
Story Planning with Vignettes: Toward Overcoming
the Content Production Bottleneck

Mark O. Riedl and Neha Sugandh

School of Interactive Computing, Georgia Institute of Techology
85 Fifth Street NW, Atlanta, Georgia 30308, USA

{riedl; nsugandh}@cc.gatech.edu

Abstract. Storytelling is prominent part of the daily lives of humans.
Entertainers, educators, and trainers often concern themselves with the
production of novel stories for entertainment, education, and training.
However, it is possible for the consumption of story content by end-users to
outpace the rate of production of story content. One solution is to instill greater
creativity in computer systems in the form of story generation. We present an
incremental advancement to planning-based story generation that increases the
space of narratives that can be automatically searched in an attempt to make
planning-based story generation more creative. The VB-POCL story planning
algorithm implements a form of case-based planning that can incorporate
vignettes – plot fragments that are a priori known to be “good” – into a
narrative planning process. We show that VB-POCL can generate narratives
with favorable structural properties that cannot be generated reliably with
previous attempts at planning-based narrative generation.

1 Introduction

Storytelling is a pervasive part of our daily lives and culture. Storytelling is
particularly prominent in entertainment, where stories can be viewed as artifacts to be
consumed by an audience. Story also plays a role in education and training, where
stories and scenarios can be used to illustrate and guide. The production of these
artifacts – stories and scenarios – is a primary activity in the entertainment industry
and also a significant bottleneck in the educational and training industries. In an “on-
demand” society, waiting for periodic updates to serial narratives – weekly television
series, movie series, and novels – is not considered ideal. Likewise, players of
computer games that rely on stories and quests can complete quests faster than
designers can create new quests (for a case study, see [1]). How do we handle the
situation in which content consumption outpaces content production? One way to
overcome the bottleneck of content production is to instill in a computer system the
creative ability to generate new content.

Because of the prevalence of story in non-interactive media such as books and
movies, as well as interactive media such as computer games, we concern ourselves
with the automated generation of narrative content. The issue is whether an
automated story generation system can be considered creative enough or skilled
enough to be trusted to produce content – stories – that will be experienced by users.
More generally, the output of a creative system, such as an automated story

generation system, must be novel, surprising, and valuable [2]. Whether an artifact is
valuable is subjective. For the purposes of this paper, we will consider the minimal
requirements for a story artifact to be considered valuable if it (a) meets the intended
purpose of its creation and (b) is sufficiently mimetic – appearing to resemble reality,
but in a way that it is more aesthetically pleasing than reality. In brief, stories should
be novel, but not so novel that they are unrecognizable [3].

In this paper, we describe recent work on planning-based narrative generation.
Planning is one model of narrative creation that has been shown to be favorable for
story generation (c.f. [4], [5], [6], and [7; 8]). We are considering a model of
interactivity in which a user is afforded the ability to specify a set of parameters that
abstractly define a desired story. The system then responds to the request by
generating a novel story that best meets the given parameters. However, other models
of interactivity can also be considered such as interactive stories, where a user can
participate in a story in real-time. See [9], [10] for techniques for creating interactive
experiences by that recursively invoking plan-based narrative generators, and [1] for
alternative approach to using planning in interactive narrative system. There are non-
planning based approaches to interactive story systems – a non-exhaustive list
includes [12], [13], [14], and [15] and derivate works – which are more dependent on
hand-authored narrative content and therefore less applicable to the problem of
scaling up the pace of content creation. However, further discussion of real-time
interactivity is beyond the scope of this paper.

Our goal is to incrementally improve the ability of planning-based story generation
by increasing the space of narratives that can be explored algorithmically. We believe
that this will provide a capability to address the issue of consumption versus
production, and also to create more customized experiences for users under either
model of interactivity. While the problem of determining whether a generated story
is good is still largely an open problem, we can make claims about the existence of
stories with certain properties – properties that could not previously reliably be
generated. In particular, we describe the vignette-based partial-order causal link (VB-
POCL) narrative planning algorithm. VB-POCL implements a form of case-based
planning that can incorporate vignettes – plot fragments that are a priori known to be
“good” – into the narrative planning process.

