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ABSTRACT
Game designs often center on the game mechanics—rules
governing the logical evolution of the game. We seek to de-
velop an intelligent system that generates computer games
and assists humans in designing games. As first steps to-
wards this goal we present a composable and cross-domain
representation for game mechanics that draws from AI plan-
ning action representations. We use a constraint solver to
generate mechanics subject to design requirements on the
form of those mechanics—what they do in the game. A
planner takes a set of generated mechanics and tests whether
those mechanics meet playability requirements—controlling
how mechanics function in a game to affect player behav-
ior. We demonstrate our system by modeling and generat-
ing mechanics in a role-playing game, platformer game, and
combined role-playing-platformer game.

Categories and Subject Descriptors
Applied Computing [Computers in other domains]: Per-
sonal computers and PC applications—Computer games

Keywords
Procedural content generation, game mechanics, game de-
sign

1. INTRODUCTION
Game designers often create a game by iteratively build-

ing up a set of game mechanics—rules governing the logical
evolution of the game [9, 18]. Some games depend on a
small system of tightly tuned mechanics—e.g. platformer
movement or simulation game rules—while others employ a
large variety of counterbalancing mechanics—e.g. cards in
trading card games or creatures in monster-training games.
Sicart [21] generalizes these ideas to define mechanics as
functions called by game agents. Choosing the right me-
chanics for a game involves deciding what players should be
allowed to do (and when) and working out how the game

mechanics should function to achieve these goals for player
actions.

In this paper we explore synthesis of game mechanics from
low-level game engine primitives related to checking and
updating game variables. Automated reasoning on game
mechanics requires a low-level and cross-domain mechanic
representation. By automatically designing game mechan-
ics, an intelligent system can create games unique to each
player, generate novel solutions to design problems humans
may have not been able to conceive, create games across
a variety of domains, or recombine existing mechanics into
new game genres.

Fully autonomous mechanic design requires a solution to
the mechanic generation problem: de novo synthesis of game
agent actions given knowledge of a game domain. Support-
ing iterations on existing designs requires a solution to the
mechanic adaptation problem: adjusting mechanics to meet
new designer goals for given game mechanics and content.
We address the mechanic generation and adaptation prob-
lems through a formalism to define composable game me-
chanics and accompanying techniques to generate mechan-
ics subject to playability and design requirements. Playa-
bility requirements ensure mechanics function properly to
allow players to achieve certain goals in given game content
(e.g. reaching the end of the level or being able to explore
many places). Design requirements ensure mechanics have
a designer-desired form (e.g. having few exceptions or not
overlapping heavily with how another mechanic works). We
focus on generating or adapting avatar-centric mechanics—
actions taken by agents in the game world—rather than the
full set of game rules.

Generated mechanics take the form of planning opera-
tors in a representation specialized to game mechanics. Our
mechanic design technique is a “generate-and-test” process:
(1) generating mechanics that meet design requirements on
form and (2) testing mechanics to ensure they meet playabil-
ity requirements. A constraint solver generates possible me-
chanics in a given game domain according to hard (required)
or soft (optimized) design requirements. An AI planner
tests playability by using generated mechanics to prove that
designer-specified requirements for good gameplay can be
achieved with the mechanics. For example, players must be
able to reach the end of a level or win a battle without dying.
Unlike AI planners that solve game levels using a fixed set
of operators (mechanics), mechanic generation creates the
operators. A planning operator representation supports our
goals for a composable and domain-independent mechanic
representation.



Together, the constraint solver and planner can generate
or adapt game mechanics in a (relatively) domain-agnostic
fashion while ensuring the mechanics achieve desired play
experiences. We demonstrate our mechanic generation sys-
tem in three game domains: platformer game movement
mechanics, role-playing game (RPG) spell systems, and a
domain combining the platformer and RPG domains.

2. RELATED WORK
Game generation systems take a human-specified set of

possible domain content and synthesize possible game me-
chanics (and game content). Game generation in arcade
games (similar to the games we model) has focused on as-
signing collision and movement logic to game entities using
predefined tables enumerating possible choices. Researchers
have used evolutionary search [28], constraint satisfaction
[24], and rule-based systems [30] to generate games meeting
soft optimization criteria and/or hard constraints. Rather
than use top-down enumeration of game mechanics, Cook
et al. Mechanic Miner [3] used a bottom-up approach—
program reflection—to manipulate game mechanics by chang-
ing the values used in program functions. We use a top-
down mechanic representation to supportde novo synthesis
of mechanics from game engine primitives subject to several
(relatively) domain-independent evaluation criteria.

