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Abstract

Text-based adventure games provide a platform on which to explore reinforcement
learning in the context of a combinatorial action space, such as natural language.
We present a deep reinforcement learning architecture that represents the game
state as a knowledge graph which is learned during exploration. This graph is used
to prune the action space, enabling more efficient exploration. The question of
which action to take can be reduced to a question-answering task, a form of transfer
learning that pre-trains certain parts of our architecture. In experiments using the
TextWorld framework, we show that our proposed technique can learn a control
policy faster than baseline alternatives.

1 Introduction

Natural language communication can be used to affect change in the real world. Research at
the intersection of reinforcement learning and natural language processing has shown that text-
based games are a useful testbed for developing and testing reinforcement learning algorithms
that process and respond to natural language inputs (Narasimhan et al., 2015; He et al., 2016).
Formally, as defined by the TextWorld framework (Côté et al., 2018), a text-based game is a partially
observable Markov decision process (POMDP), a 7-tuple of 〈S, T,A,Ω, O,R, γ〉 representing the
set of environment states, conditional transition probabilities between states, words used to compose
text commands, observations, observation conditional probabilities, reward function, and the discount
factor respectively. In text-based games, the agent never has access to the true underlying world state
and has to reason about how to act in the world based only on the textual observations. Additionally,
the agent’s actions must be expressed through natural language commands, ensuring that the action
space is combinatorially large. We thus see that text-based games pose a different set of challenges
than traditional video games. Text-based games require a greater understanding of previous context
to be able to explore the state-action space more effectively. Such games have historically proven to
be difficult to play for AI agents, and the more complex variants such as Zork still remain firmly out
of the reach of existing approaches.

We introduce two contributions to text-based game playing to deal with the combinatorially large
state and action spaces. First, we show that a state representation in the form of a knowledge graph
gives us the ability to effectively prune an action space. A knowledge graph captures the relationships
between entities. The graph enables the agent to have a prior notion of what actions it should not take
at a particular stage of the game. We show that having an action space pruned using this knowledge
graph allows for faster convergence to an optimal control policy using an ε-greedy reinforcement
learning algorithm—the agent doesn’t waste trials on actions that will likely have low utility.

Our second contribution is a deep reinforcement learning architecture, Knowledge Graph DQN,
that effectively uses this state representation to estimate the Q-value for a state-action pair. This
architecture leverages recent advances in graph embedding and attention techniques (Guan et al.,
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2018; Veličković et al., 2018) to learn which portions of the graph to pay attention to given an input
state description in addition to having a mechanism that allows for natural language action inputs.

The framing of the POMDP as a question-answering (QA) problem is also explored. Previous work
has shown that many NLP tasks can be framed as instances of question-answering and that we can
transfer knowledge between these tasks (McCann et al., 2017). Similarly, we show how pre-training
certain parts of the deep reinforcement learning architecture using existing QA methods improves
performance. Although, our results are evaluated using games generated by the TextWorld framework,
we do not make use of any information regarding TextWorld’s state or quest generation functions
during pre-training and hypothesize that our method can be extended to other text-based games. We
present preliminary results on ablative experiments comparing approaches such as Bag-of-Words
DQN, LSTM-DQN, and variations of our own architecture.

2 Related Work

A growing body of research has explored the challenges associated with text-based games
(Narasimhan et al., 2015; Haroush et al., 2018; Côté et al., 2018). Narasimhan et al. (2015) at-
tempt to solve parser-based text games by encoding the observations using an LSTM. This encoding
vector is then used by an action scoring network that determines the scores for the action verb and
each of the corresponding argument objects. The two scores are then averaged to determine Q-value
for the state-action pair. He et al. (2016) present the Deep Reinforcement Relevance Network (DRRN)
which uses two separate deep neural networks to encode the state and actions. The Q-value for
a state-action pair is then computed by a pairwise interaction function between the two encoded
representations. Both of these methods are not conditioned on previous observations and so are at a
disadvantage when dealing with complex partially observable games. Additionally, neither of these
approaches prune the action space and so end up wasting trials exploring state-action pairs that are
likely to have low Q-values, likely leading to slower convergence times for combinatorially large
action spaces.