2 Planning Stories

We view story generation as a problem-solving activity where the problem is to create
an artifact – a narrative – that achieves particular desired effects on an audience. We
favor a general approach where we model the story generation process as planning.
One reason for this is that plans are reasonable models of narrative [6]. But also
planners “walk the space” of possible narratives in search of a solution that meets
certain qualities, making it a good model of creativity in general [2]. This follows
from other research efforts modeling story generation as planning (c.f., [5], [7;8]).

The planning process is as follows: a planner chooses an incomplete plan to work
on at the fringe of the problem space, and chooses a flaw in that plan to work on,
resulting in zero or more new plans in which the flaw is repaired (and often

introducing new flaws). These plans become part of the new fringe, and the process
is repeated. One type of flaw pertinent to this work is an open condition flaw, which
exists when an action in the plan (or the goal state) has a precondition that has not
been recognized as being satisfied by the effect of a preceding action (or the initial
state). Applying one of the following repair strategies can repair the flaw:

(i) Selecting an existing action in the plan that has an effect that unifies with the
precondition in question.

(ii) Selecting and instantiating an operator from the domain operator library that
has an effect that unifies with the precondition in question.

A planner is non-deterministic, meaning it applies all strategies and then uses a
heuristic function to determine which parts of the fringe should be expanded next.
There are other types of flaws as well, such as causal threat flaws, which occur when
an action threatens to undo the satisfaction of another action’s preconditions.
Conventional planners assure that plans are sound, meaning that they are guaranteed
to execute successfully in the absence of unanticipated changes in the world [16].

However, stories are much more than just ways of achieving an intended outcome
in the most efficient manner. Stories should meet the expectations of the audience.
This may mean putting in details that are aesthetically pleasing even if they are not
strictly necessary. When humans write stories, they call on their lifetime of
experiences as a member of culture and society. A computer system that generates
stories does not have access to this wealth of information. As a way of mitigating this
handicap, a computer system can be provided with a wealth of knowledge in the form
of traces of previous problem-solving activities or a library of previous solutions – in
this case stories. Transformational multi-reuse planning is a form of case-based
reasoning in which prior solutions are adapted to new planning problems; systems
such as [17] and [18] retrieve and reuse full or portions of old solutions (e.g. plans) to
assemble new plans. We adapt the transformational multi-reuse approach and
customize it to the particulars of generating stories. However, instead of assuming a
knowledge base of complete stories, we bootstrap the planning process with a library
of “vignettes” – fragments of stories that capture some particular context.

2.1 Vignettes

We use the term vignette to refer to a fragment of a story that represents a “good”
example of a situation and/or context that commonly occurs in stories [19]. For
example, a library of vignettes would contain one or more specific instances of bank
robberies, betrayals, cons, combat situations, etc. We do not presume to know how
these vignettes were created, only that we have the solutions and that they have
favorable mimetic qualities. It is important to note that the library contains specific
examples of these situations instead of general templates. The implication of the
existence of this library is that a story generator does not need to “reinvent the wheel”
and thus does not need the specialized knowledge required to be able to create
specialized narrative situations. Vignettes are fragments of story structure. How does
one know what actions should be included in the vignette and which can be left out?
We use the minimal vignette rubric: a minimal vignette is one in which removing any

one action from the vignette causes it to no longer be considered a good example of
the situation and/or context it was meant to represent.

Computationally, vignettes are stored as plan fragments. As a plan fragment, it is
possible that some actions do not have to have all of its preconditions satisfied. This
is a way of saying that it is not important how the situation is established or even
why, but once the conditions are established certain things should happen. Vignette
plan fragments do not reference specific characters, objects, or entities so that a
planner can fit the vignette into new story contexts by making appropriate
assignments. To ensure illegal or non-sense assignments are not made, co-
designation and non-co-designation variable constraints are maintained. Fig. 1 shows
an example vignette capturing a very simple combat between two characters where
one character (represented by the variable ?c2) is stronger than the other (represented
by the variable ?c1). The weaker character wounds the stronger character twice
before the stronger character delivers a mortally wounding blow. Finally, the
mortally wounded character dies of its wounds. This vignette could be used in any
plan in which a character must become wounded, mortally wounded, or dead, or plans
in which battles must be started.