Complementing automated approaches, Nelson and
Mateas argued for recombinable mechanics to support hu-
man designers [15]. Researchers have supported human-
created mechanic analysis with playability checking, using
simulations in Petri net models [4], model-checking and
proof in extensions of the event calculus [23,25], and simula-
tions or model-checking in other action languages [16]. Our
system draws on related logical models (planning) and can
also generate games using the mechanics being modeled.

Mechanic generation and game description languages
(GDLs) share a concern for composable mechanic repre-
sentations. The Stanford Game Description Language [12]
models turn-based, competitive games in a declarative lan-
guage and has extensions for randomization and incomplete
information [27]. A variety of research efforts have modeled
specific classes of games using similar (context-free or graph)
grammar constructs, including arcade video games [19], card
games [8], strategy games [13], action-adventure games [6],
and puzzle games [11]. Grammars are effective for embed-
ding design knowledge into a generating system, but are not
readily combined across genres. We avoid this limitation
through a cross-domain mechanic representation that is also
amenable to automated generation.

Our model of game mechanic structure draws from work
on domain representations used in AI planning. Mod-
ern plan representations were developed to scale traditional
AI techniques to complex domains by providing additional
problem structure knowledge to AI search processes. Plan-
ning representations can often be converted (e.g. to SAT
problems) to improve the performance of other approaches
through additional representational factoring [17]. STRIPS
[7] was one of the earliest planning representation languages,
modeling actions in terms of logical predicates. Operators
are a set of preconditions that must hold before the action
can be executed and a set of effects that add or delete pred-
icates from the state of the world. Planning is a process of
finding a sequence of operations that transform the world
from an initial state into a state in which the goal situation

holds. The Planning Domain Description Language (PDDL)
[14] is an ongoing project to extend planning representations
to address more complex tasks while building a shared lan-
guage for research competitions. PDDL extended STRIPS-
like representations with non-equality constraints, numeric
fluents to model continuous domains, operators with dura-
tion, and timed initial literals that modify the world state
at fixed times regardless of agent actions. By modeling me-
chanics in a similar manner to planning domains we can
leverage existing work on planning technologies to check
game playability.

3. MECHANIC DESIGN FORMALIZATION
In this section we define the mechanic generation and

adaptation problems, provide a model for cross-domain com-
posable game mechanics, and present methods to automati-
cally generate and test game mechanics for given game con-
tent. Mechanic generation is the problem of constructing a
(set of) game mechanic(s) such that they meet playability
requirements to create a desired range of player experiences
(allowing and forbidding action sequences) while meeting
design requirements on mechanic structure. Playability re-
quirements ensure a game is playable to a given goal, po-
tentially subject to limitations on the states entered or ac-
tions taken to achieve the goal.Design requirements ensure
mechanics adhere to designer requirements for how actions
work in a game. Both playability and design requirements
may be domain-independent or domain-dependent. Design
requirements shape mechanics to the form a designer desires
while playability requirements ensure those mechanics have
desired functions in game content.

Mechanic generation uses a game domain definition to
know what may be changed by mechanics. A game domain
defines the entities that make up a game, their parameters,
and how game states change. A game domain consists of
a state model—specifying domain entities, their parame-
ters, and allowed ranges of values—and a transition model—
specifying how states change into one another. In our for-
mulation, the transition model is the set of game mechan-
ics. The focus of this paper is avatar-centric mechanics—
transitions initiated by the player (or other in-game agents)
in the process of controlling an avatar. A solution to the me-
chanic generation problem is a transition model that meets
design and playability requirements, given a state model and
a set of relevant game instances.1 A game instance is an
initial state and a particular setting that corresponds with
the initial state; e.g., a level in a platformer or a single bat-
tle in a role-playing game. Initial game state is part of a
game instance. When a game instance for a state model is
combined with a transition model (including avatar-centric
mechanics) the result is a playable game experience.

As a running example to illustrate our definitions, con-
sider a simple role-playing game (RPG) battle game domain.
RPG battles involve two opposing parties taking turns to at-
tack one another using various spells (mechanics) until one
party is slain; the Dungeons and Dragons tabletop RPGs
are a paradigmatic example. The RPG state model has a
player character and an enemy, each with health and mana
resources. One game instance has the player starting with 3

1By this definition most PCG generates game instances
given a state model. Some approaches enforce playability
requirements given a transition model.



health and 5 mana (a spell-casting resource) while the enemy
has 2 health and 2 mana. Many variant instances may be
considered simultaneously when mechanics are generated.
A playability requirement can ensure that, over all given in-
stances, the player can kill the enemy (reduce enemy health
to 0 or less) without being killed. A design requirement can
specify that all spells have a cost—e.g. requiring that every
spell cost the avatar that uses it some resource (health or
mana). Mechanic generation asks: given these requirements
what spells should be in the game? Mechanic adaptation is
similar to generation but starts from a pre-specified set of
mechanics and modifies those mechanics and/or augments
those mechanics with new mechanics.

