preprint arXiv:1703.00818 (2017).

[13] Adam Summerville, Matthew Guzdial, Michael Mateas, and Mark O Riedl. 2016.

Learning player tailored content from observation: Platformer level generation

from video traces using LSTMs. In Twelfth Artificial Intelligence and Interactive

Digital Entertainment Conference.

Christian Thurau, Christian Bauckhage, and Gerhard Sagerer. 2003. Combining

Self Organizing Maps and Multilayer Perceptrons to Learn Bot-Behaviour for a

Commercial Game.. In GAME-ON. Citeseer, 119.

Julian Togelius, Sergey Karakovskiy, and Robin Baumgarten. 2010. The 2009

mario ai competition. In IEEE Congress on Evolutionary Computation. IEEE, 1-8.

Georgios N Yannakakis, Pieter Spronck, Daniele Loiacono, and Elisabeth Andreé.

2013. Player modeling. In Dagstuhl Follow-Ups, Vol. 6. Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik.

[12

=
&

[15

[16

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	3.1 Log Network
	3.2 Hybrid Network

	4 Evaluation Overview
	5 Super Mario Bros. Evaluation
	5.1 SMB Results
	5.2 SMB Learned Actions

	6 Gwario Evaluation
	6.1 Gwario Results
	6.2 Gwario Learned Actions

	7 Generalization Evaluation
	References