2.2 Planning Stories with Vignettes

The Vignette-Based Partial Order Causal Link (VB-POCL) planner is a modification
of standard partial order planners to take advantage of the existence of a
knowledgebase of vignettes. The VB-POCL planning algorithm is similar to other
case-based planners such as [17] and [18] in that it adds a third strategy for repairing
open condition flaws:

(iii) Retrieve and reuse a case that has an action with an effect that unifies with the
precondition in question.

Given an action in the plan that has an unsatisfied precondition VB-POCL non-
deterministically chooses one of the three above strategies. Strategies (i) and (ii) are
performed in the standard way [16]. If strategy (iii) is selected, VB-POCL doesn’t
immediately repair the flaw. Instead, the plan is annotated with a fit flaw, indicating
the plan is to be considered flawed until all actions from the vignette are fitted into
the plan. Repairing a fit flaw is a process of selecting an action from the retrieved
vignette and adding it to the new plan (or selecting an existing action in the plan that
is identical to the selected action to avoid unnecessary action repetition). It may take

Vignette:
Steps: 1: Start-Battle (?c1, ?c2, ?place)
 2: Wound (?c1, ?c2)
 3: Wound (?c1, ?c2)
 4: Mortally-Wound (?c2, ?c1)
 5: Die (?c1)
 6: End-Battle (?c1, ?c2)
Causation: 1→(battling ?c1 ?c2)→2
 1→(battling ?c1 ?c2)→3
 1→(battling ?c1 ?c2)→4
 1→(battling ?c1 ?c2)→6
 4→(mortally-wounded ?c1)→5

Constraints: (character ?c1)
 (character ?c2)
 (stronger ?c2 ?c1)
Variable-constraints: ?c1 ≠ ?c2
Ordering: 1→2, 2→3, 3→4, 4→5, 4→6
Effects: (battling ?c1 ?c2)
 (not (battling ?c1 ?c2))
 (wounded ?c2)
 (mortally-wounded ?c1)
 (not (alive ?c1))

Fig 1. An example vignette data structure.

several invocations of the fitting procedure to completely repair a fit flaw. This may
seem more inefficient than just adding all vignette actions to the plan at once.
However, there are three advantages to iterative fitting. First, it is easier to recognize
and avoid action repetition. Second, it allows for interleaving of repair of other flaws,
which can lead to discovery of interesting plans. For example, fitting may lead to the
creation of new open condition flaws that in turn are repaired through conventional
planning (strategies i and ii) or by retrieving new vignettes (strategy iii). Third,
problems in the fitting process can be identified sooner in case the strategy must be
abandoned.

The algorithm for VB-POCL is given in Fig. 2. VB-POCL is instantiated with an
empty plan P, a set of flaws F, and libraries of un-instantiated action templates and
vignettes. Initially, P is an empty plan that only contains information about the initial
state – the description of the story world before the story begins – and the outcome
state – the description of what the human user wants the story world to be like at the
end of the story. VB-POCL selects a flaw. Initially the only flaws are that the
outcome state is made up of state propositions that are unsatisfied. As described
earlier, open condition flaws, in which an action’s precondition (or an outcome state
proposition) is unsatisfied, are repaired by three strategies. Strategies (i) and (ii)
make up conventional planning (c.f. [16]) and are represented as causal planning in
Fig. 2. Strategy (iii) is initially handled by the vignette reuse portion of the algorithm
in Fig. 2. VB-POCL retrieves all vignettes that can satisfy the open condition. How

Fig. 2. The vignette-based planning algorithm.

VB-POCL (P, F, Λa, Λ v)

The VB-POCL algorithm takes a plan that is a partial solution to the problem (or the empty plan) P, a set
of flaws F evidencing why P cannot be a solution, a library of un-instantiated operators Λa that represent
templates of actions that characters can take in the world, and a library of vignettes Λv.