A system that solves the mechanic generation problem
requires a state and transition model representation, a pro-
cess to search for transition models that meet design criteria
within the state model, and a process to test that transi-
tion models meet playability criteria across a provided set of
game instances (potentially all valid game instances in that
space). Below we present our state and transition models
to generate avatar-centric mechanics as planning operators.
Planning operators are a natural representation for game
mechanics as operators were designed to represent domains
involving sequential choices while readily allowing compo-
sition of operator preconditions and effects. Our operator
representation can directly reference variables in the game
engine, allowing us to operate at a very low level of primi-
tives. We use a constraint solver to search for a transition
model (mechanics) that meets design criteria. Constraint
solvers are a valuable generic approach to search combina-
torial spaces that readily encode hard and soft requirements
on solutions [22]. We use a planner to validate transition
models against playability criteria. Planners are effective for
proving the presence or absence of play traces (sequences of
mechanic choices and state updates) within a game domain.

3.1 State Model
Our representation for game domains uses a subset of the

ideas used in PDDL with extensions specific to games. Cur-
rently we focus on turn-based domains with deterministic
actions to simplify our early exploratory work. The state
model defines a domain of game entities in terms of their
allowed states as these are core to modeling avatar-centric
mechanics (state transitions).

The state model is a set of terms defining entities, param-
eters, and allowed parameter value ranges for entity param-
eters in the game world (AbsRange) or mechanic changes to
those values (RelRange). Terms have the following forms:

Entity(e) Parameter(p) Has(e, p)
AbsRange(p, e, r) RelRange(p, e, r)

where e is a symbol representing an entity, p is a parameter
of an entity, and r is a range of values, which may be discrete
or continuous. We currently approximate continuous ranges
with integer-valued ranges for simplicity. A game engine can
use this formalism by exposing an API with ‘get’ and ‘set’
methods for game engine variables corresponding to these
logical terms. Referring back to our example RPG spell
system we can define the player with the predicates in Ta-
ble 3.1 (RelRange relates to the transition model described
in section 3.2).

Game instances give concrete settings for state model enti-
ties and parameters. We use fluents to represent these values

Table 1: Partial RPG domain definition.
Entity(player)

Parameter(health) Parameter(mana)
Has(player, health) Has(player, mana)

AbsRange(player, health, [0,3]) AbsRange(player, mana, [1,5])

in our planning model, allowing states to change according
to the transition model. In our RPG example, we can set
player health to initially be 3 using Initial(health(player), 3)
where Initial sets entity parameter values that hold at the
beginning of the game.

3.2 Mechanic Model
The transition model is a set of mechanics that allows

forward simulation (making results playable as simple text-
based games) and playability checks as planning. Consider
modeling an RPG spell that causes damage over a period
of time. Such a spell needs to specify several things: condi-
tions on when the spell may apply (e.g. not affecting dead
characters), how much damage is done, and at what time(s)
the damage is done. To address examples like this we have
drawn from PDDL’s action schemas to define an avatar-
centric mechanic as a tuple: 〈i, P,E〉 where i is a unique
identifier for a mechanic, P is a set of the preconditions
needed for mechanics to occur, and E is a set of effects of
performing the mechanic.

Our preconditions and effects extend traditional PDDL
action schemas with time-indexing and coordinate frames of
reference. Time-indexing allows preconditions to reference
state at times other than the present and allows effects to
reference states other than the next game state. Games of-
ten incorporate delayed effects or checks on historical state,
motivating our time-indexing extension. Coordinate frames
distinguish between traditional world-state terms and “per-
ceived” avatar-relative versions of world terms. Absolute
frames of reference model requirements on the state of the
world. Relative frames of reference capture the intuitive no-
tion that many avatar-centric game mechanics have precon-
ditions and effects relative to an avatar, rather than absolute
world state (e.g. adjacency as relative position).

Our planning model implements semantics for a subset
of PDDL with extensions appropriate to our definition.
AbsRange is used to specify valid absolute frame of refer-
ence values while RelRange is used for relative frames of
reference. Preconditions test game state; we allow tests
for equality, inequality, and lesser-than and greater-than
relations. All preconditions and effects are tuples of the
form 〈frame, time, condition〉; where frame indicates a co-
ordinate frame of reference, time specifies a time-index,
and condition specifies a game state value to check for
(or update). In our formalism, a condition takes the form
F (parameter(entity), value) where F is a logical function
that either tests two values and returns a boolean value (for
preconditions) or updates an entity parameter value (for ef-
fects). Testing for the avatar currently being alive would be
〈absolute, 0, GreaterThan(health(player), 0)〉.