Haroush et al. (2018) introduce the Action Eliminating Network (AEN) that attempts to restrict the
actions in each state to the top-k most likely ones, using the emulator’s feedback. The network learns
which actions should not be taken given a particular state. Their work shows that reducing the size of
the action space allows for more effective exploration, leading to better performance. Their network
is also not conditioned on previous observations.

Knowledge graphs have been demonstrated to improve natural language understanding in other
domains outside of text adventure games. For example, Guan et al. (2018) use commonsense
knowledge graphs such as ConceptNet (Speer and Havasi, 2012) to significantly improve the ability
of neural networks to predict the end of a story. They represent the graph in terms of a knowledge
context vector using features from ConceptNet and graph attention (Veličković et al., 2018). The state
representation that we have chosen as well as our method of action pruning builds on the strengths of
existing approaches while simultaneously avoiding the shortcomings of ineffective exploration and
lack of long-term context.

3 Knowledge Graph DQN

3.1 State Representation and Action Pruning

In our approach, our agent learns a knowledge graph, stored as a set of RDF triples, i.e. 3-tuples
of 〈subject, relation, object〉. These triples are extracted from the observations using Stanford’s
Open Information Extraction (OpenIE) (Angeli et al., 2015) with some additional rules specific to
text adventural games to account for the fact that OpenIE is not optimized to the regularities of text
adventure descriptions. This gives the agent what essentially amounts to a mental map of the game.

The knowledge graph is updated after every agent action (see Figure 1). The update rules are defined
such that there are portions of the graph offering short and long-term context. The “you” node
represents the agent and relations out of this node are updated after every action, with the exception
of certain types of relations relating to inventory. Other relations persist after each action. We intend
for the update rules to be applied to text-based games in different domains and so only hand-craft a
minimal set of rules that we believe apply generally, found in the Appendix A.
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Figure 1: Graph state update example given two observations

Figure 2: KG-DQN architecture, blue shading indicates components that can be pre-trained and red
indicates no pre-training. The solid lines indicate gradient flow for learnable components.

The knowledge graph is used to prune the combinatorially large space of possible actions available to
the agent. Given the current state representation st, the action space is pruned by ranking the full set
of actions and selecting the top-k. Actions are scored by summing the following: +1 for each object
in the action that is present in the graph; and +1 if there exists a valid directed path between the two
objects in the graph. We indirectly make the assumption that each action has at most two objects,
inserting a key in a lock for example.

3.2 Model Architecture and Training

Narasimhan et al. (2015) define a fixed set of actions for parser based text-games. Similarly, we also
reduce the TextWorld parser-based game to a fixed action-set DQN by defining a set of actions A
that contain every action that can be taken in the game. When playing the game, the agent receives
the observation ot from the simulator, which is a textual description of current game state. The
state graph Gt is updated according to the given observation, and the current pruned action set At is
computed as described in Section 3.1. We use the Q-Learning technique (Watkins and Dayan, 1992)
to learn a control policy π(at|st), at ∈ A, which gives us the probability of taking action at given
the current state st. The policy is determined by the Q-value of a particular state-action pair, which is
updated using the Bellman equation (Sutton and Barto, 2018). The policy is thus to take the action
that maximizes the Q-value in a particular state, which will correspond to the action that maximizes
the reward expectation given that the agent has taken action at at the current state st and followed the
policy π(a|s) after.

The architecture in Figure 2 is responsible for computing the representations for both the state st
and the actions a(i) ∈ A and coming to an estimation of the Q-value for a particular state and action.
Actions are pruned by scoring each a ∈ A according to the mechanism previously described using
Gt. We then embed and encode all of these action strings using an LSTM encoder (Sutskever et al.,
2014). During the forward activation, the agent first uses the observation to update the graph Gt
using the rules outlined in Section 3.1. The graph is then embedded into a single vector gt using
Graph Attention Veličković et al. (2018) where the node features consist of the averaged word vectors
for that node. Simultaneously, an encoded representation of the observation ot is computed using a
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Algorithm 1 ε1, ε2-greedy learning algorithm for KG-DQN
1: for episode=1 toM do
2: Initialize action dictionaryA and graphG0