I. Termination: if F = ∅ and P is sound, return P. Otherwise, fail.

II. Planning:
A. Goal selection: Select an open condition flaw f = <sneed, pneed> or a fit flaw f = <Pc, sc, ec, pneed, sneed>

from F. Let F’ = F \ {f}.
B. Operator selection: Non-deterministically do one of the following (if valid):

1. Causal planning (if f is an open condition flaw): As normal, non-deterministically choosing and
instantiating an action from Λa or reusing an instantiated operator already in P. If instantiating a
new action, add open condition flaws for every precondition of the new action.

2. Vignette reuse (if f is an open condition flaw): Non-deterministically retrieve a plan fragment Pc
from the vignette library Λv such that some step sc in Pc has an effect ec that unifies with p. Let f’
be a fit flaw such that f’ = <Pc, sc, ec, pneed, sneed>. F’ = F’ ∪ {f’}. Let P’ be a copy of P.

3. Plan refitting (if f is a fit flaw): Choose a step snext from Pc that hasn’t been chosen before. Let P’
be a copy of P. Let sadd be snext or a step in P’ that is identical to snext (choose non-
deterministically). If sadd = snext, add sadd to P’, including relevant causal links, temporal links,
and variable bindings. Else, only add relevant causal links, temporal links, and variable bindings
from Pc. If snext = sc then add a causal link from sadd to sneed in P’. Add necessary open condition
flaws to F’ for sadd for each precondition that will not be satisfied by a causal link in Pc. Let
f’ = <Pc’, sc, ec, pneed, sneed> where Pc’ is a copy of Pc with snext removed. F’ = F’ ∪ {f’}.

C. Threat resolution: Performed in the standard way (if no resolution exists, backtrack).
III. Recursive Invocation: Call VB-POCL(P’, F’, Λa, Λv).

this retrieval happens is relatively simple, but is beyond the scope of this paper. Each
successful retrieval creates a branch in the problem space. For each branch, a fit flaw
is created, storing the vignette (Pc), information about the action and precondition that
is not satisfied (sneed and p), and information about which action in the vignette –
called the satisfier action – can be used to satisfy the original open condition flaw (sc
and ec). A vignette can be retrieved multiple times with different satisfier actions.
The algorithm resolves any causal threats in the normal way (c.f. [16]), and iterates.

When VB-POCL chooses to work on a fit flaw, the plan refitting portion of the
algorithm is invoked. An action is arbitrarily selected from the vignette and
instantiated into the plan (or an identical action that already exists in the plan is
chosen). The order doesn’t affect the soundness or completeness of the algorithm.
All necessary causal links, temporal links, and variable bindings are added to the plan
to ensure proper placement and character references of the new or existing action. A
special case occurs when the action selected from the vignette is the action that should
be used to satisfy the original open condition flaw on action sc. When this happens,
an extra causal link is extended from the vignette action to the original action with the
unsatisfied precondition. This finally solves the open condition flaw that prompted
the vignette retrieval in the first place. To complete the plan refitting process, the
action selected from the vignette is removed from the copy of the vignette Pc, and the
new plan is annotated with a new fit flaw that has a slightly smaller vignette. The
algorithm resolves any causal threats and iterates.

Planning is complete when a plan is found on the fringe that has no flaws.

2.3 Example

To illustrate the VB-POCL planning algorithm, we provide an example of how the
planner could use the vignette shown in Fig. 1. Suppose we wanted a story set in
J.R.R. Tolkein’s Middle Earth. The story world is in the state in which one character,
called Enemy, has in his possession a Silmiril – a precious magical stone. The
outcome, provided by the human user, is that another character, called Hero, gains
possession of the Silmiril. In the remainder of this section, we trace the planning
process, describing only one of many possible paths that VB-POCL can follow1. The
planner starts by non-deterministically choosing to satisfy the goal by having Hero
take the Silmiril from Enemy. This requires that the Enemy not be alive. The planner
could use the vignette from Fig. 1 here by retrieving it and binding Enemy to ?c1.
Note that this strategy will eventually fail because it would require a character
stronger than Enemy. Instead the planner chooses to use conventional planning to
instantiate an action, Die-of-Infection, that causes Enemy to not be alive. This
requires that Enemy be superficially wounded. Here VB-POCL retrieves the vignette
from Fig. 1 because it has an action that can have the effect (once variables are
bound) of causing Enemy to become wounded. Each vignette action is spliced into

1 The VB-POCL algorithm follows all possible paths to solving a problem in a best-first

manner. We use the term non-deterministic to gloss over all the incorrect choices at any
given decision-point until it makes a choice that leads to a solution.

the new story plan one at a time, using the process of refitting described earlier.
Determining where in the plan to splice an action is resolved by repairing causal and
temporal inconsistencies (e.g. causal threat flaws). For example, when Die(Hero) is
spliced into the story plan, it must be temporally ordered after Take to avoid
inconsistencies; for a character to Take an item, the character cannot be dead.