Effects update game state. For absolute frames of ref-
erence updates set state to a particular value (constrained
within AbsRange); for relative frames of reference updates
change state values by a given amount (constrained within
RelRange). A spell that checks for the enemy being alive
and reduces enemy health by 1 on the two next turns is:



〈damageOverT ime,
{〈 absolute, 0, GreaterThan(health(enemy), 0)〉},
{〈relative, 1, Update(health(enemy),−1)〉,
〈relative, 2, Update(health(enemy),−1)〉}〉

Mechanic recombination occurs when one mechanic ref-
erences another mechanic having occurred. Fighting game
or rhythm game combo systems exemplify avatar-centric
recombination. Mechanic recombination naturally encodes
event-relevant mechanics, rather than being limited to me-
chanics that reference state. For mechanic recombination
we allow preconditions and effects to reference the event of
a mechanic occurring with Performed(i). Semantically, a
mechanic as a precondition requires that mechanic to have
(or not have) occurred at a time index. For example, a
double-jump may require a player to have jumped at the
previous time-step:

〈absolute,−1, Equal(performed(player), jump)〉
When Performed(i) appears as an effect the preconditions
and effects of that mechanic are applied. The mechanic using
Performed(i) as an effect indicates the time to apply the
performed mechanic. Note that frames of reference are not
relevant for mechanic indexes (these are provided by the
indexed mechanics themselves) and are ignored.

As in PDDL, we assume inertial state and circumscription:
any entity parameter not affected by a mechanic continues to
hold its previous value. Performed(i), however, is treated
as an event and not subject to inertial state.

4. MECHANIC GENERATION
Mechanic generation creates a set of mechanics within a

game domain subject to playability and design requirements.
We use a constraint solver to search for a set of mechanics
constrained to meet the given design requirements. De-
sign requirements help avoid low-quality mechanic solutions.
Hard design requirements (as used by Smith and Mateas
[22]) enforce conditions on the form of mechanics or relations
among a set of mechanics—e.g. not allowing a mechanic to
have both equality and non-equality preconditions for the
same game state or requiring no two mechanics to have iden-
tical preconditions and effects. Soft design requirements (as
reviewed in [29]) give optimization criteria for what makes
(sets of) mechanics better or worse—e.g. aiming to minimize
the number of preconditions and effects used by a mechanic
in favor of simplicity. Playability is evaluated using a plan-
ner (described in the next section) to prove a player can meet
playability requirements on given test game instances. We
used Answer Set Programming (ASP) [1]—a form of declar-
ative programming—to implement the constraint solver.

Mechanic generation creates mechanics by choosing pre-
conditions and effects for each mechanic while ensuring the
mechanics conform to design requirements. Some design
requirements apply across types of games (not requiring a
state hold and not hold at the same time) while others are
more domain-specific (spells should be “balanced” in terms
of resource costs to execute vs effects on avatars). Given a
set of operators, a planner proves whether a plan exists for
given game content subject to playability requirements. The
process of generating mechanics using a constraint solver
and testing those mechanics with a planner repeats until all
hard requirements are met and all soft requirements are op-
timized. While this is an expensive process we have started
with small game domains to explore the relevant research

problems. Note that many game mechanics and game sys-
tems consist of relatively small abstract systems (e.g. RPG
spell systems, platformer mechanics, etc.).

4.1 Playability Checking
We implemented a simple planner that proves that playa-

bility requirements can be met in game instances with a
given set of mechanics. The planner uses playability re-
quirements as goal situations to prove whether a plan exists
that can meet playability requirements. For convenience we
used ASP as our implementation language for the planner.

Playability requirements come in three forms: (1) goals,
(2) maintenance goals, and (3) engine constraints. Goals
give a game agent target situations to seek; the planner must
prove the presence of a plan that meets the goal. Mainte-
nance goals give situations that begin true and must hold
throughout the plan (e.g. being alive); the planner must
prove a plan achieving the goals always upholds maintenance
goals. Maintenance goals are useful for specifying failure
criteria in a game as the negation of a failure state must
always hold. Engine constraints enforce semantics mapping
to non-avatar rules in a game engine (e.g. preventing two
entities from occupying the same space); the planner must
follow these constraints when making plans.