3: Reset the game simulator
4: Read initial observation o1
5: G1 ← updateGraph(G0, o1);A1 ← pruneActions(A,G0) . Section 3.1
6: for step t=1 to T do
7: if random() < ε1 then
8: if random() < ε2 then
9: Select random action at ∈ A
10: else
11: Select random action at ∈ At

12: else
13: ComputeQ(st, a

(i); θ) for a(i) ∈ A for network parameters θ . Section 3.2, Eq. 1
14: Select at based on π(a|st)
15: Execute action at in the simulator and observe reward rt
16: Receive next observation ot+ 1
17: Gt+1 ← updateGraph(Gt, ot+1);At+1 ← pruneActions(A,Gt+1) . Section 3.1
18: Compute st+1 and At+1 = {a′(i) for all a′(i) ∈ A} . Section 3.2
19: Set priority pt = 1 if rt > 0, else pt = 0
20: Store transition (st, at, rt, st+1,At+1, pt) in replay bufferD
21: Sample mini-batch of transitions (sk, ak, rk, sk+1,Ak+1, pk) fromD, with fraction ρ having pk = 1
22: Set yk = rk + γmaxa∈Ak+1

Q(st, a; θ), or yk = rk if sk+1 is terminal

23: Perform gradient descent step on loss function L(θ) = (yk −Q(st, at; θ))
2

Sliding Bidirectional LSTM (SB-LSTM). The final Q-value for a state-action pair is given as:

Q(st,at) = f(Wl(gt ⊕ ot) + bl) · at (1)

where Wl, bl represent the final linear layer’s weights and biases. Note that this method of separately
computing the representations for the state and action is similar to the approach taken in the DRRN (He
et al., 2016).

We train the network using experience replay (Lin, 1993) with prioritized sampling (cf., Moore
and Atkeson (1993)) and a modified version of the ε-greedy algorithm (Sutton and Barto, 2018)
that we call the ε1, ε2-greedy learning algorithm. The experience replay strategy finds paths in the
game, which are then stored as transition tuples in a experience replay buffer D. The ε1, ε2-greedy
algorithm explores by choosing actions randomly from A with probability ε1 and from At with a
probability ε2. This is to account for situations in which an action for which the agent has no prior
on based on Gt must be taken to advance the game. We then sample a mini-batch of transition
tuples consisting of (sk,ak, rk, sk+1,Ak+1, pk) from D and compute the temporal difference loss
as: L(θ) = rk + γmaxa∈Ak+1

Q(st,a; θ) − Q(st,at; θ). Replay sampling from D is done by
sampling a fraction ρ from transition tuples with a positive reward and 1− ρ from the rest. The exact
training mechanism is described in Algorithm 1.

Portions of our deep Q-network can be pre-trained using a question-answering technique. That is, we
can model playing text-based games using the question-answering paradigm that learns to answer
the question of what action to take given an observation. The process of pre-training the network
involves generating traces of actions and states from similar games using an oracle—an agent that is
capable of finishing the game perfectly in the least number of steps possible—to provide a label for
the best action to take. We then use the DrQA (Chen et al., 2017) technique to compute the weights
for the SB-LSTM in Figure 2. The observation embeddings and action embeddings learned during
pre-training are also used to initialize the embedding layers for the graph attention and in the action
LSTM encoder, respectively (blue boxes in Figure 2). The QA network is not trained on the same
games that the rest of the architecture is trained on, thus representing a form of transfer learning.

4 Experiments

We conduted experiments in the TextWorld framework (Côté et al., 2018) using their “home” theme.
The games were generated with different random seeds; all games have 10 rooms, 20 total objects,
and have an objective that requires 5 actions to be performed, though other actions, such as movement,
may be necessary precursors for those actions. The reward function is as follows: +1 for each action
taken that moves the agent closer to finishing the quest; -1 for each action taken that extends the
minimum number of steps needed to finish the quest from the current stage; 0 for all other situations.
The maximum achievable reward in our test game is 5.