The vignette is fairly self-contained, but the vignette action, Start-Battle does
require that the planner establish that both Hero and Enemy are at the same place,
which in this case the North. This precondition is satisfied in the normal way, by
using conventional planning strategies to instantiate an action in which Hero travels
to the North (Enemy is already there). The final story plan is shown in Fig. 3. Boxes
are actions and arrows represent causal links. A causal link indicates how an effect of
one step establishes a world state condition necessary for a precondition of latter steps
to be met. For clarity, only some preconditions and causal links on each action are
shown.

2.4 Vignette Transformation

VB-POCL assumes a library of vignettes that are already in the domain of the story to
be generated. A domain is a set of propositions that describe the world, including
characters, and a set of operator templates that described what characters can do and
ways in which the world can be changed. In the example, the domain describes
characters such as Hero and Enemy and operators such as Travel and Wound.
However, we may want the story planner to have access to vignettes from other
domains, especially if our new story is set in an unique and specialized story world

Fig 3. A story plan generated by VB-POCL.

domain. We use the term far transfer to refer to the process of transferring a vignette
from one domain to another.

To engage in far transfer on vignettes, one must first find analogies between
domains. Analogy-finding algorithms have been demonstrated to be able to find
analogies between stories when stories are pre-existing. Far transfer differs from the
problem of finding analogies between stories because there is not a second instance of
a story to compare. Instead, we search for analogies between domains and use that
information to translate a known vignette from one domain to another.

The far transfer process is summarized as follows. A source vignette is a vignette
in an arbitrary domain, called the source domain. The target domain is the domain of
the story to be generated. For each action in the source vignette, the far transfer
algorithm searches for an action in the target domain that is most analogical. The
search involves a single-elimination tournament where target domain actions compete
to be the most analogical according to the Connectionist Analogy Builder (CAB)
[20]. The winner of the tournament is the target domain vignette most analogical to
the source domain vignette. The result is a mapping of source domain actions to
target domain actions that can be used to translate a source vignette into a target
domain through substitution.

The far transfer algorithm runs CAB m*n times, where m is the number of actions
in the source domain vignette and n is the number of actions in the target domain.
The algorithm’s complexity is subsumed by the complexity of CAB, which is NP-
complete.

Translated vignettes may have gaps where translation is not perfect. This is not a
problem because the VB-POCL will recognize this and fill in the gaps via planning.
Applying this process to all vignettes in a library results in a new library in which all
vignettes are in the proper domain. See [19] for a detailed description of far transfer.

2.5 Discussion

One of the interesting properties of VB-POCL is that vignette retrieval can result in
story plans in which there are actions that are not causally relevant to the outcome.
Trabasso and van den Broek [21] refers to actions that are causally irrelevant to the
outcome as dead-ends. In the example above, the causal chain involving Enemy
mortally wounding Hero and then Hero dying appears to be a dead-end because those
actions do not contribute to Hero acquiring the Silmiril. Dead-ends are not
remembered as well as actions that are causally relevant to the outcome [21],
suggesting that dead-ends should be avoided. A battle in which a single wound was
inflicted on Enemy would have sufficed, and this is what planners such as [16] and
[7] would have settled on.

Human authors regularly include dead-end events in stories suggesting some
importance to dead-ends. We hypothesize that there are certain mimetic requirements
to be met in any story and that dead-ends can serve this purpose. For example, we
assume that a combat scenario in which many blows of varying strengths are
exchanged is more interesting than a combat in which a single blow is dealt.
Interestingly, what may be a dead-end causal chain to the story planner may not be
considered a dead-end by a human reader, and vice versa. That is, the reader may

interpret the example story as a tragedy and consider the death of Hero as one of two
primary causal chains, whereas the planner’s representation contains only one causal
chain that leads to the human user’s imposed outcome (Hero has the Silmiril). More
research needs to be done to create intelligent heuristics to recognize when dead-ends
(from the planner’s perspective) are favorable, tolerable, or damaging.