In our RPG battle example, the player goal is to kill all
enemies while maintaining the state of being alive (not being
killed) and we have an engine constraint that the player can-
not drop below 0 mana. By building our model off planning
domain representations we gain a simple, factored logical
model of the game world that affords game mechanic com-
bination and synthesis while also yielding playable games.

4.2 Mechanic Adaptation
Instead of generating mechanics from scratch, mechanic

adaptation starts with a set of mechanics and produces a
minimally changed set of mechanics. Mechanic adaptation
uses mechanic generation for iterative design. In iterative
design a set of mechanics are tested and adjusted to meet
new insights about the game—adaptation requirements. Me-
chanic adaptation is given the same inputs as mechanic
generation along with an initial set of mechanics and new
adaptation requirements. Adaptation requirements specify
additional playability or design requirements for mechanic
generation. New playability requirements may indicate ad-
ditional goal states for the player to pursue or identify un-
wanted states. New design requirements may control the
amount of change to make to a set of mechanics. The defi-
nition of ‘minimal change’ varies by game domain and must
be specified to adapt mechanics.

Mechanic adaptation takes the same input game state and
transition models as mechanic generation augmented with
a pre-existing set of game mechanics. Adaptation adds or
removes preconditions and effects from existing mechanics
and may also generate new mechanics. Changes to mechan-
ics must meet designer-specified criteria for minimality while
adhering to all adaptation requirements. We adapt mechan-
ics by having the constraint solver perform the standard
generation process but seeded with the additional mechan-
ics. The previous set of design requirements are given along
with new adaptation requirements and a definition of mini-
mality (e.g. minimizing the total number of changes made).
Mechanic adaptation performs the same loop of generating
and testing possible mechanics as in mechanic generation.



5. EXAMPLES
Our game domain formalism supports a variety of avatar-

centric mechanic systems. In this section we illustrate how
to represent a simple role-playing game (RPG), a simple
platformer, and a game that merges these two systems. RPGs
require a balanced and diverse set of character spells. Plat-
formers are games where a character navigates physical ob-
stacles in a virtual space, exemplified by the Super Mario
Bros. games. Platformers require a finely tuned and widely
reused small set of spatial navigation mechanics. We gener-
ate spells in the RPG and movement mechanics in the plat-
former. By concatenating these two domains we illustrate
how our model affords cross-domain mechanic generation.

5.1 Role-Playing Game
RPG combat mechanics can be specified in terms of a set

of entity attributes and resources (here health and mana for
the player and a set of enemies). Our earlier RPG spell
example defines this basic domain. We have playability re-
quirements for: a player goal situation of having all enemies
dead, a player maintenance goal of not being dead; and an
engine constraint preventing negative mana. Together, these
playability requirements encode the basic notion of an RPG
battle as killing an opponent without being killed while hav-
ing bounded resources. We have two domain-independent
design requirements: a hard requirement to prevent mechan-
ics from having preconditions that force a predicate to equal
more than one value and a soft requirement to minimize the
number of preconditions and effects of mechanics to produce
the simplest set of mechanics. Many domains have a notion
of actions having costs; we used a third, domain-specific
version of costs by requiring all actions incur a mana or
health cost.

Our system was able to generate a variety of RPG spells
using the game domain, a game instance with two enemies,
and the playability and design requirements above. Play-
traces are plans: a series of player actions (spells used) to
damage each of the enemies while costing the player health
or mana. One example spell was given above, others typi-
cally perform simple effects such as inflicting damage at a
single time point or affecting multiple targets. Our system
generated the following mechanic to damage all enemies:

〈damageAll, {},
{〈relative, 1, Update(health(enemy1),−1)〉,
〈relative, 1, Update(health(enemy2),−1)〉,
〈relative, 1, Update(mana(player),−2)〉}〉

where there are no preconditions and the effects damage
both enemies while costing the player mana. Note that we
have given human-readable names to the mechanics; inter-
nally i (the name) is an integer. Also note that our examples
were chosen to illustrate the most semantically sensible me-
chanics generated; by definition all mechanics achieve playa-
bility and design requirements.

5.2 Platformer
Two-dimensional platformers can be described in terms

of a set of entities (here the player, blocks, and enemies)
each assigned spatial coordinates corresponding to two spa-
tial dimensions (Table 2). The initial state of the player
for our example (see Figure 1) is Initial(xPos(player), 1),
Initial(yPos(player), 2).

init enemy

goal

Figure 1: Platformer level showing a playtrace using
a generated mechanic set. Arrows indicate gener-
ated mechanics, dotted arrows indicate gravity.