4



Figure 3: Reward learning curve for select experiments

Model Steps

Random Command 319.8
BOW-DQN 83.1 (8.0)
LSTM-DQN 72.4 (4.6)
Unpruned KG-DQN 131.7 (7.7)
Pruned KG-DQN 97.3 (9.0)
Full KG-DQN 73.7 (8.5)

Table 1: Average number of
steps taken to complete the
game

Pre-training of the SB-LSTM within the QA architecture is conducted by generating 200 games from
the same theme. The QA system was then trained on data from walkthroughs of a subset of 160 of
these generated games and evaluated on the held-out set of 40 games. A random game was chosen
from the test-set of games and used to perform the rest of the experiments. The vocabulary size for
the final testing game is 746 and it has a branching factor (size of action set A) of 143.

We compare our technique to three baselines: random command (sampling from the list of admissible
actions returned by the TextWorld simulator at each step), a Bag-of-Words DQN, and LSTM-DQN
(Narasimhan et al., 2015). To achieve the most competitive baselines, we used a randomized grid
search to choose the best hyperparameters for the BOW-DQN and LSTM-DQN baselines (e.g., hidden
state size, γ, ρ, etc.). We tested three versions of our KG-DQN: (1) un-pruned with pre-training, (2)
pruned without pre-training, and (3) pruned with pre-training (full). Our models use 50 dimensional
word embeddings, 2 heads on the graph attention layers, mini-batch size of 16, and perform a gradient
descent update every 5 steps taken by the agent. The models are evaluated by observing the time
to reward convergence (Figure 3) and the average number of steps required to finish the game with
ε = 0.1 over 5 episodes after training has completed (Table 1) . All results are averaged across 5
separate trials with the standard deviations shown.

5 Results and Conclusions

KG-DQN converges at least 40% faster than baselines (we don’t show BOW-DQN in Figure 3
because it is inferior to LSTM-DQN). The pre-trained and non-pre-trained versions of KG-DQN
converge at about the same rate. The full version of our agent completes quests with roughly the
same number of steps as LSTM-DQN. TextWorld’s reward function allows for a lot of exploration of
the environment without penalty so it is possible for a model that has converged on the maximum
total reward to complete quests in as few as five steps or in many hundreds of steps. That KG-DQN
achieves faster reward convergence and uses a relatively low number of steps to complete quests
suggests that it not only optimizes to the reward function but learns additional knowledge along
the way that guides it to make good choices. In LSTM-DQN this knowledge is captured through a
hidden state that is transferred from step to step. In KG-DQN, this knowledge is made explicit—and
interpretable—in the knowledge graph, which can grow arbitrarily large without forgetting.

Our experimental results suggest that incorporating knowledge graphs into DQN for playing text
adventure games is a promising approach. Furthermore, modeling the agent’s action selection as a
question-answering problem provides the opportunity for transfer learning. Future work includes
testing on more complex games, improving the use of knowledge graph features, and developing an
end-to-end architecture that learns graph update and action pruning rules. Our results suggest that
knowledge graphs and question-answering frameworks provide a promising path forward toward
agents that use natural language to affect change on partial observable worlds.
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A Appendix

Knowledge Graph Update Rules

Expanding on the summary of the update rules given in Figure 1 and Section 3.1, we add a minimal
set of rules to help Stanford’s OpenIE deal with the regularities of the TextWorld environment. They
are:

1. Linking the current room type (e.g. "basement", "chamber") to the items found in the room
with the relation "has"
(a) E.g.: <chamber, has, bed stand>

2. Extracting information regarding entrances and exits and linking them to the current room.
(a) E.g.: <basement, has, exit to north>

3. Removing all relations relating to the "you" node with the exception of inventory every
action.
(a) E.g.: <you, have, cubical key>

4. Linking rooms with directions based on the action taken to move between the rooms.
(a) E.g.: <chamber, east of, basement> after the action "go east" was taken to go from the

basement to the chamber

All other RDF triples generated are taken from OpenIE.
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