VB-POCL is capable of finding stories that other causal-planning based story
generation techniques are not able to find. Specifically, these are stories in which
some actions are not strictly necessary for causal achievement of some human-
specified outcome state. As noted in [8], expanding the space that can be explored
provides an opportunity to find more solutions that are valuable. However, one could
claim that some – or all – of the creativity occurred in the process of transforming
vignettes, executed prior to generation. As a first step toward improving the ability of
planning-based story generation to reliably produce valuable, mimetic stories, the
VB-POCL algorithm provides the technical capability of searching a large space of
possible solutions. Future work requires strategies for controlling the search space
exploration, including heuristics for ranking solution “goodness.” That is, VB-POCL
currently has no understanding of how multiple vignettes add or detract from each
other or the overall quality of the story being generated.

On a practical note, planning stories with vignettes is a way to increase the average
length of stories that can be generated. Ideally, a planner should only have to make
O(n) decisions where n is the length of the plan generated. In practice, planners
backtrack, meaning that they spend time generating action sequences that do not pan
out and must return to an earlier decision point. Any effort spent on a line of
reasoning that does not pan out is wasted effort. In the worst case, a planner must
consider all ways of making every decision (O(bn) where b is the number of ways a
decision can be made, and n is the length of the solution [16]). Vignettes, when
selected, guide the process of adding actions to the story plan, offering up actions in
hand-coded sequences that are less likely to result in backtracking than if every action
must be chosen independently. Of course, VB-POCL can interleave multiple
vignettes during which time new issues that cause backtracking can arise; this is the
price of flexibility. Future work is needed to develop powerful heuristic functions
that can help VB-POCL discriminate between vignettes when more than one can be
applied to an open condition flaw. The practical result of less backtracking is that
more time can be spent of fruitful action sequences, potentially allowing for longer
plans to be created in less time.

3 Related Work

Search based narrative generation approaches include Tale-Spin [22], which uses a
simulation-like approach, modeling the goals of story world characters and applying
inference to determine what characters should do. Dehn [4] argues that a story
generation system should satisfy the goals of the human user. That is, what outcome
does the user want to see? The Universe system [5] uses means-ends planning to
generate an episode of a story that achieves a user’s desired outcome for the episode.
More recent work on narrative generation attempts to balance between character goals

and human user goals [7]. Further work on story planning addresses expanding the
space of stories that could be searched [8].

Case-based reasoning (c.f. [23]) has been found to be related to creativity [2; 24].
Several approaches to narrative generation use case-based reasoning. Minstrel [25]
implements a model of cognitive creativity based on routines for transforming old
stories into new stories in new domains. ProtoPropp [26] uses case-based reasoning
to generate novel folk tales from an ontological case base of existing Proppian stories.
Mexica [27] uses examples of prior stories to propose plot points and then applies
means-ends planning to fill in missing details. VB-POCL is an attempt to harness the
power of search-based generation and case-based creativity in a formalized causal
planning framework.