Table 2: Partial platformer domain
Entity(player)

Parameter(xPos) Parameter(yPos)
Has(player, xPos) Has(player, yPos)

AbsRange(player, xPos, [1,8]) AbsRange(player, yPos, [1,6])

The platformer has playability requirements for: a player
goal situation of reaching the end, a player maintenance goal
of not overlapping with an enemy; and an engine constraint
preventing the overlap of any entity and a block. Another
engine constraint enforces gravity by requiring all entities to
move down one unit each turn if that space is not occupied
by a block. We reused two design requirements from the
RPG example: preventing exclusive pre-conditions and min-
imizing the number of mechanic preconditions and effects.
A third soft requirement optimizes for as few mechanics as
possible (to create a “tighter” game system) and a fourth
soft requirement minimizes the number of different entities
referenced by mechanics (favoring motion of a single avatar).

Figure 1 illustrates a simple platformer level and shows
one trace found by the planner that moves the player avatar
to the goal position. The planner generated mechanics for
moving forward, jumping, and double-jumping (indicated by
arrows). Dotted arrows indicate the effects of gravity. The
example shows a variety of movement mechanics we have
generated, including two forms of jumping:

〈jump,
{〈relative, 1, Equal(yPos(e), yPos(block) + 1)〉,
〈relative, 1, Equal(xPos(e), xPos(block))〉},
{〈relative, 1, Update(xPos(e), 1)〉,
〈relative, 1, Update(yPos(e), 1)〉}〉

〈double Jump,
{〈relative, 1, Equal(yPos(e), yPos(block) + 1)〉,
〈relative, 1, Equal(xPos(e), xPos(block))〉,
〈absolute,−1, Equal(Performed(i), jump)〉},
{〈relative, 1, Update(xPos(e), 1)〉,
〈relative, 1, Update(yPos(e), 2)〉}〉

jump tests for the presence of a block to jump off of and,
if so, moves the avatar diagonally up. doubleJump does the
same check while also requiring a jump to have occurred
immediately before; the jump effect is slightly larger.

In initial platformer mechanic generation runs jump and



doubleJump lacked preconditions as this minimized the com-
plexity of mechanics. To address this problem we general-
ized the notion of costs from the RPG domain to a cost–
benefit system based on ideas discussed by Schreiber [20].
Specifically, we associated each effect with benefit equal to
the update effect absolute magnitude. Preconditions con-
straint mechanics and each have a cost of 1. A hard design
requirement enforces ‘balanced’ mechanics by requiring the
net costs and benefits of a mechanic to be equal. Adding
cost–benefit accounting led to the mechanics we report here.

Two more unique mechanics appeared when using our sys-
tem on a slightly simplified version of the above domain. The
simplification removed blocks at even height with the player
to create a plain. Our system generated a ‘lift’ mechanic
to move the enemy and a ‘ride’ mechanic in two different
solutions. lift raises the enemy behind the player and was
used to allow the player to move the enemy behind them
while advancing to the goal:

〈lift,
{〈relative, 1, Equal(yPos(e), yPos(enemy))〉,
〈relative, 1, Equal(xPos(e), xPos(enemy)− 1)〉,
〈relative, 1, Equal(yPos(e), yPos(block) + 1)〉,
〈relative, 1, Equal(xPos(e), xPos(block))〉},
{〈relative, 1, Update(xPos(enemy),−1)〉,
〈relative, 1, Update(yPos(enemy), 2)〉,
〈relative, 1, Update(xPos(e), 1)〉}〉

ride was a mechanic used to slide the player and enemy for-
ward both by one unit and was used to have the player jump
atop an enemy and ‘ride’ the enemy to the goal (shortening
the jump distance needed):

〈ride,
{〈relative, 1, Equal(yPos(e), yPos(enemy) + 1)〉,
〈relative, 1, Equal(xPos(e), xPos(enemy))〉},
{〈relative, 1, Update(xPos(e), 1)〉,
〈relative, 1, Update(xPos(enemy), 1)〉}〉

We also test mechanic adaptation in our platformer do-
main to adapt mechanics generated without gravity to work
in the same domain with gravity. First we generated a set
of movement mechanics in our platformer domain, resulting
in three mechanics: a long horizontal jump (longJump: 2
forward, 1 up), a short vertical jump (highJump: 1 forward,
2 up), and a dash forward (2 forward). Adding gravity re-
quires the agent to increase the amount of vertical movement
when gravity is added. We included gravity as an engine
constraint and adapted the above mechanic set by reusing
the same platformer domain and requirements. The result-
ing modifications made two changes: (1) the dash added
vertical movement to now move 2 forward and 1 up and
(2) the long jump added an initial lift phase moving 2 up,
but at a time one step earlier than the rest of the mechanic.
These results illustrate the flexibility to reuse our generation
system for adaptation when baseline design considerations
change. Adaptation only required seeding the generation
with output from a previous generation step and specifying
how many mechanics to use after adaptation (in this case
preventing new mechanics from being added).

5.3 Combined Game
To demonstrate the modularity of our representation

we concatenated the previous two domains to create a

“platformer-RPG” game. All game state definitions are un-
changed: combining RPG resources and platformer loca-
tion only makes entity state more complex. We retain the
previous playability requirements from both domains with
conjunctive (all criteria must be met) goals, maintenance
goals, and engine requirements. With these simple changes
we can generate mechanics appropriate to the domain such
as attacking at a distance with a spell:

〈magicMissile,
{〈relative, 0, Equal(xPos(enemy), 2)〉,
〈relative, 0, Equal(yPos(enemy), 0)〉},
{〈relative, 0, Update(health(enemy),−1)〉}〉

where the preconditions check for an enemy two spaces in
front of the player and the effect reduces enemy health.

6. RICHER AI DESIGN
To further develop the design tasks encountered in the

previous example domains we have extended our system to
generate mechanics for multilevel progressions, multiagent
competition, and mapping controls to mechanics. These
additions illustrate how our representation can model some
more complex design tasks that directly relate to mechanics.

6.1 Multilevel Progression
Platformers (and most game genres) often gradually in-

troduce new mechanics to players over a sequence of levels.
Generalizing mechanic generation to include requirements
on which mechanics are used along a progression requires
two additions: planning across multiple levels and provid-
ing requirements on mechanic use. To implement multilevel
progression we augmented the initial state and playabil-
ity requirement definitions with a level index of the form
Initial(level, paramter(entity), value). Playability checks
must ensure the given mechanic set can yield valid playtraces
for all levels provided, treating each as a separate planning
problem with the same set of mechanics.

The constraint solver can enforce types of progression
across multiple levels. For example, we have required the
number of mechanics used in each level to increase over a
level progression. We have also required that the specific me-
chanics used in each level reappear in all subsequent levels.
This has resulted in the sequential introduction of the jump
and doubleJump mechanics above. In general the gener-
ated mechanic sequences often involve enveloping mechanics
where a weaker and stronger (larger effect) version of the
same mechanic are used. These progression requirements
encode a notion of training players by needing to master
additional skills (c.f. Butler et al. [2]; Dormans [5]). We
have also used our more atomic representation to require the
progressive introduction of preconditions or effects (as in the
doubleJump introduction of an event precondition). These
requirements allow more nuanced ideas of progression than
previously done by using elements of the mechanics being
introduced to the player.

6.2 Multiagent Actions
RPG battles typically involve competing agents. To incor-

porate multiagent modeling we have augmented our planner
to track actions and perceived state relative to each agent.
We now indicate agent-specific goals and maintenance goals
(engine constraints are currently treated as universal).



Playability checks optimize toward all agent (potentially
competing) goals. To ensure plans are possible we typically
require the player be able to achieve her goal situation before
any opposition, but that both goal situations can be achieved
within a prescribed number of plan steps. Alternatively, we
have also provided goals to adversaries that are intended
to improve player experience without directly negating the
player’s maintenance goals (e.g. trying to minimize player
health, rather than kill the player). Adding multiagent mod-
eling is computationally costly but allows broader modeling
of competition (or collaboration) interactions.

6.3 Controls
Platformers depend heavily on the game controls. Our

modular representation can readily map a given set of input
buttons to generated mechanics. We define the input com-
mands, add these controls as additional preconditions for
mechanics, and require there is always a single unambiguous
mechanic for an input. Hard design requirements state that
all mechanics have at least one input and no two mechan-
ics with the same preconditions use the same set of inputs.
Soft design requirements encode simplicity by minimizing
the number of inputs used in total and number of inputs used
per mechanic. Additional soft design requirements encode a
simple notion of ‘intuitive’ mappings by maximizing the use
of the same buttons for mechanics with overlapping effects
on the same entity-parameter-value settings.

Our control mapping scheme was able to generate (rela-
tively) semantically sensible platformer controls. We pro-
vided our control mapping system with jump, doubleJump,
lift, and ride as above and a set of 6 input buttons for a 4-
directional pad with two action buttons (A and B). Control
assignments used either 3 or 4 input buttons, trading off
minimizing the total number of buttons used against mini-
mizing the number of buttons used per mechanic (Table 3).
Different assignments used different specific buttons for the
same results. Note that no two buttons had identical pre-
conditions, meaning a (non-optimal) assignment could have
used a single button for all actions.