VB-POCL is a variation on case-based reasoning. Case-based reasoners typically
engage in four processes: retrieve, reuse, revise, and retain [23]. Transformational
multi-reuse planners attempt to reuse components of solutions to similar problems to
solve new problems, thus possibly invoking retrieve, reuse, and revise processes more
than once. VB-POCL is most similar to [17] and [18], but differs from them and all
other case-based planners in the following ways. First, vignettes are not complete
solutions to previously solved problems; a vignette is not a case. But vignettes are
used like a case. Regarding VB-POCL functionality, the VB-POCL retrieval process
retrieves all vignettes that can conceivably be used to satisfy an open condition.
Typically, the cost of retrieval and reuse is very high so a system must deliberate
about the cost tradeoff of standard planning versus retrieval and reuse. Trying all
vignettes that meet the requirements for retrieval is not practical if vignettes require
extensive modifications for reuse. VB-POCL assumes that vignettes in the library are
in the domain of the story being generated and thus do not require extensive effort for
reuse. An offline algorithm – summarized in Section 2.4 and described in detail in
[19] – is used to transform all vignettes from arbitrary domains into the domain of the
new story to be generated. That is, many of the computationally intensive aspects of
reuse occurs offline and thus fitting a vignette into a plan is trivial. Second, vignettes
don’t require modification because vignettes are minimal. Reuse is performed by
blindly inserting all actions in a retrieved vignette into the plan; VB-POCL does not
need to make hard decisions about which actions should be kept and which actions
should be discarded. Finally, because vignettes are not cases, VB-POCL does not
reincorporate (e.g. retain) its solution story plans back into the knowledge base. That
is, VB-POCL does not attempt to learn to solve problems from past examples. One of
the interesting properties of transformational multi-reuse planning algorithms such as
[17] and [18] is that they can operate when there are no applicable cases available; the
algorithm can fall back on conventional planning. VB-POCL shares this trait, but
unlike transformational multi-reuse planners VB-POCL is also complete, meaning it
can find all solutions that exist (the proof is beyond the scope of the paper).

It may be possible to use hierarchical task network (HTN) planners [28] or a
decompositional planner such as DPOCL [29] to achieve similar effects as VB-
POCL. However, using HTNs or other decompositional techniques to generate story
requires reasoning at higher levels of abstraction than the action (or event), and this
introduces potentially rigid top-down structuring of plot that can limit opportunistic
discovery such as in [7; 8]. Further, vignettes can potentially come from many
sources, which may or may not be accompanied by abstract context information.

There are many similarities between VB-POCL and macro-operator planners.
Indeed, VB-POCL’s vignette retrieval process can be considered analogous to
selecting a virtual macro-operator. Macro-operator planners transform an action
space into a more compact action space for efficiency gains by learning to group
primitive actions that occur together frequently into abstract operators [30].
However, VB-POCL doesn’t learn vignettes. Indeed, vignettes often contain action
sequences that cannot be found by the planner. Further, VB-POCL needs to operate
in the primitive action space so that vignettes can be spliced together or so that VB-
POCL can use conventional planning techniques to discover new action sequences.

4 Conclusions

VB-POCL is a planning algorithm that extends conventional planning algorithms
(e.g. [16]) to make it more applicable to narrative creation. Specifically, VB-POCL
extends the conventional planning algorithm by retrieving and reusing vignettes. This
is a strategy for tapping into the experiences of other presumably expert story authors.
VB-POCL shares many similarities with case-based planners such as [17] and
especially [18]. However, by treating plans as narratives – that is, the plan is not a
schedule of actions to be executed for goal attainment but a description of events that
lead to an outcome – we are able to simplify the case (vignette) reuse problem by
assuming that our library of vignettes includes only minimal vignettes.

VB-POCL can explore a greater space of stories because it can consider story plans
that have action that are not causally necessary to reach some given outcome. We
believe that some of these stories will be more valuable because of the mimetic
qualities of the vignettes and the potential for these stories to possess both global
novelty and localized familiarity. While we have not yet performed an evaluation of
VB-POCL, we believe that this is a step towards instilling computer systems with the
ability to assume responsibility for story content creation. This can be an important
for application areas where content creation is a bottleneck and it is possible for the
pace of content consumption to overtake the pace of content production.

References

1. Morningstar, C. and Farmer, F.R.: The Lessons of Lucasfilm's Habitat. In: M. Benedikt
(Ed.) Cyberspace: First Steps. MIT Press (1991).

2. Boden, M.: The Creative Mind: Myths and Mechanisms, 2nd Edition. Routledge (2004).
3. Giora, R.: On Our Mind: Salience, Context, and Figurative Language. Oxford University

Press (2003).
4. Dehn, N.: Story Generation after Tale-Spin. In: 7th International Joint Conference on

Artificial Intelligence (1981).
5. Lebowitz, M.: Story-Telling as Planning and Learning. Poetics, 14, 483—502 (1985).
6. Young, R.M.: Notes on the Use of Plan Structures in the Creation of Interactive Plot. In:

AAAI Fall Symposium on Narrative Intelligence (1999).
7. Riedl, M.O., Young, R.M.: An Intent-Driven Planner for Multi-Agent Story Generation. In:

3rd International Joint Conf. on Autonomous Agents and Multi Agent Systems (2004).

8. Riedl, M.O., Young, R.M.: Story Planning as Exploratory Creativity: Techniques for
Expanding the Narrative Search Space. New Generation Computing, 24(3), 303—323
(2006).

9. Young, R.M., Riedl, M.O., Branly, M., Jhala, A., Martin, R.J., Saretto, C.J.: An
Architecture for Integrating Plan-Based Behavior Generation with Interactive Game
Environments. Journal of Game Development, 1, 50—70 (2004).

10. Riedl, M.O., Stern, A., Dini, D., Alderman, J.: Dynamic Experience Management in virtual
Worlds for Entertainment, Education, and Training. International Transactions on Systems
Science and Applications, 4 (2008).

11. Barber, H.M., Kudenko, D: Dynamic Generation of Dilemma-based Interactive Narratives.
In: 3rd AI and Interactive Digital Entertainment Conference (2007).

12. Magerko, B.: Evaluating Preemptive Story Direction in the Interactive Drama Architecture.
Journal of Game Development, 2 (2007).

13. Mateas. M., Stern, A.: Architecture, Authorial Idioms and Early Observations of the
Interactive Drama Façade, Technical Report, CMU-CS-02-198, School of Computer
Science, Carnegie Mellon University (2002).

14. Si, M, Marsella, S., Pynadath, D.V.: Thespian: Using Multi-Agent Fitting to Craft
Interactive Drama. In: 4th International Joint Conference on Autonomous Agents and Multi
Agent Systems (2005).

15. Weyhrauch, P.: Guiding Interactive Fiction. Ph.D. Disseration, Carnegie Mellon University
(1997).

16. Weld, D.: An Introduction to Least Commitment Planning. AI Magazine, 15(4), 27-61
(1994).

17. Francis, A.G., Ram, A.: A Domain-Independent Algorithm for Multi-Plan Adaptation and
Merging in Least-Commitment Planners. In: AAAI Fall Symposium on Adaptation of
Knowledge for Reuse (1995).

18. Britanik, J., Marefat, M.: CBPOP: A Domain-Independent Multi-Case Reuse Planner.
Computational Intelligence, 20, (2004).

19. Riedl, M.O., León, C.: Toward Vignette-Based Story Generation for Drama Management
Systems. In: Workshop on Integrating Technologies for Interactive Story (2008).

20. Larkey, L.B., Love, B.C.: CAB: Connectionist Analogy Builder. Cognitive Science, 27,
781—794 (2003).

21. Trabasso, T., van den Broek, P.: Causal Thinking and the Representation of Narrative
Events. Journal of Memory and Language, 24, 612-630 (1985).

22. Meehan, J.: The Metanovel: Writing Stories by Computer. Ph.D. Dissertation, Yale
University (1976).

23. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann Publishers (1993).
24. Kolodner, J.: Understanding Creativity: A Case-Based Approach. In: 1st European

Workshop on Case-Based Reasoning (1993).
25. Turner, S.: MINSTREL: A computer model of creativity and storytelling. Ph.D.

dissertation, University of California , Los Angeles (1992).
26. Gervás, P., Díaz-Agudo, B., Peinado, F., Hervás, R. Story Plot Generation Based on CBR.

Journal of Knowledge-Based Systems, 18(4-5), 235-242 (2006).
27. Pérez y Pérez, R., Sharples, M.: Mexica: A Computer Model of a Cognitive Account of

Creative Writing. Journal of Experimental and Theoretical Artificial Intelligence, 13(2),
119—139 (2001).

28. Sacerdoti, E.D.: A Structure for Plans and Behavior. Elsevier, New York (1977).
29. Young, R.M., Pollack, M., Moore, J.: Decomposition and Causality in Partial-Order

Planning. In: 2nd International Conference on AI and Planning Systems (1994).
30. Gratch, J., DeJong, G.: A Framework of Simplifications in Learning to Plan. In: 1st

International Conference on Artificial Intelligence Planning Systems (1992).