While we have not yet addressed more complex control
mapping problems than these (e.g. mapping to real-world
physics or durative button presses [26]) the ability to add
these capabilities readily to our system shows the promise
of our formalism. Future research on controls can work to
capture more sophisticated control models and develop tech-
niques to better match controls to the semantics of the game
system created by the mechanics. Directly encoding controls
for mechanics also opens the possibility to model agents that
must use a control set (with the associated design complica-
tions), rather than directly triggering mechanics. Capturing
the influence of controls on agent actions can then address
the influence of control sets on player interaction, broaden-
ing the scope of PCG for games.

Table 3: Control assignment examples
3 button 4 button

jump ↑ ↑
doubleJump A + ↑ →

ride A A
lift B B

7. FUTURE WORK
We plan to develop a variety of further extensions to

our system: non-avatar mechanics, cost–benefit balancing,
probabilistic mechanics, and turn structures and higher-level
game systems. While we started with avatar-centric me-
chanics, the multiagent extensions we developed can model
mechanics that do not use concrete in-game entities. For
example, a ‘gravity’ agent can act to move all in-game agents
down every turn.

Cost and benefit balancing opens many questions for fur-
ther research. How can the amount of constraint imposed by
a precondition be encoded? How can a system automatically
detect when an effect is harmful or beneficial? How should
cost and benefit magnitudes be scaled? These capabilities
may depend on additional design requirement knowledge as
input or additional inference about the affects mechanics
have on playtrace solutions (e.g. encoding costly effects as
those that move the game further from the goal state).

Probabilistic action effects are common in many games
and designers often reason on expected or “average-case”
scenarios [20]. Planning researchers have developed models
for probabilistic outcomes that we believe can be applied to
automatically synthesize and reason on playtraces in a prob-
abilistic action semantics [10]. Adding probabilistic mechan-
ics can open additional kinds of soft playability requirements
around expected player experiences and may be valuable for
expressing cost–benefit balancing schemes.

Many game domains have more complex temporal struc-
ture: e.g. continuous time, discrete turns with action costs
or other complex turn structure. An extension to our repre-
sentation could allow explicit reasoning on how time indexes
are tracked and modified. In AI planning successor-state
axioms are used to reason on how states update and how
many actions are used. Exposing the game turn structure
as successor state axioms used by the planner can enable
this level of control for automated generation.

A core challenge in developing our system into an AI assis-
tant is recognizing which mechanics are valuable to design-
ers. While our system can generate mechanics according to
designer constraints the system requires a designer to en-
code the notions of ‘interesting’ or ‘non-trivial’ into design
requirements. An important open problem is developing
metrics that allow the system to automatically recognize
the mechanics that would be most useful to designers with-
out as much explicit guidance. Learning from designers can
help provide such metrics, either through a corpus of hu-
man examples or through explicit feedback about generated
mechanics. Algorithms that appropriately generalize from
human examples may enable the system to introduce new
primitives into the game engine. Many primitives humans
add to games are based on complexifying core gameplay: e.g.
adding a new resource in a city-building game to balance
economic costs and benefits.

8. CONCLUSIONS
In this paper we formalized the mechanic design problem,

presented a cross-domain representation for avatar-centric
mechanics, and illustrated how to generate and combine
mechanics using a constraint solver and planner. Our cross-
domain representation can model a subset of many common
game mechanics and integrate reasoning on mechanics into



game level progressions and controls. Our system generates
playable and sensible games from appropriate requirements.

We believe generating a game from the mechanics up al-
lows new types of AI game designers that can reason ex-
plicitly about how elements of a design integrate to achieve
design goals. By using a domain–agnostic representation
our system can readily work in a variety of game domains,
focusing on the higher–level problems of designing mechanics
rather than genre–specific concerns. Autonomous mechanic
generation (given designer initial inputs) holds promise for
creating AI designers that generate games starting from me-
chanics. Mixed-initiative mechanic adaptation can lead to
alternative approaches to iterative mechanic design where
an intelligent system takes more of the burden of identifying
mechanic changes (or new mechanics) to improve a design.
In the future, when coupled with the ability to learn design
guidelines, we see automated game design as a powerful tool
for people without the means to build computer games them-
selves; an AI designer can create games from scratch from
high-level descriptions or work directly with the human to
iteratively construct the game.

9. REFERENCES
[1] C. Baral. Knowledge Representation, Reasoning and

Declarative Problem Solving. Cambridge University
Press, 2003.

[2] E. Butler, A. M. Smith, Y.-E. Liu, and Z. Popović. A
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